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Abstract—Discrete element textures methods can generate
elements in a large output domain whose distribution is very
similar to a smaller example. This is a task that is very tedious for
a human user. Synthesizing discrete elements into an expanding
3D output domain, interactively just as they are needed, is an open
question. This project builds on the approach of [2] to formulate
a smaller optimization problem, with less iterations, and that can
be used to expand the solution arbitrarily. However, future work
is still needed in order to make it perform at interactive levels.

I. INTRODUCTION

Many physical phenomena can be described by an under-
lying distribution. For example, consider skin, it consists of
hair follicles, skin cells, pores and blood vessels. One patch
of skin looks very similar to another patch of skin. Similar
examples include swarms of fish, rocks on a beech, the bark
of a tree, or even the buildings of a metropolis.

This project explores how to generate elements in a large
domain just as they are needed based upon a small input ex-
ample. Its inspired by seeding approaches such as [7], and the
iterative optimization used in [2]. In the latter, elements in the
output domain are matched to elements in the input domain.
Those pairings then provide predictions for the attributes and
positions of elements in the output domain, which can be
solved in an optimization step. In their work, this is applied
many times, and across the entire domain until a satisfactory
result is obtained.

The key idea in this project is that optimization needs only
to occur along, and in a small area around a so-called horizon.
The horizon is a subset of the output domain containing newly
created elements copied from the input example. Each round of
the algorithm expands the domain and creates a new horizon.
The optimization step is weighted such that the further away
from the horizon an element is, the more locked in place it
is, until at a certain distance its position and attributes are
completely locked and no longer part of the optimization. In
contrast to [2] each element only needs a few optimization
steps.

In an attempt to ensure that few steps of optimization
are needed, the algorithm attempts to choose good candidate
elements for the horizon. This was done using Single Player
Monte-Carlo Tree Search [1]. As will be discussed in the
results section, this expensive combinatorial search is unnec-
essary, instead a patch-based approach will be discussed as the
basis for future work.

A. Related Work

An image or texture is local if given a small window,
neighbouring pixels or elements can be successfully predicted

from other elements in the window [7], [4]. For example, in
an image of sand, different windows into that image look very
similar—the image has locality in the distribution of its pixels.
This insight is the basis for texture synthesis.

Example based texture synthesis uses an input example to
generate a larger texture that is non-repeating and that is locally
similar to the example texture. Usually this is formulated as
either a local or global optimization problem. Example based
texture synthesis has been used to generate 2D textures [7], [8],
[10], [11], [6], [12], 3D volumetric textures [5] and discrete
distributions of elements in 2D and 3D space [3], [2].

For example, Kwatra uses a scan-line algorithm to identify
which pixels to generate next, the colour of those pixels
is selected from an input example whose neighbourhood is
most similar to the neighbourhood of the output pixel [10].
An example of one neighbourhood similarity metric will be
discussed shortly.

Patch-based synthesis is a natural extension of pixel-based
synthesis where patches, instead of pixels, are copied from the
input exemplar to the output domain [6], [8], [9]. The entire
output-domain is then optimized such that it looks similar to
the input domain.

B. Discrete Element Texture Synthesis

Discrete Element Textures (DET) is a technique that syn-
thesizes non-repeating elements within a large domain based
upon a small input example. The position and type of ele-
ments in the output domain are chosen using an optimization
technique based upon the expectation-maximization algorithm.
During the expectation step, the authors create a set of pre-
dictions for the type and position of elements in the output
domain. In the maximization step, those predictions are used
to optimize the position and type of elements so that their
local neighbourhood is similar to the input example. These two
steps are repeated until the systems converges on a solution.
An example of this technique can be seen in Figure 1.

During the initialization phase sample patches from the
input exemplar are randomly copied to the output domain
such that all of the samples that belong to the same sample
are copied. The size of the patches is proportional to a user
defined neighbourhood extent. The next steps of the algorithm
iteratively search for the most similar input neighbourhood for
each output sample and then assign to that sample a position
and attributes (such as element id and orientation).

For an output sample so and an input sample si the
similarity between their neighbourhoods |n(so) − (si)|2 is
given by Equation 1. Intuitively this finds for output sample
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Fig. 1: In this example of discrete element texture synthesis, the logs in a) together with the definition of the output domain in
b) produce the set of synthesized elements in c).

s′o in the neighbourhood n(so) of the output sample so the
most similar input sample s′i in the neighbourhood n(si) of si
to s′o. For each sample s′ in the neighbourhood n(s) of s we
have the vector p̂(s′) = p(s′) − p(s). For each matching pair
of samples (s′o ∈ n(so), s′i ∈ n(si)) in the neighbourhoods of
so and si we find the difference between p̂(s′i) and p̂(s′o).
This serves to align the neighbourhoods and compare the
configuration of the positions of the samples in the input and
output neighbourhoods.

|n(so)−n(si)|2 =
∑

s′o∈n(so)

|p̂(s′o)− p̂(s′i)|+ α|q(s′o)− q(s′i)|2

(1)

During the search step k-coherence search is used to find
the input sample si with the most similar neighbourhood n(si)
to the output sample’s so neighbourhood n(so). During the
assignment step each sample s′o ∈ n(so) provides a prediction
p̃(so, s

′
o) = p(si) − p(s′i) for the relative position between

so and s′o. A least squares method is used to find the output
positions that minimize the following energy function.

Ep({p(so)}so∈O) =
∑
so∈O

∑
s′o∈n(so)

|(p(so)−p(s′o))−p̃(so, s′o)|2

(2)

To handle different domain shapes an additional energy
term can be integrated into Equation 1. This term simply
checks if a given sample is inside or outside of the given
domain shape. The authors use a voxelization technique to
perform this check.

Discrete element textures are not suitable for just-in-time
synthesis for the following reasons: 1) The many-step opti-
mization approach used in the paper is expensive. 2) Domains
in DET are generated all at once. For just in-time-synthesis it
would be desirable to expand the output domain as required. 3)
New elements are added to the output domain only during the
initialization step, this can lead to crowding and overlap (see
Figure 2). There may exist a better approach to DET for just-
in-time synthesis based upon different optimization techniques
or by extending DET to address these points.

Fig. 2: An example of an output domain generated from an
input domain (blue) where DET has produced overlap. The
overlap occurs when the output domain is constrained and
too many elements are added to it to satisfy the constraints
imposed by the input example.

II. REPRESENTATION

The position of an element s is denoted p(s) while its at-
tributes are denoted by q(s). The vector q(s) contains attributes
such as the colour or the type of the element. In this paper we
only allow boolean comparisons between elements of q(s), for
example q(s1)t = q(s2)t might denote whether two elements
share the same type. In this paper, the type determines the
mesh of the element. It was not explored in this particular
implementation, but we could also denote the rotation of an
element with r(s), right now rotation is just another attribute,
but it could be optimized in the least-squares optimizer.

There are two domains, the output domain O and the
example E domain. The horizon, H ⊂ O contains the newly



created elements that need to be optimized.

This project measures texture similarity through a neigh-
bourhood similarity metric. If n(s) is the neighbourhood of
s, then the distance between two neighbourhoods is given by
|n(s)− n(e)|2, which we define below:

|n(s)−n(e)|2 =
∑

s′∈n(s)

|(p((s)−p(s′))−(p(e)−p(e′))|2 (3)

Pair assignment in the above is unlike [2], the pairs
< s′, e′ > for s′ ∈ n(s) and e′ ∈ n(e) are determined in
a greedy fashion. That is, the nearest pairs are assigned first,
and removed from consideration. Ma et al. solve this using
the Munkres assignment algorithm O(n3). We use a brute-
force O( 1

2n
2) greedy algorithm. A k-d tree could reduce this

to O(log n). The Munkres assignment algorithm is optimal,
however under observation, the pairings produced by the
greedy algorithm produce good results.

A partial pair assignment is a set of pairs, {< s′, e′ >
|s′ ∈ n(s) ∪ ∅, e′ ∈ n(e) ∪ ∅}. A partial assignment occurs if
|(p(s)− p(s′))− (p(e)− p(e′))|2 < c for some user threshold.
Partial assignments of the form < 0, e′ > indicate where to
create new elements in the horizon (candidates).

Assignment, in general is the process of finding for an
element s ∈ O the element e ∈ E whose neighbourhood n(e)
is closest to n(s). This is done using a brute-force search. k-
coherence search is not used because of partial assignment,
instead future work would look at using a k-NN search in the
example domain.

III. ALGORITHM

The proposed algorithm has two main phases. In the
generation step, new elements are added to the horizon
through a combinatorial search of the candidate space using
Single-Player Monte-Carlo Tree Search [1]. The candidate
space is composed of the partial assignments for all elements
in the previous horizon. The second part of the algorithm is
an optimization step. There are three components to this,
in the first element positions are minimized in a weighted
least squares approach, the next steps reassign and redistribute
element attributes, q(s).

In each round of the algorithm (generation and opti-
mization), a new horizon is generated and the previous one
discarded. This results in an expanding domain. Naturally syn-
thesis can be constrained to a particular region by discarding
candidates that fall outside of that region.

The goal of this algorithm is to first make good decisions
that will start the horizon out in a low energy state. The
energy is then reduced through least-squares optimization,
reassignment, and redistribution steps. Furthermore, the size
of the optimization problem is significantly smaller than in
[2], as we need only consider elements in the horizon.

IV. SINGLE-PLAYER MONTE-CARLO TREE SEARCH

We use a standard Upper Confidence applied to Trees,
Monte-Carlo Tree Search algorithm. UCT finds a balance

between exploiting already explored and good areas of the
tree, with the need to expand the search space with unexplored
sections of the tree. Single-Player MCTS is an extension
of MCTS from two-player win-loss games, to single-player
scored games [1].

The number of ways to choose elements in the candidate
set is huge C(n, k), for n is the size of the candidate set, and
k is the size of the horizon (which we don’t know beforehand).
Hence, MCTS seems like a good way to explore this space. It
has the added advantage that it always tracks its best solution
and can therefore be terminated at any point if the search is
taking too long.

For any sequence of choices, we can measure the energy
of the system by summing up the neighbourhood metrics for
each element in the horizon, which gives us a score, i.e.:

score(H) =
∑
h∈H

|n(h)− n(e)|2 (4)

where in this case e ∈ E is the element in the example
domain with the nearest neighbourhood to h.

Then, the decision of which node to choose at any level of
the tree is to choose the child node with the highest:

x̄+ explore ·

√
ln(n)

ni
+

√∑
x2 − ni ∗ x̄+ exploit

ni
(5)

Where x̄ is the average playout score for the current node,
n is the number of times the current node has been visited, ni is
the number of times the child node in question has been visited,
and

∑
x2 is the sum of the results up until the current level

of the tree (ie, a partial scoring up until the current decision).
explore and exploit are user parameters to control how much
MCTS should be exploring or exploiting the candidate space.
This arrangement is maximizing, therefore we set x to be
2emax − x, where emax was the maximal energy achieved
in the last round of MCTS.

Each node stores its partial score, its average score, and the
number of times its been visited. In addition it also stores its
selected candidate, so that the candidate space at any particular
level of the tree can be efficiently reconstructed without using
too much extra memory.

As mentioned, candidates are produced by visiting the
elements in the horizon and finding their nearest example,
using the partial pair-assignment algorithm described earlier.
Unassigned example elements are copied into the candidate
space. For h ∈ H , the set of unassigned example elements are
< 0, e′ > for e′ ∈ n(e) and e is the nearest example. Then
the new candidate position pc = p(h) + (p(e) − p(e′)). The
attributes of q(e′) are simply copied.

To reduce the size of the candidate space, two filter oper-
ations are used. The most obvious is to eliminate overlapping
candidates within a certain small radius.

The other candidate filter aims to make choices that will
not increase the energy of the system significantly. For a given
candidate c, we find the nearest example element e. If |n(c)−



n(e)|2 > t|, where t is 1.5 times the average neighbouring
assignments.

A round of MCTS terminates when there are no candidates
left. The score is then back-propagated.

V. OPTIMIZATION

Optimization consists of three parts: a least-squares op-
timization of element positions, attribute reassignment and
attribute redistribution.

A. Least-Squares Element Position Optimization

In the previous step, the horizon has been filled with
elements. For each h ∈ H we find the nearest e ∈ E using
the full-pair-assignment algorithm. Then for each h′ ∈ n(h)
we have a set of pairs {< h′, e′ >} for e′ ∈ n(e) that predict
positions for h, that is

p̂(h) = (p(s)− p(s′))− (p(e)− p(e′)) (6)

As in [2] we want to minimize the energy of the elements
in the horizon in the manner of Equation 6. Consider the
following example:
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e5 e8h0
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Fig. 3: The left shows elements in the output domain, while the
right shows elements in the example domain. The curves iden-
tify the example elements assigned to the horizon elements.

We can form a system of equations for the example where
the pairings in the neighbourhoods of h0, h1, e5, e4 provide
predictions for the positions of h0, h1, s1, s2:

h0 − h1 = e5 − e4
h0 − s1 = e5 − e1
h0 − s2 = e5 − e2
h1 − h0 = e4 − e5
h1 − s1 = e4 − e1
h1 − s2 = e4 − e2

h0 = h0
h1 = h1

w1 × s1 = w1 × s1
w1 × s2 = w1 × s2

(7)

The right side of this system of equations forms a vector b,
for each component x, y, z. The left side forms a matrix A and
unknowns x = (w0 × h0, w1 × h1, s1, s2)T . Here we see the
weighted component of the formulation: the elements outside
of the horizon, but still within the neighbourhood distance of

its elements. The weight given is proportional to the element’s
distance from the horizon. Hence the system of equations will
try to optimize the horizon over the already optimized values.

The system of equations can be reduced to just 4 rows,
hence we end up with a 4 × 4 A matrix, or in general
an n × n matrix for a horizon of size n. This system of
equations, Ax = b is solved using the Cholesky decomposition
module of the Eigen matrix library. This is a very high
performance and widely used implementation that uses x86 64
SSE2 instructions for SIMD vector operations.

A constrained least squares formulation was also tried.
However, with QR decomposition it was significantly slower,
and produced inferior results. Thinking about this, the
weighted solution allows the newly introduced elements and
existing neighbours to reach a better configuration with respect
to one another, and hence the system can reach a lower energy
configuration.

B. Reassignment

The nearest example for each horizon element from the
least squares step is stored, along with all of the pairs with
examples unassigned with output elements, {< 0, e′ >}. If
there is an s′ such that |(p(s) − p(s′)) − (p(e) − p(e′))|,
regardless of whether q(e′) = q(s′), then the attribute vector
for q(e′) provides a vote to change each attribute in q(s′).
Attributes of the element s′ are changed if enough votes
are cast (greater than some user constant). The reassignment
step allows elements to be assigned new attributes after the
MCTS generation step, this is necessary as the surrounding
neighbourhood may have changed significantly since the initial
assignment.

C. Redistribution

One goal of achieving texturing similarity is that the
frequency of elements in two local neighbourhoods should
be the same. To this end, for element h ∈ H the local
distribution of attributes q(h′), h′ ∈ n(h) forms a histogram.
Then, for the matching example element e ∈ E to h its
histogram is also found. If q(h) is overrepresented relative
to its corresponding example’s histogram, then it is reassigned
to the most underrepresented frequency in h’s histogram. In
addition to reassignment, re-distribution of attributes helps
achieve texture similarity in terms of element attributes.

VI. DISCUSSION AND RESULTS

For example domains with regular structure, the approach
in this paper is very fast and stable. In particular, the result in
Figure 4 took about 5 seconds of algorithm time running on 3
threads and 4 seconds of time in the simulation environment
to load all of the graphical resources and update the user
interface. In particular, the small example domain size hides
the complexity of the assignment step. In later results we’ll
see how expensive this step can be.

In Figure 5 the same example domain from Figure 4 is
used. This time, however, least squares optimization is not
applied. One can see the stability that results from a single
MCTS play-out. This suggests that full MCTS isn’t need and
that a simple filtering strategy as described in Section IV is



Fig. 4: The elements to the right are the example domain while
the elements to the left are the output domain. The example
domain is slightly staggered to illustrate the stability of the
approach. Algorithm time: 5s.

sufficient. Running 20 rounds of MCTS on Figure 4 results in
a visually identical result, and took 89 seconds, see Figure 6.

In the next set of examples, we explore the synthesis of a
patch of cellular membrane. The blue spheres with orange legs
are phospholipids, while the purple tubes are protein channels,
the orange spheres are small molecules that can travel through
the protein channels. Each example only required one round
of MCTS. Each lipid is approximately 1.0 units away from its
neighbours. For both results below, the example in Figure 7
was used.

First, a small neighbourhood was used as in Figure 8.
As one can see this produced a result that did not include
the orange molecules. Furthermore, the lipids overlap and
penetrate with the protein channels.

In the next example, the neighbourhood distance was
increased to 4.0 units. This significantly improved the results
as one can see in Figure 9. In particular there is less inter-
penetration, and the orange molecules are correctly synthe-
sized. Furthermore, the results of the generation steps were
not significantly different after applying the optimization steps.
My interpretation is that the examples chosen for each output
element are local to each-other within the example domain.
Thus, they have more coherence in the output domain and
hence less energy in the output domain. This again suggests
that MCTS may not be needed as one can simply increase
the neighbourhood size. Increasing the neighbourhood size
increases complexity, a patch based approach could probably
achieve the same result as a large neighbourhood and MCTS
play-out, but with significantly less cost.

Another point to notice is that the orange molecules are

Fig. 5: Repeated application of only the generation step
without optimization. Algorithm time: 3s.

Fig. 6: Repeated application of generation and optimization.
Each generation step involved 20 rounds of MCTS. Algorithm
time: 89s.



Fig. 7: A cellular membrane example. The blue spheres
with orange tails are phospholipids, the orange spheres small
molecules, and the purple tubes are protein channels.

Fig. 8: The result of using a neighbourhood of radius 1.5 The
orange molecules are missing and there is a lot of penetration
and overlap.

overrepresented, even with the redistribution and reassignment
steps. This is probably an artifact of the elements being widely
spaced apart.

Notice the floating lipid. The orange molecules ”sucked”
it out of the membrane in the least-squares optimization. Also
notice that there is still penetration of the protein channels as
well as empty regions where there should be protein chan-
nels. To compensate for these artifacts, perhaps the distance
metric should be weighted by distance but also by frequency
of element attributes. The protein channels occur with low
frequency, hence the effect of the far more populace lipids is to
crowd them. A distance metric that accounts for the frequency
of the protein channels could give their direction vectors in
the least squares optimization more weight.

The relatively large example combined with the large
neighbourhood distance (which works out to about 25 elements
in a neighbourhood) dramatically increased the running time
for Figure 9, namely more than 20 minutes. For Figure 8 that
was about 4 minutes.

VII. CONCLUSION AND FUTURE WORK

Most of the performance issues in the results section are
the result of using poor algorithms when better ones are
available. In particular, k-d trees could be used to accelerate
pair-assignment and nearest example assignment. For instance,
the nearest example assignment is O(l∗m∗n2). Where, n is the
number of neighbours, m the example size, and l the horizon
size. Without considering the attributes of an element and only
considering element position, one can use a k-d(imensional)
tree, where k is three times the neighbourhood size. The search
complexity is on average O(logn) or O(n) in the worst case.
However, one also has to consider the attributes of the elements
in determining the nearest example to an output element. This
will be one area of study over the coming weeks. I will start
by looking at k-nearest-neighbour search.

Improving the partial-pair assignment could incorporate the
Earth Mover’s Distance metric [13]. In addition, the neighbour-
hood distance metric could account for attribute frequency in
the local neighbourhood. At the very least, attribute frequency
should be added as a weighted term to the least-squares solver.

As was discussed in the results section, larger neighbour-
hoods gave better results, especially with few steps of MCTS.
Therefore, in the next phase of research, I will abandon MCTS
and explore using patch based synthesis. In this scheme, one
would choose patches such that there are no uncovered regions.
For covered domains especially, this would require overlap
between patches. The overlapping and boundary regions would
form the horizon. Then, we can apply the filtering steps from
Section IV to the horizon, followed by the optimization steps.
Choosing patches could be done randomly, if that turns out to
be a poor choice, then patches could be chosen such that their
boundaries or overlaps lead to the least increase in energy in
those regions.

In conclusion, the algorithm outlined in this paper is very
performant for small examples, however, the implementation
is slow for larger example domains. This can be fixed. The
MCTS step is a poor fit for the goals of this project, namely to
find an approach that can produce high quality output domains



Fig. 9: A neighbourhood radius of 4.0.

in a minimum amount of time. Ideally, the system should
be something that can run in real time. The two approaches
outlined above will build on the work and results already
achieved and I believe will result in an approach that meets
the goals of this project (and a nice publication).
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