SUBMISSION TO IEEE SOFTWARE, 2017

Hybrid Labels are the New Measure!

Maleknaz Nayebi, Shaikh Jeeshan Kabeer, Guenther Ruhe, Chris Carlson, Francis Chew

Abstract—Developing “Minimum viable products” (MVPs) is critical for start-up companies to hit the market fast and with an accepted
level of performance. The (US) Food and Drug Administration FDA mandates additional non-functional requirements in health care
systems, meaning that the MVP should provide the best availability, privacy, and security. This critical demand evokes companies to
further rely on analytics to optimize the development process. In a collaborative project with BrightSquid, we provide a decision support
system based on analogical reasoning to assist in effort estimation, scoping and assignment of change requests. In this experience
report, we propose a new metric, change request labels, for better prediction. Using different methods for textual similarity analysis, we
found that combination of machine learning techniques with experts manually added labels has the highest prediction accuracy. Better
prediction of change impacts allows the company is optimizing their resources and provide proper timing of releases to target MVPs.

Index Terms—Software analytics, Digital health, Digital care, Label, Tag, Change impact analysis

1 CONTEXT: MINIMUM VIABLE PRODUCT DEVEL-
OPMENT IN DIGITAL HEALTH CARE

Brightsquid Secure Communication Corp is a global
provider of HIPAA-compliant (Health Insurance Portability
and Accountability Act) communication solutions - provid-
ing compliant messaging, email, and large file transfer for
medical and dental professionals since 2009. Secure health
exchange is Brightsquid’s core communication and collab-
oration platform called SecureMail. It is offering role-based
API access to a catalogue of services and automated work-
flows that support aggregating, generating, and sharing
protected health information across communities of medical
patients, practitioners and organizations. The company is
facing the typical problem of software start-ups: The need
of entering a competitive market with innovative product
ideas with the concurrent goal of short term revenue gener-
ation.

Minimum viable products (MVDPs) are one promising op-
tion to overcome the innovation risk challenge. The idea is
concentrating on a smaller set of features offered in a prod-
uct to a smaller set of customers. Duc and Abrahamsson
[3] have emphasized the importance of MVPs in particular
for start-up companies. While there is quite consensus on
the potential benefit of MVP, not so much is known how to
really achieve these products. In the context of the Bright-
squid, development of a MVP is controlled by restricting
resource allocation for each feature and highly dependent
on interactive improvement. In this context, quick and accu-
rate prediction of effort and the risk introduced by a change
request is highly important.

e M. Nayebi, S. ]. Kabeer, and G. Ruhe are with the Software Engineering
Decision Support Laboratory, University of Calgary, Canada
E-mail: {mnayebi, shaikhjeeshan.kabeer, ruhe}@ucalgary.ca

e C. Carlson and F. Chew are with the BrightSquid company, Canada
E-mail: {chris.carlson, francis}@brightsquid.com

2 CHALLENGE: FORMAL TEXT SIMILARITY IS NOT
ENOUGH!

Brightsquid’s software development life-cycle integrates
Scrum methodology supported by ISO13485 based Qual-
ity Management System policies and procedures. Change
requests management is of core importance in this highly
adaptive process. For each sprint, the team decides which
change requests are processed and in which order. Change
requests are entered by the project manager in Jira plat-
form and have a textual summary and description with
average length of 6.25 and 23.7 words, respectively. For
predicting the impact of change requests (identifying which
files would impacted by a change request), our work relies
on a similarity assumption:

IF two change requests CR; and C'R; are textually similar
THEN the files impacted by the change requests are similar
AND higher similarity correlates with a higher number of
impacted files being in common between C'R; and CR;.

The assumption is adapted from analogy-based reason-
ing and is justified by observations made on files impacted
by former change requests. The applicability of the hybrid
labeling approach does not require a validation of its formal
correctness. We explored and analyzed a variety of Natural
Language Processing (NLP) techniques, similarity measures
(Cosine, BM25 [6]), and benchmarked with different sim-
ilarity thresholds. In Table 1, based on analysis of 169

TABLE 1
Accuracy of different models for predicting impact of change requests
using textual similarity (baseline).

Technique Precision | Recall F1
BOW 0.35 0.3 0.32
BOW + Stopword 0.31 0.36 0.33
BOW + Stopword + Lemmatization 0.43 0.39 0.41
LDA 0.32 0.48 0.38
LDA + Stopword 0.33 0.53 0.40
LDA + Stopword + Lemmatization 0.29 0.49 0.36




SUBMISSION TO IEEE SOFTWARE, 2017

change requests, we summarize the performance of some
of these techniques using evaluation measures from [5]. As
both precision (files predicted to be impacted are actually
impacted) and recall (completeness of finding impacted
files) are important, the achieved accuracy of predictions
was insufficient from the company’s perspective. In the best
case, by combining bag of words (BOW) with customizing
stop words and lemmatization, we achieved a Fl-score
(harmonic means between precision and recall) of 0.41 only.

The unsatisfactory results motivated us to discuss the
semantic similarity of change requests with developers and
project managers. Discussing numerous change requests in
brainstorming sessions with BrightSquid, we observed that
the developers use some keywords (e.g., code functions or
service layers) to describe the similarity between change
requests. Several of these keywords does not exist in the
summary of change requests, and others are filtered out by
frequency based techniques (such tf-idf) and probabilistic
models (such as LDA [1]) as they were used in a few specific
change requests.

3 ANALYTICAL RESOLUTION AND EFFECTIVENESS

Labels in social coding are a form of metadata that help
people finding a theme between different code artifacts
such as commit messages and change requests. Labelling
is a common technique for social developers and social
media users because they use tags (also known as hashtags).
Previous studies showed that code item tagging could be
easily adopted by development teams [8]. In development
platforms with social aspects such as GitHub and Jira,
labeling is possible and promoted as a way for categorizing
change requests and informally assigning them to a compo-
nent or release.

We performed a small experiment with the aim to un-
derstand the representativeness and limitations of analyzing
similarity just based on textual description. We asked three
developers to manually label ten randomly selected change
requests (manual labeling). We also applied topic modeling
(LDA) using seven words to describe each topic. Comparing
manual labels with machine labels, we found that 51.3% of
human and machine labels are the same. We noticed that,
developers often add labels that do not exist in the textual
description of the change request. Such labels often reflect
the architecture layer, user layers, and even code methods.
For example:

Change request: SQL Migration for lab request, comments and
docs

Machine labels: SQL, Migrate, Lab, request, comment, doc
Manual labels: SQL, Migrate, StandardRX, LabRequest, Pa-
tientCaseComment

The difference between human labels and machine gen-
erated labels provoked us to study hybrid labeling (using
both labels). The analysis of these labels was done for 169
change requests within one project and over 12 months.
The performance of these prediction models is shown in
Table 2. Comparing the results, a prediction model based
on developers’ labels perform 7% better in their F1l-score
compared to machine labeling. Combining machine and
developer’s labels improved the Fl-score by 13%.

2
TABLE 2
Accuracy of prediction model for scoping file changes based on
labelling.
Technique Precision | Recall F1
Machine labels (LDA) 0.33 0.54 0.41
Manual labels 0.41 0.58 0.48
Hybrid (machine + manual) labels 0.54 0.70 0.61

4 WHAT COMES NEXT?

Our study showed that expert’s knowledge added to ma-
chine labeling helps in improving the prediction of change
impact analysis. Labeling proved to be useful for reminding
and re-finding [7], organizing and better performing better
collaboration [8]. For Brightsquid and from supply side, the
results encapsulate the value they are looking for in the
MVP development process which is helping them to more
quickly and accurately predict the effort and the risk introduced
by a change request.

Based on these results, we designed a labeling recom-
mendation system to suggest up to 10 labels for each change
request using LDA. Each developer can select most relevant
labels or add other labels based on personal expertise. There
are multiple opportunities for improvement. First, while
we relied on the study by Diaz et al. [2] for recommend-
ing tags using LDA, this might not be the best technique
for extracting automatic labeling [9]. Second, as different
software artifacts such as code and change requests often
have a hierarchical structure (e.g., stories, sub-stories, and
sub-technical tasks), exploiting inheritance of labels may
add more context for similarity analysis. Third, while this
study was limited to the performance of change impact
prediction, a more detailed study would focus on using
labels for analogy based reasoning for other domains of
software project and product planning and prediction [4].

REFERENCES

[1] D. M. Blei, A. Y. Ng, and M. I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993-1022, 2003.

[2] E. Diaz-Aviles, M. Georgescu, A. Stewart, and W. Nejdl. Lda for
on-the-fly auto tagging. In Proc. Conference on Recommender Systems,
pages 309-312. ACM, 2010.

[3] A.Duc and P. Abrahamsson. Minimum viable product or multiple
facet product? the role of mvp in software startups. LNBIP, 251:118-
130, 2016. cited By 0.

[4] M. Nayebi, G. Ruhe, R. C. Mota, and M. Mufti. Analytics for
software project management—where are we and where do we go?
In ASE Workshop Actionl15, pages 18-21. IEEE, 2015.

[5] D. M. Powers. Evaluation: from precision, recall and f-measure to
roc, informedness, markedness and correlation. 2011.

[6] Z. Shi, ]. Keung, and Q. Song. An empirical study of bm25 and
bm25f based feature location techniques. In Proc. Workshop on
Innovative Software Development Methodologies and Practices, pages
106-114. ACM, 2014.

[7] M.-A. Storey, ]. Ryall, J. Singer, D. Myers, L.-T. Cheng, and
M. Muller. How software developers use tagging to support
reminding and refinding. IEEE TSE, 35(4):470-483, 2009.

[8] C. Treude and M.-A. Storey. Work item tagging: Communicat-
ing concerns in collaborative software development. IEEE TSE,
38(1):19-34, 2012.

[9] X. Xia, D. Lo, X. Wang, and B. Zhou. Tag recommendation in
software information sites. In Proc. Conference MSR, pages 287-296.
IEEE, 2013.



	Context: Minimum viable product development in Digital Health Care
	Challenge: Formal text similarity is not enough!
	Analytical resolution and effectiveness
	What comes next?
	References

