
BR∀CE Tutorial

Jalal Kawash

Contents

1 Preliminaries 2
1.1 Running Example . 2
1.2 BR∀CE Interface . 2

2 Relational Algebra Tutorial 6
2.1 Projection and selection . 7
2.2 Aggregate functions . 10
2.3 Set operations . 12
2.4 Joins . 14
2.5 Division . 16

3 Relational Calculus Tutorial 19
3.1 Simple RC queries . 19
3.2 Existential quantifiers . 22
3.3 Universal quantifiers . 24

1

Chapter 1

Preliminaries

1.1 Running Example
In this tutorial, we will use the database schema depicted in Figure 1.1. This
database keeps information about employees, who are described by their numbers,
names (first and last), date of birth (DOB), gender (we assume the gender values
are M for male, F for female, X for LGPTQ, and O for other), salary, and the
department (number) they work for. A department is described by its number
and name. Employees may have dependents, who are described by their name,
gender, and relation to the employee. The job title of an employee is recorded
with its effective start date (effDate).

The data set used in our tutorial is shown in Figure 1.2. It is contrived, and
each table contains only a handful of rows. We used famous cartoon character
names for employees, but we largely made up the rest of the information.

1.2 BR∀CE Interface
The BR∀CE interface was shown in Figure ??. In BR∀CE, the schema is loaded
to the tool as an XML file. The XML representation of the schema of Figure 1.1
is given in Figure 1.3. It follows a very simple Document Type Definition (DTD)
that lists the relations and their attribute names. To use your own schema, code in
XML and load it to BR∀CE through the File menu choosing the Load Database
Schema option.

Next, click the Relational Algebra or the Relational Calculus tab to start
composing your RA or RC query, respectively. A query can be composed by se-

2

Figure 1.1: A simple company database schema

lecting a Tile Group and then dragging and dropping the required tile to the query
composition area. Some tiles require a relation or an attribute name. BR∀CE
populates the fields that require relation or attribute names in these tiles with drop-
down lists. You can scroll down these lists and select the required relations or at-
tributes for your query. Some tiles require a constant value or a quantifier variable
name (only in RC). For these tiles, use the keyboard to enter the required value
into the appropriate tile.

Once your visual query is composed and is complete, click the Generate Code
button. The equivalent theoretical expression to your visual query and the equiv-
alent SQL code will be shown in their respective areas. You can copy each of
these expressions to the clipboard, using , or download them as a file, using .
You can save your query from the File menu. BR∀CE queries are saved with the
extensions raq and rcq for RA and RC, respectively. Note that the schema rep-
resentation is piggybacked to the query since queries are schema-specific. When
you load a query from a file, the database schema is also loaded to BR∀CE.

3

EMPLOYEE
empNo fName lName DOB gender salary deptNo

18 Bugs Bunny 1971-6-3 X 53000 3
19 Jessica Rabbit 1985-6-14 F 65000 1
22 Daffy Duck 1977-9-19 M 35000 6
25 Willma Flinstone 1966-4-30 F 55000 3
33 Donald Duck 1970-2-20 M 52000 3
38 Minnie Mouse 1988-3-19 F 67000 1
40 Mickey Mouse 1980-8-2 M 37000 6
41 Road Runner 1992-11-22 O 40000 6

DEPARTMENT
deptNo deptName

1 Human Resources
3 Information Technology
6 Sales

DEPENDENT
empNo depName depGender relation

18 Hugs Bunny X Son
25 Fred Flinstone M Spouse
25 Pebbles Flinstone F Daughter
41 Hill Runner O Spouse

JOB
empNo title effDate

18 Developer 2000-1-1
18 Software Engineer 2006-1-1
19 HR Specialist 2002-3-1
22 Sales Manager 2002-1-1
25 Developer 2000-1-1
33 Developer 2001-1-1
33 Software Engineer 2004-1-1
38 HR Consultant 2003-4-1
40 Sales Person 2003-4-1
41 Sales Person 2005-7-1

Figure 1.2: A simple data set for the company database schema

4

<database name="Company Database">
<relation name="Employee">

<attribute name="empNo"/>
<attribute name="fname"/>
<attribute name="lname"/>
<attribute name="DOB"/>
<attribute name="gender"/>
<attribute name="salary"/>
<attribute name="deptNo"/>

</relation>

<relation name="Department">
<attribute name="deptNo"/>
<attribute name="deptName"/>

</relation>

<relation name="Dependent">
<attribute name="empNo"/>
<attribute name="depName"/>
<attribute name="depGender"/>
<attribute name="relation"/>

</relation>

<relation name="Job">
<attribute name="empNo"/>
<attribute name="title"/>
<attribute name="effDate"/>

</relation>
</database>

Figure 1.3: XML representation for the Company schema

5

Chapter 2

Relational Algebra Tutorial

We will present queries of increasing complexity, formulate these in BR∀CE, and
generate the equivalent RA and SQL expressions. We will then, use the Com-
pany database of Figure 1.2 to show the result of the query in that database. The
operands in the RA tiles are labeled as follows:

1. R, R1, are R2 are relation operands

2. a is an attribute name list operand

3. c, c1, and c2 are logical conditions

4. e1, and e2 are expressions which can be an attribute name or a constant value
entered by the user.

An operand can be left blank if the label is enclosed in square brackets, such as
[a]. We do not intended nor we have space to cover every possible RA operation
supported by BR∀CE. However, we will demonstrate at least one RA operation
from each each tile group.

The RA tile groups are:

1. The group contains the relation and attribute tiles to be used in
the next two groups.

2. The group contains the tiles for the RA unary operators (they
have one relation operand): select, project, aggregate functions, and aggre-
gate functions with grouping.

6

3. The group contains the tiles for the RA binary operators (they
require two relation operands). Many of these operators share the same tile.
The required operator is chosen from a drop-down list in the tile. There
are four tiles in this group: (i) joins that do not require conditions (namely,
natural join and cross join), (ii) joins that require conditions (all forms of
theta joins and outer joins), (iii) set operations (intersection, union, and
difference, and (iv) division.

4. The group contains the tiles for formulating logic conditions.
There are six tiles in this group: (i) the logical and or or tile, (ii) the logical
negation tile, (iii) the comparison operators tile (=, 6=,<,>,≤,and≥), (iv)
the attribute tile needed for attribute names in conditions, (v) the number
literal tile, and (vi) the string literal tile.

Any of the tiles in the unary and binary operators groups can serve as a con-
tainer for the RA query.

2.1 Projection and selection
The project unary operator, denoted by the Greek symbol π, filters a relation ver-
tically. That is, it can eliminate some of its columns. We start by formulating
a projection query. Because this is our first RA query, we will go through its
construction step by step. The query is retrieve the first name and last names of
employees. The steps are:

1. Drag the project (π) tile from the Unary Operators group and drop it in the
query composition area:

2. The project tile requires a relation (R) operand. From the Relations group,
drag the relation tile and snap it into the project tile. Then, choose from the
drop-down list the required relation:

7

3. The project tile also requires an attribute list operand (a). From the Rela-
tions group, drag the attribute tile and snap into the project tile. Then choose
from the drop-down list the required attribute:

4. More attributes can be added to the attribute list by snapping more attribute
tiles onto the last added attribute tile:

This completes our query. Click the Generate Code button to generate the RA
and SQL expressions that are equivalent to the BR∀CE query. The equivalent RA
expression generated by BR∀CE is:
π Employee.fName, Employee.lName (Employee).
The equivalent SQL expression generated by BR∀CE is:
select Employee.fName, Employee.lName from Employee.
The result of this query when applied to our data set is:

8

fName lName
Bugs Bunny

Jessica Rabbit
Daffy Duck

Willma Flinstone
Donald Duck
Minnie Mouse
Mickey Mouse
Road Runner

The select operation, denoted by the Greek symbol σ, filters a relation hori-
zontally. That is, it can eliminate some of the rows. The following is a selection
query that retrieves the employees who were born before 1970-1-1:

The equivalent RA expression generated by BR∀CE is:
σ Employee.DOB < "1970-1-1" (Employee).
The equivalent SQL expression generated by BR∀CE is:
select *
from Employee
where Employee.DOB < "1970-1-1".
The result of this query is:

empNo fName lName DOB · · ·
25 Willma Flinstone 1966-4-30 · · ·

The next query combines both projection and selection. It retrieves the first
and last names of employees who neither identify as males nor females:

9

The equivalent RA expression generated by BR∀CE is:
π Employee.fName, Employee.lName (σ (Employee.gender 6= "M" ∧ Employee.gender
6= "F") (Employee)).
The equivalent SQL expression generated by BR∀CE is:
select Employee.fName, Employee.lName
from Employee
where (Employee.gender != "M"
and Employee.gender != "F").
The result of this query is:

fName lName
Bugs Bunny
Road Runner

2.2 Aggregate functions
The aggregate functions in RA are min, max, sum, count, and average. Calcula-
tions can be performed to compute a single value, such as the average salary in

10

the company, or to compute a single value for a group of rows, such as the average
value per gender.

The following BR∀CE query retrieves the average salary of all employees:

The equivalent RA expression generated by BR∀CE is:
AVG (Employee.salary) (Employee).
The equivalent SQL expression BR∀CE generated is:
select AVG (Employee.salary)
from Employee.
The result of this query is:

AVG(salary)
50500

To calculate any other function, such as the min, max, or sum, it is only nec-
essary to choose that function from the drop-down list in the aggregate function
tile. To retrieve the maximum salary for each gender group, the query is written
as:

The equivalent RA expression generated by BR∀CE is:
MAX (Employee.salary) (Employee) (Employee.gender).
The equivalent SQL expression generated by BR∀CE is:
select Employee.gender,

MAX (Employee.salary)
from Employee
group by Employee.gender.
The result of this query is:

11

gender MAX(salary)
X 53000
F 67000
M 52000
O 40000

2.3 Set operations
There are three set operations in RA: union, denoted by ∪, intersection, denoted
by ∩, and minus, denoted by −. These are binary RA operators requiring two
relations as operands. To retrieve the depNos for departments that have male
employees but do not have female employees, we formulate a minus query. The
first set (R1) contains departments that have male employees, and the second set
(R2) contains departments that have female employees. The result is the first set
minus the second set.
The BR∀CE query is:

12

The equivalent RA expression generated by BR∀CE is:
(π Employee.deptNo (σ Employee.gender = "M" (Employee)) - π Employee.deptNo
(σ Employee.gender = "F" (Employee))).
The equivalent SQL expression generated by BR∀CE is:
(select Employee.deptNo
from Employee

13

where Employee.gender = "M"
except
select Employee.deptNo
from Employee
where Employee.gender = "F").
The result of this query is:

deptNo
3
6

−
deptNo

1
3

=
deptNo

6

Note that the query that retrieves the depNos for departments that have both
male employees and female employees would only require changing the “−” to
“∩” in the above query. The query that retrieves the depNos for departments that
have male employees or female employees require using “∪” instead of the “−”.

2.4 Joins
Join queries cross reference two relations against each other by pairing each row
in the first relation with each row in the second relation. For all the joins, except
for the cross-join (denoted by ×), a selection condition is applied to eliminate
some of the irrelevant rows. A cross-join between Employee and Dependent lists
every employee with every dependent:

The equivalent RA expression generated by BR∀CE is:
(Employee × Dependent).
The equivalent SQL expression generated by BR∀CE is:
select *
from Employee cross join Dependent.

The natural-join (denoted by ∗) eliminates the rows where empNo from Em-
ployee is not equal to empNo from Dependent in the above listing. The ∗ must be
chosen from the drop-down list in the tile and the equivalent RA expression is:
(Employee * Dependent).

14

The equivalent SQL expression generated by BR∀CE is:
select *
from Employee natural join Dependent .
The result of this query is:
EMPLOYEE DEPENDENT
empNo fName · · · empNo depName · · ·

18 Bugs · · · 18 Hugs Bunny · · ·
25 Willma · · · 25 Fred Flinstone · · ·
25 Willma · · · 25 Pebbles Flinstone · · ·
41 Road · · · 41 Hill Runner · · ·
This can also be expressed as a inner-join query:

Note that the natural and inner joins eliminate the employees who do not have
any dependents. To include such employees in the result with the dependent in-
formation left blank when it is not applicable (for employees who have no depen-
dents), an outer-join is needed. In the above query, it is sufficient to replace ./ by
./ in the tile’s drop-down list to create a right (Employee) outer join.
The equivalent RA expression generated by BR∀CE is:
(Employee ./ Employee.empNo = Dependent.empNo Dependent).
The equivalent SQL expression generated by BR∀CE is:
select *
from Employee right outer join Dependent on Employee.empNo = Dependent.empNo.
The result of this query is:
EMPLOYEE DEPENDENT

15

empNo fName · · · empNo depName · · ·
18 Bugs · · · 18 Hugs Bunny · · ·
19 Jessica · · · 19 NULL · · ·
22 Daffy · · · 22 NULL · · ·
25 Willma · · · 25 Fred Flinstone · · ·
25 Willma · · · 25 Pebbles Flinstone · · ·
33 Donald · · · 33 NULL · · ·
38 Minnie · · · 38 NULL · · ·
40 Mickey · · · 40 NULL · · ·
41 Road · · · 41 Hill Runner · · ·

2.5 Division
Division requires a collection of attribute values to be “related” in some relation
to every attribute value in another relation. For example, given the relations A and
B:

A
a1 a2

x1 y1
x2 y1
x3 y1
x4 y1
x1 y2
x2 y2

B
a1

x1
x2
x3

A÷a1 B
a2

y1

since y1 is “related” in A to every attribute value of a1 in B.
There is no direct support for the division operation in SQL. One way to ex-

press division queries in SQL is as follows. Let R1(Z) and R2(X) be relations and
let Z and X be sets of attributes such that Y ⊆ Z−X . R1(Z)÷Y R2(X) is written
using other RA operations as follows:

πY (R1)−πY ((R2×πY (R1))−R1).

Note that our definition for division is more general than the classical division
definition which assumes Y = Z−X .

To retrieve the numbers for those employees who held the same job titles as all
the ones held by employee with empNo 18, requires the following division query:

16

The equivalent RA expression generated by BR∀CE is:
(π Job.title, Job.empNo (Job) ÷ Job.title π Job.title (σ Job.empNo
= 18 (Job)))
The equivalent SQL expression generated by BR∀CE is:
(select Job.title from (select Job.title, Job.empNo from Job)
as temp0 except select Job.title from ((select * from (select
Job.title from (select Job.title, Job.empNo from Job) as temp1
) as temp2 cross join (select Job.title from Job where Job.empNo
= 18) as temp3 except select Job.title, Job.empNo from Job)) as
temp4)
The result of this query is:

17

empNo title
18 Developer
18 Software Engineer
19 HR Specialist
22 Sales Manager
25 Developer
33 Developer
33 Software Engineer
38 HR Consultant
40 Sales Person
41 Sales Person

÷title

title
Developer

Software Engineer

=

empNo
18
33

18

Chapter 3

Relational Calculus Tutorial

We will present four RC example queries in increasing complexity. There are four
groups of tiles for RC in BR∀CE:

1. The group contains two tiles. The main tile is a container for all RC
queries. The attribute tile is used to specify attribute names in RC queries.
Similarly to RA tiles, optional operands are enclosed in square brackets.

2. The group contains two predicate tiles. The first tile represents
the predicate P(x) and the second represents P(x)∧ c, where c is a logical
condition.

3. The group has two tiles. The exists tile corresponds to the pred-
icate ∃x(P(x)∧c) and the forall tile corresponds to the predicate ∀x(P(x)→
c), where c is a condition.

4. The group has the same tiles as the same group in the RA tab.

3.1 Simple RC queries
We start with two queries that do not require the use of quantifiers. To retrieve the
employee names (first and last) who do not identify as male or female, requires
the following. First, the main tile is required as a container:

19

This tiles requires a predicate (P). From the Predicates group, drag and snap the
simple predicate tile. Then change Var to e and choose Employee from the drop-
down list:

Drag and snap two attribute tiles and select fname and lname from the drop-down
lists:

Formulate the condition: (e.gender 6= “M”)∧ (e.gender 6= “F”) using condition
tiles, and the resulting query is:

20

The equivalent RC expression generated by BR∀CE is:
{e. f Name,e.lName|Employee(e)∧ ((e.gender 6= “M”)∧ (e.gender 6= “F”))}.
The equivalent SQL expression generated by BR∀CE is:
select e.lName, e.fName
from Employee as e
where (e.gender != "M"
and e.gender != "F").
The result of this query is:

fName lName
Bugs Bunny
Road Runner

The next query retrieves the employees who earn more than 50000 and who
were born after January 1, 1980 (note that the attribute list in the main tile is left
empty):

21

The equivalent RC expression generated by BR∀CE is:
{e|Employee(e)∧ ((e.salary > 50000)∧ (e.DOB > “1980−1−1”))}.
The equivalent SQL expression generated by BR∀CE is:
select *
from Employee as e
where (e.salary > 50000
and e.DOB > "1980-1-1").
The result of this query is:

empNo fName lName DOB salary · · ·
19 Jessica Rabbit 1985-6-14 65000 · · ·
38 Minnie Mouse 1988-3-19 67000 · · ·

3.2 Existential quantifiers
Joins in RC require the use of the existential quantifier. To list employee names
who work for the Human Resources department:

22

The equivalent RC expression generated by BR∀CE is:
{e. f Name,e.lName|Employee(e)∧ ∃d(Department(d)∧
(d.deptName = “HumanResources”)∧
(d.deptNo = e.deptNo)))}.
The equivalent SQL expression generated by BR∀CE is:
select e.fName, e.lName
from Employee as e
where exists (

select *
from Department as d
where (
d.deptName = "Human Resources"
and d.deptNo = e.deptNo)

).

23

The result of this query is:

fName lName
Jessica Rabbit
Minnie Mouse

3.3 Universal quantifiers
The following query retrieves the departments that have every employee earning
at least 45000:

The equivalent RC expression generated by BR∀CE is:
{d|Department(d)∧∀e((Employee(e)∧(e.deptNo= d.deptNo))→ (e.salary≤
45000))}.
The equivalent SQL expression generated by BR∀CE is:
select *

24

from Department as d
where not (exists (

select *
from Employee as e
where (
e.deptNo = d.deptNo
and e.salary < 45000)

)).
The result of this query is:

deptNo deptName
1 Human Resources
3 Information Technology

Note that forall queries can be represented in BR∀CE using the negation of
the exists quantifier. For instance, the previous query can be also formulated as:

25

26

	Preliminaries
	Running Example
	BRCE Interface

	Relational Algebra Tutorial
	Projection and selection
	Aggregate functions
	Set operations
	Joins
	Division

	Relational Calculus Tutorial
	Simple RC queries
	Existential quantifiers
	Universal quantifiers

