
Geodesics Distance on Triangulated Meshes

Andrew Owens
University of Calgary

Calgary, Alberta, Canada
arowens@ucalgary.ca

ABSTRACT
This is a project report for Computational Techniques in
Graphic & Visualization (CPSC 601.13 W2014). My in-
tentions were to implement a system allowing for geodesic
distances to be efficiently solved on triangular meshes. Such
an approach is detailed in Geodesics in Heat by Crane et al.
[3]. I have implemented the salient aspects of this paper,
and what follows is an overview of the method, my imple-
mentation considerations, and my results such as they are.
This work was fruitful and motivating for future work.

1. INTRODUCTION
Certain mathematical principles and techniques are predi-

cated on the notion of ’distance’ being well defined. Distance
may be defined differently in many cases, based on what is
required of the metric and for which space it is to be defined.
Of particular interest is the definition of geodesic distance
within some domain. The geodesic distance is defined as
the length of the shortest path(s) between two positions in
arbitrary curved space. In regards to computer graphics,
if this notion of geodesic distance can be found for certain
discretized domains, such as 3D triangulated meshes, these
principles and techniques can be exploited.

The classical approach to finding the distance function φ
in previous methods is to solve the eikonal equation

|∇φ| = 1

given the boundary conditions φ|γ = 0 for some subset
of positions γ in the given domain. Many iterative meth-
ods have been developed to solve such problems which are
non-linear and hyperbolic in nature. Popular methods for
regular grids [7] and triangulated surfaces [8] exist, as do
for point clouds [6] and polygon soup [1]. There has been
substantial work done in defining geodesic distance in many
domains. However, all fail to generalize to other domains
outside of their own, as well tend to amortize poorly for
consecutive distance queries for different γ. Along another
approach, are a series of methods stemming from the idea

.

of propagating geodesic distance and path information out
from source points on a mesh like a wavefront, utilizing pri-
ority queues. Notably, the method proposed by Surazhsky
et al. [9] demonstrated that their approach tended to sub-
quadratic performance in time. However, these approaches
fail in the same regards as the eikonal solvers above, as well
tend to require a great deal of memory for the developed
data structure. The wavefront propagation requires a large
number of geometric calculations which are numerically sen-
sitive, thus causing errors and gaps to appear in the wave-
front [4]. As such the approach is not tractable in certain
applications, requiring complex implementations. In partic-
ular, both I and another master’s student in Dr. Przemyslaw
Prusinkiewicz’s Lab separately attempted this implementa-
tion, both finding that a great deal of special cases and im-
plementation complexity was required to produce geodesics
for certain meshes. In light of the complexities and perils
detailed above, a more tractable and generic approach would
be greatly beneficial to future work in my research.

2. OBJECTIVES
This project consists of a partial reimplementation of the

approximate geodesic distance algorithm detailed in Geodesics
in Heat by Crane et al. [3]. This method is both tractable
in implementation and generic in application. In principle
their method can be applied to any domain with a discrete
gradient (∇), divergence (∇·), and Laplace operator (∆),
opening up many possibilities of application. Once these
operators are defined for a discrete domain, a simple, well
known set of linear, hyperbolic problems are solved to pro-
duce a geodesic distance function. As they are well known
linear problems, current linear solvers methods may be ap-
plied. As well, given the construction of problems, the set
of linear problem may be prefactored (the bulk of compu-
tation) and backward solved (essentially linear) for different
source points, γ. Thus the method has spectacular amor-
tized costs for repeated unique distance queries. Although
the algorithm generalizes to many domains, I have, as a
proof of concept, implemented the method for 3D trian-
gulated meshes alone, as they are of particular use in my
research, and will lead to further work.

3. METHOD
The method of calculating geodesic distances on triangu-

lated meshes is described by Crane et al. [3]. It is a nu-
merical approximation scheme employing two linear solves
of discrete differential systems. In principle their method
can be applied to any domain with a discrete gradient (∇),

divergence (∇·), and Laplace operator (∆). If we let the
∆ be the negative semidefinite Laplace-Beltrami operator,
then the method follows the steps:

Steps

1. Integrate heat flow u̇ = ∆u for some fixed time t

2. Evaluate vector field X = −∇u
‖u‖

3. Solve the Poisson Equation ∆φ = ∇ ·X

The function φ of step 3 approximates the geodesic distance
as t goes to zero. The distance computed is unique up to
an additive constant, that must be shifted to have the mini-
mum of the distance function be 0. Intuitively, this method
works by integrating heat diffusion out from source points on
the mesh for a given time interval, which will exponentially
decay radially from these sources, but will do so monotoni-
cally. This means that no matter how faint the heat diffusion
may be in the domain after this interval of time, if the heat
value is greater than 0, the gradient will point towards the
source at some magnitude. Thus as our distance function
must satisfy the eikonal equation, of having a gradient of
unit magnitude everywhere, and zero distance at the source
points, we may simply negate and normalize the gradient
of the heat diffusion X = −∇u

‖u‖ , and the closest scalar po-

tential φ to satisfy this vector field is the approximating
distance function. The closest scalar potential is found by
minφ‖∇φ − X‖2. This is equivalent to solving a Poisson
Equation (Euler-Lagrange) ∆φ = ∇ ·X. This procedure is
depicted below.

Figure 1: Overview of heat method. Left to right:
Heat is diffused creating scalar field u (left). Tem-
perature gradient ∇u (center left) is normalized and
negated to produce X = −∇u

‖u‖ (center right). The

distance function φ is the solution to the Poisson
Equation ∆φ = ∇ ·X (right).

3.1 Time Discretization
A backward Euler step of a fixed time t is used to integrate

the heat diffusion. This is realized by solving the linear
system

(id− t∆)ut = u0 (1)

over the domain. This is producing a solution ut of heat
diffusion such that, if undone on the mesh, would produce
sole points of heat at our sources. This approach will ensure
our solution respects the maximum energy of the input. As
such we may only use this over the domain that is integrable,
which is any part of the domain that is not a heat source
(e.g having distance of 0). This equates to considering the

following elliptical boundary value problem for heat source
points γ of the domain M

(id− t∆)ut = 0 M\γ (2)

ut = 1 γ (3)

The time step t prescribed by the paper is different be-
tween the 2 versions of the paper. In one of the papers
t = h2 where h is the mean spacing between adjacent nodes,
while the other is t = Am/|F | where Am is the surface area
of the mesh and |F | is the number of faces. Both of these
are to address, as they say, scale and refinement invariance
in the method.

3.2 Spatial Discretization
The discrete differential operators needed for this method

on simplical meshes (such as our triangulated mesh) are de-

fined in the paper as follows. Let u ∈ R|V | be a piecewise
linear function on a triangulated mesh, such as our heat dif-
fusion defined at the vertices. The standard discretization of
the (negative-semidefinite) Laplace-Beltrami operator was
chosen by paper. The Laplacian at a vertex i is given by

(Lu)i =
1

2Ai

∑
j

(cotαij + cotβij) (uj − ui) (4)

where Ai is one third the area of all the triangles incident
with vertex i (see inset). The sum is over all of neighboring

vertices j to that of vertex i. The angles αij , βij are the
angles opposite the edge of i and j [5]. The Laplacian is

then expressible as a matrix L = A−1Lc where A ∈ R|V |×|V |
is a diagonal matrix of the vertex areas, and Lc ∈ R|V |×|V |
is the cotan operator which encoded the remaining sum.

L = A−1Lc (5)

=


1
A1

0 . . . 0

0 1
A2

. . . 0
...

...
. . .

...
0 0 . . . 1

A|V |

Lc (6)

Lc is a highly sparse symmetric negative-semidefinite system
of equations dependent on the mesh connectivity. The heat
flow can be solved by integrating the diffusion for a set of
heat sources u0 ∈ R|V |

(I − tL)u = u0 (7)

⇒
(
I − tA−1Lc

)
u = u0 (8)

(9)

where u0 is 1 at vertices that are heat sources and 0 for other
vertices. This system is equivalent to solving the symmetric
positive-semidefinite system

(A− tLc)u = Au0 (10)

Once heat diffusion u is solved for, its gradient ∇u can be
computed for each face of the mesh. This is computed as

follows

∇uf =
1

2Af

∑
i

ui (N × ei) (11)

Where Af is the area of the face, N is the unit face normal,
ei is the edge vector (oriented counterclockwise) opposite the
ith vertex ui of the face f , and the sum is over all vertices
of f .

What this is describing is how much the heat is changing
orthogonal to, or independent of, the flow between the other
heat samples of f . This sum will give a direction of greatest
heat increase within the face. Applying this to every face
of our mesh produces a vector field X over the faces of the
mesh.

The integrated divergence of a vertex i is defined as

∇ ·X =
1

2

∑
j

cotθ1 (e1 ·Xj) + cotθ2 (e2 ·Xj) (12)

where the sum is over all faces j that are incident with i,
Xj is the gradient of face j, e1 and e2 are the edge vectors
directed outward from i on face j, and θ1, θ2 are the opposing
angles. Let per vertex integrated divergence values of X be
stored as a vector d ∈ R|V |. Then the distance function φ
can be computed by solving the symmetric Poisson problem

Lcφ = d (13)

4. IMPLEMENTATION
This project was implemented using C++(0x), using GLUT

windowing system with OpenGL 4.0, and GLSL for GPU
programmable pipeline, for visualization. The implemen-
tation suite is 3500+ lines of code. This project and the
results to follow were developed and run on a laptop with
an i7-2630QM CPU at 2.00GHz, 8GB of DRAM, and an
GeForce GTX 460M with 1.5GB VDRAM, running Ubuntu
(12.04 32bit). The program suite that I implemented for
this project follows that of the implementation described in
Geodesics in heat [3] which employs the use of a fast sparse
Cholesky factorization library. The two linear systems using
the Laplacian and the Backward Euler integration are both
symmetric, and negative and positive semi-definite, respec-
tively. Thus they may be prefactored using Cholesky factor-
ization, if certain hard constraints are applied. CHOLMOD1

is a ANCI C library for sparse Cholesky factorization and

1http://www.cise.ufl.edu/research/sparse/cholmod/

update/downdate that is distributed with SparseSuite2. It
is a highly completive option for these types of applications
as it out preforms many other libraries in a large number of
matrix tests. The installation and setup of CHOLMOD is
notoriously difficult for Windows OS based setups, however
for Linux based systems the setup is relatively straight for-
ward. In my Makefile I am only required to link to the
CHOLMOD library compiled for my system. To utilize
CHOLMOD a relatively complicated system of handles to
the library must be managed and made available to each
matrix that will be factored or used in a solve. Luckily,
a different, but related implementation from Crane et al.
[2] is available3 that utilizes CHOLMOD, and gave guid-
ance as to how to implement my mesh and matrix classes
for this project. As well, their implementation tipped me
off to a glaring issue in the use of Cholesky factorization of
our linear systems. Cholesky requires the matrix in ques-
tion to be positive definite, whereas we have negative and
positive semi-definite matrices in our Laplacian and Euler
integration, respectively. Thus our systems are under con-
strained. This issue is glossed over in both versions of the
paper, with no suggestion of how to address it. Crane et
al. [2] remove a row and column from their Laplace matrix
to ensure that it is positive definite. When I employed the
same tactic, I get rather good results everywhere, except at
the vertex that is ignored, as no distance or heat diffuse in-
formation is made available there. Another approach was
to replace the last row of the Laplacian with an all zeros
except a constant contstraint value (i.e 10) at the bottom
most diagonal value. This produced a positive definite ma-
trix and produces slight perturbing of the distance field at
the vertex. The third promising, yet currently unsuccess-
ful, artificial constraint is to enforce a known invariant of
conservation of energy, in that the total heat in the system
at the beginning of integration must equal that found dif-
fused throughout the system. Thus we may add a constraint
to the Laplacian, and Euler integration thereafter, that the
total heat from the right hand side (source vertices) must
be conserved over the time step. We make the entire bot-
tom row of the Laplacian literal 1s, so that regardless of
the right hand side source points, we may precondition our
bottom most constant term to sum to the incoming heat.
This method is still requiring work, but hopefully will lead
to an elegant solution. As it turns out, it was easier to de-
fine a positive-semidefinite Laplacian L+

c and distribute the
negative time t into the integration(

A+ tL+
c

)
u = Au0 (14)

As this allowed me to pre-factor L+
c as a positive-definite

matrix for the Poisson solve.

L+
c φ = −d (15)

To produce the evenly spaced distance contours, I use a frag-
ment shader that calculates distance per-pixel per triangle
face. Each triangle has an established distance at its three
vertices, and distance at any given pixel area of the triangle
is an interpolated value of these distances. Thus the frag-
ment shader uses a modulated sine function of this distance
to create the banding effect.

2https://www.cise.ufl.edu/research/sparse/SuiteSparse/
3http://www.cs.columbia.edu/ keenan/Projects/

5. RESULTS
With my implementation, I was able to reproduce results

comparable to those seen in the paper on a number of mod-
els. Most notably was the speed at which the distance func-
tion was able to be solved for different sets of source points.
Below are some of the results I was able to produce using
my implementation. Note, all results seen here use a time
step t = h2 where h is the mean length of edges in the mesh,
as used in one version of the paper. The alternative method
did not seem to produce stable or adequate results, with
many of the distance functions unable to be solved. The
distance function is visualized as evenly spaced contours of
the distance field, and the near (red) to far (blue) color in-
terpolation. Table 3. is a chart which recounts the running
times on the laptop described above. The computation time
is the same for any number of heat source points, as they
are right hand constant terms for any given set of sources.
There is a consistent range in the variability of the compu-
tation times, thus I give a range within which the distance
function has yet to fall outside of. Thus it is easy to see the
amortized benefits of this approach for multiple and possi-
bly disparate heat source vertices. In future, geodesic paths
will be extracted in one way or another from this method.
Geodesic paths can be produced as streamlines of the vec-
tor fields that come from the heat method. We have two
options, the gradient of heat diffusion X, or the gradient of
the distance function itself. As the distance function φ is
the solution to an optimization problem with regards to X,
the vector fields gleaned from will potentially differ. Fig-
ure 5. demonstrates my investigation into the matter. The
black arrows are of the diffuse gradient X, the blue arrows
are gradient vectors of the distance function, ∇φ. The blue
arrows are scaled proportional to the angle difference be-
tween the black and blue arrows (gradients), with max scal-
ing once they differ by more than 90◦. What this shows is
that the diffusion attempts to create a divergence free vec-
tor field, causing smoothing vectors along the cut loci (areas
that are equidistant to source points in opposing directions)
of the distance field. The Poisson Equation allows for this
and produced much more reasonable distance and gradient
measurements at this cut loci (blue arrows on either side
generally face away from one another).

Figure 2: Sleeve: basic model view.

6. FUTURE WORK

Figure 3: Sleeve: distance function visualized to one
source point.

Figure 4: Sleeve: diffusion gradient.

With the success of producing a geodesic distance field as
prescribed by Crane et al. [3], there are many avenues of
future work to explore. Most notably is to produce geodesic
paths over the mesh between points of interest. As men-
tioned above, I will use the gradient of the distance field as
the bases for creating streamlines. Exploring other means
of solving the linear systems have been discussed among the
members of Dr. Przemyslaw Prusinkiewicz’s lab, such as
applying psuedo-inverse solutions, preconditioning and set-
ting constraints, and adaptive/dynamic updating of the fac-
torization for continuously deforming meshes. Potentially,
this method will be applied to other domains (i.e volumetric
simplices), and I will then re-implement the method to be a
stand alone program with no external library dependencies.

7. CONCLUSION
This project has produced a reliable and scalable means of

measuring distance on 2D triangulated meshes, with promis-
ing extensions of application and further development. As

a proof of concept, this project has succeeded, and will be
built upon to suit various other domains of inquiry. I have
learned a great deal from this project and look forward to
working further on this and related projects which will use
it.

8. REFERENCES
[1] M. Campen and L. Kobbelt. Walking on broken mesh:

Defect-tolerant geodesic distances and
parameterizations. In Computer Graphics Forum,
volume 30, pages 623–632. Wiley Online Library, 2011.

[2] K. Crane, U. Pinkall, and P. Schröder. Spin
transformations of discrete surfaces. ACM Trans.
Graph., 30, 2011.

[3] K. Crane, C. Weischedel, and M. Wardetzky. Geodesics
in heat: A new approach to computing distance based
on heat flow. ACM Transactions on Graphics (TOG),
32(5):152, 2013.

[4] Y.-J. Liu, Q.-Y. Zhou, and S.-M. Hu. Handling
degenerate cases in exact geodesic computation on
triangle meshes. The Visual Computer,
23(9-11):661–668, 2007.

[5] R. H. MacNeal. The solution of partial differential
equations by means of electrical networks. PhD thesis,
California Institute of Technology, 1949.

[6] F. Mémoli and G. Sapiro. Distance functions and
geodesics on submanifolds of \rˆd and point clouds.
SIAM Journal on Applied Mathematics,
65(4):1227–1260, 2005.

[7] J. A. Sethian. Level set methods and fast marching
methods: evolving interfaces in computational geometry,
fluid mechanics, computer vision, and materials
science, volume 3. Cambridge university press, 1999.

[8] J. A. Sethian and A. Vladimirsky. Fast methods for the
eikonal and related hamilton–jacobi equations on
unstructured meshes. Proceedings of the National
Academy of Sciences, 97(11):5699–5703, 2000.

[9] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler,
and H. Hoppe. Fast exact and approximate geodesics
on meshes. In ACM Transactions on Graphics (TOG),
volume 24, pages 553–560. ACM, 2005.

Figure 5: Gargoyle: X (black), accentuated ∇φ
(blue). This is to show how the Poisson solve, can
remove the enforced smoothing of the diffusion.

Figure 6: Terrain: basic model view.

Figure 7: Terrain: single source.

Figure 8: Terrain: multiple sources.

Figure 9: Terrain: multiple sources.

Figure 10: Terrain: multiple sources.

Figure 11: Cube: demonstrates how distance prop-
agates across flat and sharp features.

Table 1: Program Performance
Model number of faces Pre Factorizations Solve of Heat and Poisson equation
Bunny +4k 30 ms 0-10 ms
Terrain +33k 170 ms 10-20 ms
Sleeve +37k 290 ms 20-30 ms
Cube +30k 220 ms 10-30 ms

Gargoyle +200k 2330 ms 120-130 ms

Table 2: Program Usage
Command Line Usage Comments

./Geodesic path/to/model.obj loads obj model for distance function calculation
Makefile pre-made commands

make bunny load Stanford Bunny model
make cubeBig loads cube model
make terrain2 loads terrain model
make gargoyle loads gargoyle model

Table 3: Program Interface
Command Comments

mouse move (mm)+left click rotate model around X and Y axes
(mm)+left click+CTRL zoom in/out
(mm)+left click+SHIFT move model in XY-plane

p animate model rotating
1 wireframe view
2 flat shading view
3 smooth shading view
4 view heat source vertices
5 view heat diffusion gradient X
6 view distance function gradient error (see Results)
7 view distance field contours

+/- randomly add/remove heat source vertices
h solve distance function for random new set of heat source vertices

Figure 12: Gargoyle: multiple sources, distance
fields colliding.

Figure 13: Gargoyle: source.

Figure 14: Terrain: curve of sources.

Figure 15: Terrain: curve of sources.

Figure 16: Terrain: curve of sources.

Figure 17: Terrain: curve of sources.

Figure 18: Cube: curve of sources.

Figure 19: Gargoyle: source.

Figure 20: Gargoyle: source.

