Crowdsourced Exploration of Mobile App Features

A Case Study of the Fort McMurray Wildfire

Maleknaz Nayebi, Rachel Quapp, Guenther Ruhe
SEDS laboratory
University of Calgary
Calgary, Canada
Email: {mnayebi, rmquapp, ruhe} @ucalgary.ca,

Abstract—The ubiquity of mobile devices has led to un-
precedented growth in not only the usage of apps, but also
their capacity to meet people’s needs. Smart phones take on
a heightened role in emergency situations, as they may suddenly
be among their owner’s only possessions and resources. The
2016 wildfire in Fort McMurray, Canada, intrigued us to study
the functionality of the existing apps by analyzing social media
information. We investigated a method to suggest features that
are useful for emergency apps. Our proposed method called
MAPFEAT, combines various machine learning techniques to
analyze tweets in conjunction with crowdsourcing and guides an
extended search in app stores to find currently missing features
in emergency apps based on the needs stated in social media.
MAPFEAT is evaluated by a real-world case study of the Fort
McMurray wildfire, where we analyzed 69,680 unique tweets
recorded over a period from May 2™¢ to May 7", 2016.

We found that (i) existing wildfire apps covered a range of 28
features with not all of them being considered helpful or essential,
(ii) a large range of needs articulated in tweets can be mapped
to features existing in non-emergency related apps, and (iii)
MAPFEAT’s suggested feature set is better aligned with the needs
expressed by general public. Only six of the features existing in
wildfire apps is among top 40 crowdsourced features explored
by MAPFEAT, with the most important one just ranked 13'".
By using MAPFEAT, we proactively understand victims’ needs
and suggest mobile software support to the people impacted.
MAPFEAT looks beyond the current functionality of apps in the
same domain and extracts features using variety of crowdsourced
data.

Keywords-Wildfire; Emergency; App store mining; Twitter;
Mobile apps; Machine learning

I. INTRODUCTION

There is evidence that social media platforms, especially
Twitter, are widely used during emergency situations [13],
[35]. In times like this, when staying connected is not a
convenience but rather a necessity, mobile devices are a
lifeline. During the 2016 Fort McMurray wildfire in Alberta,
Canada, 80,000 people were evacuated and unable to return
for over a month. As local radio stations went off the air
and websites failed, social media became the crisis’ unofficial
emergency broadcast system.

Aware of the importance of mobile functionality during
emergency situations, several applications were designed by
NGOs (non government organizations), official state depart-
ments, and international humanitarian organizations. In partic-

Mahshid Marbouti, Frank Maurer
ASE labratory
University of Calgary
Calgary, Canada
Email: {mmarbout, fmaurer}@ucalgary.ca

ular, mobile apps for wildfire emergencies have been produced
by the Red Cross and International Association of Fire Fight-
ers, as well as the Canadian, United States, and Australian
governments. However, our analysis of the apps available in
Apple iTunes (Apple’s app store) revealed that current wildfire
app functionality is mainly limited to pushing notifications,
sharing news, and providing access to fire maps. Our results
show that the apps presently available to people in need are
lacking relevant and useful features.

We investigate whether, and to what extend, existing wildfire
apps reflect people’s needs in emergency situations. We also
suggest features to enhance these apps’ functionality by har-
nessing the power of Twitter. To do so, we propose a method
called MAPFEATE] and apply it to a case study of the Fort
McMurray wildfire. MAPFEAT is a method for systematic
tweet analysis and extended app store search. It explores
software features that meet the needs of people in emergency
situations.

MAPFEAT extracts needs from Twitter and maps them to
features of apps already existing in the market (not exclusive to
emergency apps). App stores provide a wealth of information
about software features, as each app in app store is described
by its technical functionality. MAPFEAT performs an extended
search to support a better match between users’ needs and
actual functionality offered. This automated process and the
use of crowdsourced data enables emergency app developers
and owners to provide mobile software support that more ef-
fectively helps impacted people and facilitates the management
of the crisis.

Suggesting functionality enhancements to emergency apps
by mining tweets would primarily benefit ordinary people
(also known as the general public) that were affected by the
crisis. This support is intended to (i) facilitate the connection
of impacted people to the emergency authorities and service
providers, and (ii) enable people to connect to each other and
help in possible cases. The method is evaluated by a case study
where we report on the results of mining tweets published
during the Fort McMurray wildfire.

In this paper, we answer the following research questions:

RQ1: How can tweets be mapped into mobile app features

Mining APp FEAtures from Tweets: MAPFEAT

automatically?

Why and how? Past research has shown that mining
social media services, particularly Twitter, is an effective
way to manage emergency situations [12]]. We expect that
mining the needs of the general public and supporting
them with software functionality would have a consider-
able impact on app design. We propose a method called
MAPFEAT to perform this process systematically.

RQ2: For the Fort McMurray case study: How do features

mined from MAPFEAT compare to the ones provided by
existing wildfire apps?
Why and how? We compared the MAPFEAT results with
features in existing wildfire apps by exploring which fea-
tures in existing wildfire apps matched with needs stated
in social media. We mined features from existing app
descriptions following the method proposed by Harman
et al. [10].

RQ3: For the Fort McMurray case study: How will the

features generated by MAPFEAT be perceived by the
general public?
Why and how? With the purpose of understanding
the value of the MAPFEAT results, we crowdsourced
a survey of 500 respondents. Respondents were given
the list of features and asked to evaluate each feature as
either essential, worthwhile, unimportant, or unwise.

To give an outline of the key idea and outcome of the
paper, we provide a motivating example in the next section.
In Section we offer a solution to RQ1 by introducing
MAPFEAT. Then, we describe the data set and design of our
case study in Section[[V] Using the case study, we answer RQ2
in Section [V] In section [VI, we respond to RQ3 by reporting
the results of a survey of the general public. We conclude the

paper by discussing threats to validity (Section |VII), related
work (Section [VIII), and the relevancy and applicability of the
results (Section [[X]).

II. MOTIVATING EXAMPLE

We briefly illustrate the main idea of the paper with an
example. Through this example, we provide a sneak peak into
our method, MAPFEAT, and the results of its application. For
the purpose of illustration, we selected a sample of tweets
about the Fort McMurray wildfire, which can be seen in the
text box below.

W May4 4:30pm: Moose Haven Lodge has rooms, food, gas
avail. HWY 881 2 KM 217. Call 780-935-2372.

W Line for fuel - four pumps- snakes in Conklin.
W Any gas available between Fort Mac and Grasslands?

¥ YMMfire gasoline supplies to stations south along HWY
63 stable but lines ups from exodus causing some stations
to not honour credit cards.

W Is there any gas at Wondering River?Line up?

¥ I’'m in Boyle and have some gas, granola bars, and water
if people are still stranded. Text (780)504-***8.

To automatically extract the topic of discussion from these
tweets, we first lemmatized them by mapping the words into
their dictionary form [[15]. After applying topic modeling, we
received the topic "gas, availability, lineup." Then, following
the next step of MAPFEAT, we used this topic to run a
thorough search in the app store and find all relevant apps.
To search the app store, every combination of words in the
topic with a length greater than one were sent to the Apple
iTunes API:

(1) “gas" AND “availability" AND “lineup"

TABLE 1
FEATURES OF THE TOP TEN APPS RETRIEVED BY SEARCH QUERIES FROM THE APPLE ITUNES APP STORE. THE ifalic FEATURES WERE COMMON TO AT
LEAST TWO APPS RETRIEVED BY A SEARCH QUERY.

(1) “gas" AND “availability" AND “lineup"”

(ii) “gas" AND “availability"

(iii) “gas" AND “lineup”

App Feature App Feature App Feature
(i)-1 Find cheapest gas based on your (ii)-1 Find cheapest gas based on your gas (iii)-1 Shows gas prices with easy to read
gas type type. maps.
. . .. Choose the nearest gas station, bank Crowd-sourced gas prices across
(i)-2 Share gas prices across borders (ii)-2 and hospital based on your position. (iii)-2 borders
. .. Gas delivered to your car - anytime Gas/(:.liesel taxes .
(i)-3 Get the best Fuel Prices. (>i1)-3 > | (iii)-3 55 pieces of travel relevant infor-
anywhere. mation
. GPS station locator that provides Live routing based on community
Gas/diesel taxes . S . .
. - . . real-time maps, directions. driven, real-time traffic.
(1)-4 55 pieces of travel relevant infor- (i1)-4 . (iii)-4 . .
3 Map a route to the selected station Find the cheapest gas station route
mation for each of the 50 states. . :
or enter a custom address. with lowest lineup.
Near real-time prices on your mo- Find the cheapest gas near. Find route to gas station with real
bile device. Find gas stations by distance/price. time traffic, alerts and lineups.
(i)-5 10 Month Futures Chain. (ii)-5 Report gas prices to help others find (iii)-5 Share location, route and ETA.
Report gas prices. cheap gas and earn points. Make a pit stop on your route and
More Crude Oil tracking: Sweet Filter stations by amenities and find the cheapest gas and other
Light, Brent. brands. local amenities.

(i) “gas" AND “availability"
(iii) “gas" AND “lineup"”
(iv) “availability"” AND “lineup"”

We selected the top 10 apps retrieved by each search query,
with the exception of (iv), which did not receive any results
from Apple iTunes (none of the apps matched this search
query). The features of the apps found by queries (i) to (iii)
are presented in Table[l] In some cases, separate search queries
retrieved the same apps. Then, we collected and mined features
from the app descriptions [10]. Some features are shared
between different apps, such as (i)-4 and (iii)-3 in Table [I}
The features in italics are the ones common to at least two
apps retrieved by a single search query. Only these features
are of interest to the MAPFEAT process because they are
mutually shared between apps, and thus, have a higher chance
of matching the original topic. As a result of this process, we
ended up with the following features:

« Find real-time gas prices

« Find cheapest gas

« Find nearest gas station

« Share gas prices

o View real-time traffic

o View lineups

In accordance with the last step of MAPFEAT, we finalized
our mapping between tweets and app features by using
crowdsourced evaluation to see if our extracted features
were related to the tweet topic. We submitted the following
question to Amazon Mechanical Turkﬂ ensuring that
exactly five workers answered it:

Select all features related to the topic "gas, availability,
lineups":

U] 1- Find real-time gas prices

[J 2- Find cheapest gas

0] 3- Find nearest gas station

0] 4- Share gas prices

L] 5- View real-time traffic

L] 6- View lineups

The results of this crowd evaluation showed that all five
of the workers agreed that the tweet topic “gas, availability,
lineup" was related to features (1), (2), (3), (4), and (6).
However, four of the workers believed that the topic is not
related to feature (5), “view real-time traffic". Consequently,
we mapped the tweet topic “gas, availability, lineups" to the
following app features:

« Find real-time gas prices

« Find cheapest gas

« Find nearest gas station

o Share gas prices

o View lineups

Our study of the 26 existing wildfire apps showed that
none of these features were currently implemented in any of
these apps. However, people affected by such a crisis can

Zhttps://www.mturk.com/mturk

benefit from having integrated information about the local
price, availability, and convenience of gas stations within one
app. Going a step further, we surveyed the crowd via Amazon
Mechanical Turk and found that 53.2% of those surveyed
consider these features to be essential in a wildfire app
(average between five features).

So, while a feature like "view lineups" already exists in the
app store as part of a navigation app, an emergency app with
that feature would be better suited to address the needs of
those involved in a wildfire emergency.

III. MAPFEAT: MAPPING TWEETS TO APP FEATURES

The purpose of MAPFEAT is to introduce new features
to emergency apps by offering a systematic method that
transforms needs communicated over social media into soft-
ware features. We propose a combination of techniques that
automate the mining of needs from general purpose tweets
and their translation into real app features using app store as
the pool of possible features. The process of our proposed
method is presented in Figure [I] and its steps are described in
the following subsections.

.———> Naive Bayes classmcatloﬁ
Topic modeling ;——" w

Generate sealch queries
using all the combina-
tions of topic words

!

Send search queries
to the app store

l

Select top 7 apps i

_____ Searching the app store

retrieved by each
search query

Mine features from
app dcscriptions

Common
features

\

Find features common to
at least m of the j apps

|

Crowd Map tweet topics to A
common feature(s)
Perform crowd validation |—>| Validated
features
Fig. 1. MAPFEAT process of mapping tweets to app features

https://www.mturk.com/mturk

A. Automatic classification of tweets

Focusing on a specific event gave us the chance to collect
related tweets by following the trending keywords and hash-
tags of that event. This is represented by Step @ in Figure
Many tweets do not convey a need or requirement. Consider
the following tweets:

“I don’t care if you're right or wrong - seeing #ymmfire as
an opportunity to talk politics or anything else is wrong."”

“All my thoughts are with all the people who are affected by
the devastation of the fire. #ymmfire #FortMacFire"

We defined the class of non-informative tweets as tweets
lacking an explicit potential to be mapped into a software
feature (like the above instances). Informative tweets are the
ones that either express a requirement or offer support for
fulfilling a requirement (see the tweets in the motivating
example).

We used the Naive Bayes classifier, as it has been suggested
by other studies for tweet classification [17]]. Naive Bayes is
based on the strong assumption that the existence of a word
is independent of the existence of another word. For example,
if the tweet contains the word "map", this gives us no further
information about "traffic". The strength of Naive Bayes is
that it is simple and has proved to perform well with a small
training set [[L6].

B. Topic modeling

In the next step we used topic modeling to extract the in
common topics between the needs stated in general purpose
tweets (Step @ in Figure . The topic modeling of tweets
was studied by Hong et al. [L1]. LDA, known to work well
on tweets [2]], is an established method used to find common
topics in a set of natural language text documents. Topics are
created out of a combination of words that tend to appear
together frequently in the documents of the corpus. LDA
assumes there is a fixed number of K topics. It assigns
a probability distribution over topics to each document. To
decide which number of topics K made the most sense, two
measures were suggested:

« the perplexity (log-likelihood of a held-out test set),

where low perplexity indicates better generalizability of
a topic [2], and
« intuitive meaningfulness of the results [5].

Each topic consists of a set (cluster) of w words that
describe the topic. For example, if we decided to describe
each topic by three words (w = 3), then LDA would group
"gas", "traffic", and "map" together under one topic, and
"accommodation”, "room", and "hotel" under another topic.

C. Searching the app store

At this point, we have extracted topics from tweets and each
topic is represented by a set of words. A software analyst
can potentially map a tweet topic into software features. By
systematically searching the app store, we not only automate

this process, but also overcome the subjectivity involved in the
human-based mapping process.

To this end, we generated multiple search queries using the
combination of words in each topic (Step @ in Figure .
We selected all combinations of words having a length > 2
(Step @). Search queries with the length = 1 (Searching
one word only) results in many general apps not really related
to our purpose. We crawled the description of the top 7 apps
retrieved by each search query (Step @).

D. Mining features from app description

Using the app descriptions gathered in the previous step,
we then mined features (Step @ of Figure . To accomplish
this, we followed the method proposed by Harman et al. [10],
[27]] to extract featurelets from app descriptions. They defined
featurelets as “a set of commonly occurring co-located words,
identified using NLTK’s N-gram CollocationFinder package"
[10l], [27]. Following their proposed approach, we used a
greedy hierarchical clustering to aggregate similar featurelets
(having similarity > 60%) [10]. As a result, we were able
to extract features from the app descriptions, each consisting
of two or three words (bitri-grams, i.e. 2-grams or 3-grams),
which are considered to be the features provided by an app
[27].

E. Mapping tweet topics to app features

So far, we described the process in which a tweet topic
resulted in several search queries. Then, we extracted features
from the description of the top apps retrieved for each search
query. At this step, we mapped each search query to the
features that were shared between at least m of the apps
(Step @ in Figure . We did this because a specific keyword
search retrieves a variety of apps, and thus, the commonality
between their features is of special interest to us (we consider
these functionalities as the reason that the apps were retrieved
together by a specific search query). For the precise mapping,
we present each tweet topic along with its corresponding
features to the crowd and asked five workers to select all the
features that are related to the tweet topic (see the motivation
example). Considering the majority of votes, the mismatched
features are excluded from the tweet topic.

Lastly, we mapped the original tweet topic to a set of
features (Step @). The corresponding features of a tweet topic
are defined as set of features received from every search query
that originated from it. This way, we performed an extensive
search of the app store and retrieved the union of all features
found by search queries that originated from a specific tweet
topic.

E Evaluation

At this point, tweets have been mapped to app features.
In order to validate the accuracy and value of the results, we
performed crowdsourcing to evaluate the semantic relationship
between each topic and its resulting features (Step @) in Figure
[I). We automated this step by using the API of Amazon
Mechanical Turk. We provided the extracted features

along with their corresponding tweet topic to the crowd and
asked them to select all features relevant to the topic (see the
motivating example). If the majority consider a feature not
belonging to the topic, the respective feature is eliminated from
the topic mapping list, otherwise there would be no change in
the proposed feature set.

IV. CASE STUDY DESIGN

We recorded 69,680 unique tweets submitted in the context
of the Fort McMurray wildfire over a period of May 2"d to
May 7th, 2016. We applied MAPFEAT on these tweets as the
proof of concept. In the following subsections, we describe the
design of our case study. The results are presented in Sections
and [V]] (addressing RQ2 and RQ3, respectively).

A. Mining tweets about the Fort McMurray wildfire

Studying Twitter communication during emergency events
is challenging. Access to the Twitter Search API is limited so
we needed to decide what to collect at a stage when we only
had limited information about the crisis.

To form the tweet database for our case study, we used the
Twitter Search API to obtain publicly available tweets
about Fort McMurray wildfire. The Twitter search API
is restricted to 180 queries every 15 minutes and only returns
tweets from the past 14 days. We used the trending hashtags
#ymmfire, #FortMacfire, and #ymm to pull tweets connected
to the Fort McMurray wildfire. We chose these hashtags
through an initial investigation of the public Twitter stream.

We continuously gathered tweets related to these hashtags
over the course of 6 days. The accumulation of this data
resulted in 69,680 unique tweets.

Then, we randomly selected 2% of the tweets and performed
manual analysis. First, we explored the usefulness of the data
for our study. Second, we used this subset to train the Naive
Bayes classifier to separate informative tweets from the non-
informative ones.

B. Text pre-processing and lemmatization

Observing the common practice in text mining, we pre-
processed tweets to make them ready for applying machine
learning techniques such as Naive Bayes and LDA. We took
the following steps:

1) Eliminated retweets,

2) Eliminated hashtags, emojis and special characters,

3) Eliminated URLs,

4) Eliminated duplicate tweets, and

5) Lemmatized tweets to map words into their dictionary
form while retaining the context of the word [[19], [[15]].

For pre-processing, we used an open source module called
Pattern [30], which is built on top of the comprehensive
NLTK python package [18]]. We also used a python library,
Gensim, to apply LDA and extract topics from the pre-
processed tweets.

C. Survey design for evaluation of existing wildfire app fea-
tures

All features were evaluated through crowdsourcing as the
last step of MAPFEAT. We considered the crowd workers to be
representative of the general public, with the assumption that
they potentially might be involved in a fire emergency (often
this probability provoke us to buy a fire insurance). We used
a Kano-inspired survey [1]] to evaluate the proposed features.

We asked the crowd to imagine that their hometown or place
they were traveling was being destroyed by a wildfire and that
they have their smart phone to help them in this situation.
Then, we presented the features to them and asked:

“In your opinion, how important is it to have this feature as
part of a wildfire emergency app?"

o It is essential

o It is worthwhile

o It is unimportant
o It is unwise

e I don’t understand

To increase the validity of the results, we filtered out incom-
plete and low quality responses. A response was considered
low quality if the respondent spent less than 20 seconds
answering a question or selected the same answer for more
than 90% of the questions. From the responses, we calculated
the percentage of answers in each of the five categories
for every feature. Then, we assigned the category with the
highest percentage to the features and call it an essential
feature, a worthwhile feature, an unimportant features, or an
unwise feature. We used this type of survey to evaluate both
the features in the existing apps and the features mined by
MAPFEAT.

V. COMPARISON OF FEATURES: GENERATED BY
MAPFEAT VS. EXISTING APPS (RQ2)

We compared the features extracted by MAPFEAT with the
ones in pre-existing apps for wildfire emergencies. For each
feature, three scenarios were possible:

Scenario 1. The feature mined by MAPFEAT exists in the
current wildfire apps.

Scenario 2. The feature mined by MAPFEAT does not exist
in the current wildfire apps. In this case, MAPFEAT
could provide a suggestion on a feature needed by general
public. This can be taken by developers as a useful insight
to design more desirable apps.

Scenario 3. The feature that exists in a current wildfire app
was not mined by MAPFEAT. We interpret this either as
a lack of justification for having such a feature, because
it was not requested by the crowd, or incompleteness of
the data. We suggest that app developers and software
engineers inspect the usefulness of such features.

To answer RQ2 and demonstrate the added value of our
proposed method, we took three steps which are further
described in the subsections below:

Step 1: Extract features from existing wildfire apps,

Step 2: Apply MAPFEAT to the Fort McMurray wildfire
tweets, and

Step 3: Contrast the results of MAPFEAT with the existing
app features.

A. Step 1: Extracting features from existing apps

In our study we focused on the Apple iTunes app store as
it provides a free API for searching. We searched with “fire"
and “wildfire" as keywords to find the apps available in the
market. Our initial search resulted in 86 apps. We then read
the app descriptions and filtered irrelevant apps from this set
(for example, game and music player applications). We ended
up with 26 apps that were related to wildfire emergencies.

Among the 26, one app was developed by the government
of Alberta (the province in which Fort McMurray is located).
This app was first released in 2013 and had three updates at
the time this paper was written. Two other Canadian wildfires
apps were found, one from British Colombia and the other
from Saskatchewan, as well as three Australian apps from
Tasmania, Victoria, and Queensland which all were developed
by government and emergency department. Also, nine apps
showed wildfire information for different cities of the United
States, in addition to an official Red Cross app titled “Wildfires
by American Red Cross." Lastly, there was an app from the
International Association of Fire Fighters (IAFF). These 26
apps were published across seven different app store cate-

TABLE 11
EVALUATION PROFILE OF TOP 40 RANKED FEATURES EXTRACTED BY MAPFEAT IN COMPARISON TO FEATURES OF EXISTING WILDFIRE APPS

% selected by survey participants

Rank Feature MAPFEAT Baseline Essential ~ Worthwhile Unimportant Unwise
R1 Fire alarm notification v - 69.80% 22.04% 5.31% 1.63%
R2 Food and water requests and resources v - 67.76% 22.04% 6.94% 2.86%
R3 Emergency maintenance service v - 65.71% 24.49% 6.53% 2.04%
R4 Send emergency text messages v - 65.31% 28.16% 4.90% 1.22%
RS Safety guidelines v - 64.98% 26.35% 6.14% 1.81%
R6 Fire and safeness warning v - 64.90% 24.49% 8.16% 1.63%
R7 Request ambulance on a tap v - 64.62% 22.74% 7.58% 4.33%
RS Find nearest gas station v - 63.90% 22.02% 8.30% 3.97%
R9 Emergency zones maps v - 63.54% 25.27% 6.86% 3.97%
R10 Find a medical center v - 61.01% 25.27% 10.11% 2.53%
R11 Subscribe for real time alerts v - 60.82% 28.98% 6.94% 2.86%
R12 View gas lineups v - 60.65% 26.71% 7.22% 4.69%
R13 Real-time fire information v 60.55% 28.60% 6.31% 2.56%
R14 Fire education v - 60.29% 26.71% 9.03% 3.25%
R15 Report incident v - 60.29% 28.52% 7.22% 3.25%
R16 List of medical centers v - 59.93% 27.80% 7.58% 3.61%
R17 Emergency kit list v - 59.93% 28.88% 5.42% 4.69%
R18 Real time news notification v v 59.76% 28.60% 6.11% 4.54%
R19 Real time maps v - 59.21% 25.99% 8.66% 4.69%
R20 Location-based fire information v v 58.78% 31.36% 5.72% 2.96%
R21 Gas availability & supply v - 58.48% 28.16% 9.75% 3.61%
R22 List of fires v - 57.76% 25.99% 11.19% 3.97%
R23 Direct police call v - 57.04% 27.08% 10.47% 5.05%
R24 Instructions for before/during/after a wildfire v v 57.00% 31.95% 7.50% 2.17%
R25 Wildfire map v v 56.02% 31.76% 6.71% 3.75%
R26 Choose emergency types v - 55.92% 34.69% 3.67% 3.27

R27 Real time update synchronization v - 54.69% 32.24% 10.20% 1.22%
R28 Interactive learning procedure about fire v - 52.71% 31.77% 9.03% 5.42%
R29 Device battery saving mode v - 52.65% 31.84% 11.02% 4.08%
F30 Chat with aid respondents v - 52.65% 36.73% 8.16% 2.45%
R31 Urgent health care provider request on tap v - 51.99% 30.69% 13.36% 3.25%
R32 Patient transport request v - 51.62% 3321% 9.03% 5.05%
R33 Friends emergency contact v - 50.90% 36.10% 8.30% 3.97%
R34 Live police chat v - 50.54% 32.85% 10.11% 6.14%
R35 Up-to-date weather condition v - 50.18% 32.85% 12.27% 3.97%
R36 Test fire vision distance and safety quality v - 50.18% 33.21% 9.75% 5.42%
R37 Post a service request v - 49.80% 35.51% 9.39% 2.86%
R38 Real-time news feed v v 49.70% 34.32% 11.24% 3.94%
R39 Evacuees residence and site list v - 49.39% 30.20% 14.29 4.90%
R40 Emergency electricity maintenance request v - 48.74% 35.38% 10.11% 5.05%

gories: lifestyle, news, weather, navigation, utilities, business,
and education.

To extract features, we used a method proposed and eval-
uated by Harman et al. [10] as described in Section [[II-D}
Using this method, we found a total of 28 unique app features
distributed across all 26 apps.

B. Step 2: Applying MAPFEAT to Fort McMurray tweets

In this subsection, we describe the concrete data and results
by applying the steps of MAPFEAT, as described above on
Fort McMurray data. We first separated informative and non-
informative tweets by applying the Naive Bayes classifier
(Step @ in Figure . Applying 10-fold cross validation
showed that the classifier has an accuracy of 75.8%, precision
of 63.4%, and recall of 62.2%.

We then performed topic modeling on the informative
tweets. Considering the perplexity and intuitiveness of the
topics (see description of RQ1), we extracted 193 topics, each
being described by seven words (w = 7). From using all the
different combination of words (with combination of at least
two words) as described in Step € of Figure [I| we gen-
erated 23,400 search queries. We used the Apple iTunes
Search APT to retrieve apps for each search query. Each of
these searches took 0.53 seconds on average to get the results.
We selected the top 10 apps from each search result (j = 10 in
Step @ of Figure. 10,950 search queries did not return any
apps. The results of all the search queries originating from a
single topic were then aggregated. In total, our search queries
resulted in 14,626 unique apps.

The motivation for conducting this extended search was
to find software support (in form of apps’ functionality)
using the app store as a rich set of software features. For
that purpose, we extracted features from all app descriptions
that matched any of the search queries and selected features
shared by at least two of the 10 apps retrieved per query
(m = 2 in Step @ of Figure . To determine the similarity
between two feature we set the threshold of cosine similarity
measure to 60%. Doing this for all the retrieved apps of each
search query, we found 188 features. We submitted these
features along with their originating tweet topic into a crowd
to verify the correct semantic relation between them. Crowd
detected 13.2% semantic mismatch between the topics and
extracted features. Excluding the mismatched feature and
topics, we ended up in the final number of 163 features that
were mapped into the tweets of Fort McMurray wildfire using
MAPFEAT. The partial list of mined features is presented in
Table |I[Il while the complete list of features is available onlineﬂ

C. Step 3: Contrast MAPFEAT results with existing wildfire
app features

MAPFEAT extracted 163 features considering the tweets
about Fort McMurray wildfire. Having the features extracted
by MAPFEAT, we compared them with features existing

3http://www.ucalgary.ca/mnayebi/tools-and- data-sets

in the current wildfire apps. MAPFEAT could extract 139
features matching the needs of general public which were not
considered within existing apps.

Our analysis showed that applying MAPFEAT on Fort
McMurray tweets can find 85.7% of the features (i.e. 24
out of 28 features) available in existing wildfire apps. Using
MAPFEAT, we mined 90% of the features that exist in more
than one app. However, MAPFEAT did not mine the feature
“follow location" that occurred twice in the existing wildfire
apps. This might be because of data incompleteness or may
indicate that general public does not need this feature(Scenario
3). The results of survey (RQ3) will shed some light on this
by evaluating the importance of features for the crowd.

VI. RQ3: EVALUATION OF THE WILDFIRE APP FEATURES

We performed another round of crowdsourced evaluation
and asked the crowd how they perceive the value of the
features mined by MAPFEAT. In other words, RQ3 asks
whether our proposed method generates app features that
are deemed valuable by the general public in an emergency
wildfire situation.

Having all the features extracted by MAPFEAT in addition
to the four features in the existing apps that were not
mined by MAPFEAT, we performed crowdsourcing. We
asked 500 master (highly ranked) workers using Amazon
Mechanical Turk to evaluate the importance of having
each specific feature in the app. Using the results of the
questionnaire (see Section [V-C)), we provide in Table [I] the
percentage of subjects who believe that a feature is essential,
worthwhile, unimportant or unwise.

Scenario 1. Features that were mined by MAPFEAT and
currently exist in wildfire apps
The results showed that the respondents found 25% of the
26 features of the existing wildfire apps as essential, while
35.7% of these features were evaluated as worthwhile. On the
other side, 28.5% of the features were considered unimportant
and 10.7% of them were evaluated as unwise (“flashlight”
and “Generating and drawing wildfire maps" were considered
unwise to be part of a wildfire app).

Comparing the crowd stated importance of these 24 features
with the rest of the 139 features mined by MAPFEAT, shows
the extensive mismatch between what the general public
needs and what is currently provided in the wildfire apps.
Looking into the results (partially reflected in Table [[T), shows
the feature with highest "essential" degree that exists in the
current wildfire apps, is ranked as #13. However, MAPFEAT
could mine 12 features that had higher priority for public.

Scenario 2. Features that were mined by MAPFEAT and
do not exist in wildfire apps
By crowdsourced evaluation of the 139 features mined by
MAPFEAT, we found that:

o 28% of the features were classified as essential,

e 56.1% of the features were classified as worthwhile,

o 14.3% of the features were classified as unimportant, and

http://www.ucalgary.ca/mnayebi/tools-and-data-sets

0.4-

Feature importance state by general public

0.0-
! ! !
Worthwhile Unimportant Unwise

Category of feature importance

!
Essential

Fig. 2. Boxplots of crowdsourced feature evaluation

e 1.4% of the features were classified as unwise.

That means that about 84% of the features detected are
worthwhile or even essential. The violin boxplots in Figure
show the frequency distribution for all four categories. For ex-
ample, for the worthwhile category, the highest concentration
is around 40%.

MAPFEAT introduced 139 features that were not available
in the currently existing wildfire apps. These features are not
new to the app market in general, however they were not
offered as part of existing wildfire apps. MAPFEAT mined 39
essential features that not only covers all the already available
features in the wildfire apps but also is 83.9% more features.
In terms of quality, among the top 40 wildfire features mined
from articulated needs, just six of them were present in the
baseline feature set, with the most urgent one of them ranked
13th.

Scenario 3. Features that were not mined by MAPFEAT
Using MAPFEAT, we could not find one unimportant feature
(51.08% of the respondents called it unimportant) and two
unwise (39.05% and 42.41% called them unwise) features.
So while MAPFEAT resulted in 144 essential and important
features, it failed to find one worthwhile feature that already
exists in the wildfire apps.

Three of the features that were missed by MAPFEAT were
evaluated as unimportant and even unwise. This indicates that
existence of some of the features in wildfire apps are not well
justified as these were not communicated in the tweets nor
being evaluated as essential or worthwhile. Also, MAPFEAT
could not mine one worthwhile feature. This happened as we
only used one data set for a specific wildfire. Other wildfire
tweet data set, would likely lead us to explore more features
for wildfire emergencies.

VII. THREATS TO VALIDITY

We reported the results of a case study to show the process
and effectiveness of MAPFEAT. In the following, we discuss
threats to validity.

Construct validity: Considering tweets as a representative

source for the needs of the general public might be of concerns
for designing an app. However, we limited the application of
MAPFEAT to emergency apps, as a huge body of research
and analysis showed that tweet analysis is indeed an efficient
aid to manage a wildfire.
We used crowdworkers for validation purposes. Another threat
here is that subjects might not have first-hand experience
with a wildfire emergency. As the context of the questions
is easy to understand and fire protection is part of insurance
plans and education, we consider the crowd as representative
respondents. In addition, we had a substantial number of re-
sponses, from people directly impacted by the Fort McMurray
emergency.

Conclusion validity: The number of crowd workers (500)
we used is considered large enough to exclude randomness.
The reliability of the crowd responses is considered high as
we excluded responses made in less than 20 seconds and
eliminated subjects selecting the same answer for more than
90% of the questions.

Internal validity: By searching for specific hashtags, we
have ensured that all tweets are connected to the Fort Mc-
Murray wildfire. We chose these hashtags through an initial
investigation of this emergency.

Features extracted by MAPFEAT and features from existing
apps can be imprecise as this is largely investigated in app
store mining research. However, we selected the method [10]
that were checked for sanity in several research studies. We
would also argue that the crowdsourced evaluation mitigates
the influence of this phenomenon.

MAPFEAT does not claim to find all features necessary in
an emergency app. The completeness is dependent on data as
well as the process. A needed feature in a wildfire emergency
might not have been communicated in the tweets of Fort
McMurray. Also, during the nine step process, there are several
assumptions made about parameters. The number of words
used for defining a topic could be done in a different way
which potentially enlarges the search space. However, we do
not argue for completeness, but just for correctness and added
value. We also used crowdsourcing to back up the process
validation.

External validity: We evaluated MAPFEAT through a com-
prehensive case study. From there, we do not claim gener-
alization of results to other social media or to other events.
We argue that the application of MAPFEAT could provide
similar support in other situations as long as the tweet data
set is representative of that event. Use of tweets for managing
emergency events that involve masses of people were proved
to be informative.

VIII. RELATED WORK

A. Twitter analysis for emergency response

Social media services like Twitter have emerged as a popular
medium for communication. Twitter data offers a rich mech-
anism for exploring events before, during, and after emergen-

cies. Before an emergency, data can be monitored and analyzed
to identify events [6]. Various research studies examined the
use of Twitter data during emergency events [12]. Vieweg et
al. [33]] analyzed Twitter communication during the 2009 Red
River Floods and Oklahoma grass fires. Hughes et al. [[14] also
analyzed online public communication with the police and fire
departments during hurricane Sandy in USA. The study of
Takahashi et al. [31] during Typhoon Haiyan in Philippines
focused on the general public and organizational usage of
Twitter. Also, Power et al. [26] developed a notification system
to identify fire events in Australia.

Different data mining techniques, such as anomaly detection
by clustering [32], [4] and topic modeling using textual data
[34], [36], have been applied to tweets in order to bring
insight during emergency events. Using classifiers to separate
informative from non-informative tweets is also established
in this context [23]. The use of Twitter data for managing
emergencies is evolving rapidly for different types of events
[12]. However, to the best of our knowledge this paper is the
first study that focuses on requirements elicitation of Twitter
data for mobile app mining.

B. Mining software features from App stores and product
descriptions

App store mining and analysis has been widely studied in
the context of software engineering [22]. Mining features from
apps has been studied by analyzing the app description [10],
[8]], as described in this paper, or by mining app reviews [19].
Both approaches were proven to extract comprehensive yet
incomplete sets of app features, as neither the description nor
reviews mention all features. Although, knowing this to be a
threat, many research studies base their analysis and decision-
making for app development on the features being mined from
the app descriptions [22]]. Looking into app features as a source
for developing new ideas was also discussed by Maalej et al.
[20].

On the other hand, mining the public description of software
products to reduce effort and help the domain analysis process
for tradition software products, such as Anti-Virus products
has been discussed [9]]. In the same context, a recommendation
system for modeling product features in a specific domain have
been designed and proposed [7]. MAPFEAT differs from these
methods as it does not necessarily look into a specific domain,
rather, it globally searches the app store.

C. Crowdsourcing in Software Engineering

The wisdom of the crowd is increasingly used across dif-
ferent disciplines of software engineering [21]]. Crowdsourcing
for the purpose of requirements elicitation and categorization
has been used [29], and tweets themselves are a form of
crowdsourced data [3]. We used tweet data from the crowd
to elicit needs and map them into software requirements,
as well as, verifying the mapping between tweet topics and
the retrieved corresponding features. Crowdsourced human-
assisted verification was first studied by Li et al. [24]]. We
also used crowdsourcing to validate the importance of features.

Sustainability of crowdsourcing for software products was
studied by [25] and mechanisms to enhance sustainability of
crowsourced software were suggested in [25], [28].

IX. RELEVANCE AND APPLICABILITY

Information about societal problems is typically distributed
over different locations and systems. This is particularly true
for information needed in various kinds of emergency situ-
ations. The challenge tackled by this paper is to define and
execute a systematic process to combine different sources of
data. Intrigued by the initial evidence that existing apps for
handling wildfire emergency situations were lacking valuable
functionality, we designed a process looking beyond contex-
tual boundaries and searched the app store holistically for the
user needs.

The systematic method of understanding user needs and
searching them to map it to the existing features of non-
emergency app products has the potential for application
beyond wildfire. The application of our proposed method relies
on the:

« Mass impact of the event,

« Wide usage of mobile apps in the event context, and

o Usage of social media to stay connected, communicate,
and share experience and opinions about the event.

The above conditions are prerequisite for applying
MAPFEAT and are all satisfied in mass emergencies such as
earthquakes, flooding and wildfires. Another common feature
of emergency situations is the need to explore a wide range
of dimensions by thinking “outside the box." This is difficult
to accomplish solely in a proactive manner. Yet, MAPFEAT
is not even limited to emergency situations and can be used
for finding new features to provide better software support in
day to day life of people addressing scenarios in the economic,
political, environmental, social and technical aspects of society
and urban life.

X. CONCLUSIONS

MAPFEAT is an automated method designed for the pur-
pose of mapping general public needs that were communicated
via Twitter into mobile app features. It uniquely combines
different forms of crowdsourcing with existing techniques for
classification, natural language processing, and topic model-
ing. The key idea is to map topics extracted from a set of
event-related tweets to features that already exist in the apps
apart from the app category or scope of functionality. This
way, MAPFEAT enhances the design of an app by transfer-
ring people’s stated needs in social media into technological
functionality.

The feasibility of the method was demonstrated by a real-
world case study. Based on the textual analysis of 69,680
unique tweets, we could specify a significant amount of new
functionality (139 new features) demonstrated to be valuable
for general public users in wildfire emergency events. The
main conclusion of the case study is that MAPFEAT is able
to find a significant number of additional features which

were not in the currently existing wildfire apps. 87.1% of
these features were confirmed useful by general public. The
additional features that we elicited, was evaluated as clearly
more comprehensive and more helpful functionality comparing
to what was offered in the existing apps. For app providers,
these findings are considered of substantial value to better
support victims in future emergency events.

ACKNOWLEDGMENTS

This research was partially supported by the Natural Sci-
ences and Engineering Research Council of Canada, NSERC
Discovery Grant 250343-12 and Alberta Innovates Technology
Futures.

[1]

[2]
[3]

[4]

[5]

[6]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

A. Begel and T. Zimmermann. Analyze this! 145 questions for
data scientists in software engineering. In Proceedings of the 36th
International Conference on Software Engineering, pages 12-23. ACM,
2014.

D. M. Blei, A. Y. Ng, and M. L. Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993-1022, 2003.

D. Boyd, S. Golder, and G. Lotan. Tweet, tweet, retweet: Conversational
aspects of retweeting on twitter. In System Sciences (HICSS), 2010 43rd
Hawaii International Conference on, pages 1-10. IEEE, 2010.

J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert,
and T. Ertl. Spatiotemporal social media analytics for abnormal event
detection and examination using seasonal-trend decomposition. In /EEE
Conference on Visual Analytics Science and Technology 2012, VAST
2012 - Proceedings, pages 143—152.

N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang. Ar-miner: mining
informative reviews for developers from mobile app marketplace. In Pro-
ceedings of the 36th International Conference on Software Engineering,
pages 767-778. ACM, 2014.

W. Dou, X. Wang, D. Skau, W. Ribarsky, and M. X. Zhou. Leadline:
Interactive visual analysis of text data through event identification and
exploration. In IEEE Conference on Visual Analytics Science and
Technology 2012, VAST 2012 - Proceedings, pages 93-102.

H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher,
C. Castro-Herrera, and M. Mirakhorli. On-demand feature recommen-
dations derived from mining public product descriptions. In 2011 33rd
International Conference on Software Engineering (ICSE), pages 181—
190. IEEE, 2011.

A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior
against app descriptions. In Proceedings of the 36th International
Conference on Software Engineering, pages 1025-1035. ACM, 2014.
N. Hariri, C. Castro-Herrera, M. Mirakhorli, J. Cleland-Huang, and
B. Mobasher. Supporting domain analysis through mining and recom-
mending features from online product listings. IEEE Transactions on
Software Engineering, 39(12):1736-1752, 2013.

M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: Msr
for app stores. In Proceedings of the 9th IEEE Working Conference on
Mining Software Repositories, pages 108-111. IEEE Press, 2012.

L. Hong and B. D. Davison. Empirical study of topic modeling in
twitter. In Proceedings of the first workshop on social media analytics,
pages 80-88. ACM, 2010.

J. B. Houston, J. Hawthorne, M. F. Perreault, E. H. Park, M. Gold-
stein Hode, M. R. Halliwell, S. E. Turner McGowen, R. Davis, S. Vaid,
J. A. McElderry, and S. A. Griffith. Social media and disasters: a
functional framework for social media use in disaster planning, response,
and research. Disasters, 39(1):1-22, 2015.

A. L. Hughes and L. Palen. Twitter adoption and use in mass
convergence and emergency events. International Journal of Emergency
Management, 6(3-4):248-260, 2009.

A. L. Hughes, L. A. A. St Denis, L. Palen, and K. M. Anderson. Online
public communications by police fire services during the 2012 hurricane
sandy. pages 1505-1514

A. G. Jivani et al. A comparative study of stemming algorithms. Int. J.
Comp. Tech. Appl, 2(6):1930-1938, 2011.

[16]

(17]

(18]

(19]

[20]
[21]
[22]

(23]

[24]

(25]

[26]

(271

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

S. B. Kotsiantis. Supervised machine learning: A review of classification
techniques. In Proceedings of the 2007 Conference on Emerging
Artificial Intelligence Applications in Computer Engineering: Real Word
Al Systems with Applications in eHealth, HCI, Information Retrieval and
Pervasive Technologies, pages 3-24, Amsterdam, The Netherlands, The
Netherlands, 2007. IOS Press.

K. Lee, D. Palsetia, R. Narayanan, M. M. A. Patwary, A. Agrawal, and
A. Choudhary. Twitter trending topic classification. In 2011 IEEE 11th
International Conference on Data Mining Workshops, pages 251-258.
IEEE, 2011.

E. Loper and S. Bird. Nltk: The natural language toolkit. In Proceedings
of the ACL-02 Workshop on Effective tools and methodologies for
teaching natural language processing and computational linguistics-
Volume 1, pages 63-70. Association for Computational Linguistics,
2002.

'W. Maalej and H. Nabil. Bug report, feature request, or simply praise? on
automatically classifying app reviews. In 2015 IEEE 23rd international
requirements engineering conference (RE), pages 116-125. IEEE, 2015.
W. Maalej, M. Nayebi, T. Johann, and G. Ruhe. Toward data-driven
requirements engineering. Software, IEEE, 33(1):48-54, 2016.

K. Mao, L. Capra, M. Harman, and Y. Jia. A survey of the use of
crowdsourcing in software engineering. RN, 15(01), 2015.

W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app
store analysis for software engineering. RN, 16:02, 2016.

S. P. Moon, Y. Liu, S. Entezari, A. Pirzadeh, A. Pappas, and M. S. Pfaff.
Top health trends: An information visualization tool for awareness of
local health trends. In ISCRAM 2013 Conference Proceedings - 10th
International Conference on Information Systems for Crisis Response
and Management, pages 177-187.

R. Musson, J. Richards, D. Fisher, C. Bird, B. Bussone, and S. Gan-
guly. Leveraging the crowd: how 48,000 users helped improve lync
performance. IEEE software, 30(4):38-45, 2013.

D. Pilz and H. Gewald. Does money matter? motivational factors
for participation in paid-and non-profit-crowdsourcing communities. In
Wirtschaftsinformatik, page 37, 2013.

R. Power, B. Robinson, and D. Ratcliffe. Finding fires with twitter.
In Proceedings of the Australasian Language Technology Association
(ALTA) Workshop, Brisbane, Australia, pages 80-89.

F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia, W. Martin, and Y. Zhang.
Feature lifecycles as they spread, migrate, remain, and die in app stores.
In 2015 IEEE 23rd International Requirements Engineering Conference
(RE), pages 76-85. IEEE, 2015.

E. Schenk and C. Guittard. Crowdsourcing: What can be outsourced
to the crowd, and why. In Workshop on Open Source Innovation,
Strasbourg, France, page 72, 2009.

N. Seyff, F. Graf, and N. Maiden. Using mobile re tools to give end-
users their own voice. In 2010 18th IEEE International Requirements
Engineering Conference, pages 37-46. IEEE, 2010.

T. D. Smedt and W. Daelemans. Pattern for python. Journal of Machine
Learning Research, 13(Jun):2063-2067, 2012.

B. Takahashi, E. C. Tandoc, and C. Carmichael. Communicating on
twitter during a disaster: An analysis of tweets during typhoon haiyan
in the philippines. Computers in Human Behavior, 50:392-398 Elsevier.
D. Thom, H. Bosch, S. Koch, M. Worner, and T. Ertl. Spatiotemporal
anomaly detection through visual analysis of geolocated twitter mes-
sages. Pacific Visualization 2012, 2012.

S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen. Microblogging
during two natural hazards events: What twitter may contribute to
situational awareness. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI "10, pages 1079-1088, New
York, NY, USA, 2010. ACM.

S. Yang, H. Chung, X. Lin, S. Lee, L. Chen, A. Wood, A. L. Kavanaugh,
S. D. Sheetz, D. J. Shoemaker, and E. A. Fox. Phasevisl: What,
when, where, and who in visualizing the four phases of emergency
management through the lens of social media. In ISCRAM 2013
Conference Proceedings - 10th International Conference on Information
Systems for Crisis Response and Management, pages 912-917.

J. Yin, A. Lampert, M. Cameron, B. Robinson, and R. Power. Using
social media to enhance emergency situation awareness. /EEE Intelligent
Systems, 27(6):52-59, 2012.

D. Zhang and Z. Xie. Analysis and research on microblogging network
model based on crawler data. In Proceedings of 2011 International
Conference on Computer Science and Network Technology, ICCSNT
2011, volume 2, pages 653-656.

