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Abstract

Inlined Reference Monitor (IRM) is the preferred enforcement mechanism for history-
based access control policies. IRM enforcement injects monitoring code into the binary of
an untrusted program in order to track its execution history. The injected code denies access
when execution deviates from the policy. The viability of IRM enforcement ispredicated on
the ability of the binary rewriting element to optimize away redundant monitoring code without
compromising security.

This work proposes a novel optimization framework for IRM enforcement.The scheme is
based on a constrained representation of history-based access control policies, which, despite
its constrained expressiveness, can express such policies as separation of duty, generalized Chi-
nese Wall policies, and hierarchical one-out-of-k authorization. An IRM optimization proce-
dure has been designed to exploit the structure of this policy representation. The optimization
scheme is then extended into a distributed optimization protocol, in which an untrusted code
producer attempts to help boost the optimization effectiveness of an IRM enforcement mecha-
nism administered by a distrusting code consumer. It is shown that the optimization procedure
provably preserves security even in the midst of distributed optimization. A prototype of the
optimization procedure has been implemented for Java bytecode, and its effectiveness has been
empirically profiled.

Keywords: Language-based security, history-based access control policies, inlined refer-
ence monitors, security automata, distributed optimization protocol.

1 Introduction

This paper presents novel implementation techniques for the protection mechanism of extensible
systems, that is, software systems composed of a trusted application core collaborating with a
number of untrusted software components, all running within the same address space. To support
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the late binding of features to an application, the latter could be made extensible by adopting a
plug-in architecture or offering scripting support. This paper focuses on language-based extensi-
ble systems [29] such as those developed on the safe languageenvironments Java and .Net. In
these systems, untrusted components collaborate with the application core through a well-defined
Application Programming Interface (API). To protect the integrity of the resources encapsulated
by the API, it is in the interest of the application core to ensure that access requests made by the
untrusted components through the API honor certain security policies. A notable such family of
security policies are history-based access control policies [30]. These policies are safety properties
[30], in which an authorization decision is made solely on the basis of the execution history of the
target program as observed by the enforcement mechanism at run time. Examples of such policies
include the Chinese Wall policy [10], Biba’s low water mark policy [8], one-out-of-k authorization
[14], assured pipelines [9], as well as Stack Inspection [38] and its variants [1].

Execution monitoring [14, 15, 39] is the standard enforcement mechanism for history-based
access control policies. The classical implementation strategy is to interpose a reference monitor at
the entry points of the API, so that the monitor may track the API calls previously made, arguments
passed, or even the run-time state of the untrusted component to ensure policy compliance. This
is the implementation strategy adopted by the Java platformin its Stack Inspection mechanism
[18]. A modern implementation strategy for execution monitoring is Inlined Reference Monitor
(IRM) [36], in which monitoring code is injected into an untrusted component through binary
rewriting. The advantage of IRM over interpositioning is that IRM fully decouples the enforcement
mechanism from the application core, thereby allowing the security model to evolve separately
from the application code base. An important challenge faced by IRM enforcement mechanisms
is the run-time overhead induced by the injected code [38, 30]. Viability of the IRM approach is
predicated on the ability of the binary rewriting element tooptimize away unnecessary monitoring
code [12].

In this work, we explore the interplay between security concerns and optimization procedures
for IRM enforcement of history-based access control policies. Our contribution is twofold:

1. Optimization-friendly policy representation : Since [30, 35, 36], the Security Automa-
ton has become the standard representation for security policies to be enforced by execution
monitoring. A research concern [5, 17, 22, 33, 34] of the language-based security community
has been the following: Can we trade off the expressiveness ofpolicy representation (i.e.,
by adopting a less powerful version of the Security Automaton) for improved resource con-
sumption (e.g., time, space, information) of the executionmonitor? In this work, we address
a related but novel research question:Can we trade off the expressiveness of policy repre-
sentation for improved effectiveness of the optimization element in the IRM binary rewriter?
By adopting a declarative state representation and imposingstructures on state transitions,
we have shown that one can employ standard compiler optimization techniques to optimize
away state transition code that would otherwise be injectedinto the target program, and do so
without compromising security. We also demonstrate that the resulting policy representation
is still expressive enough to encode a wide range of history-based access control policies.

2. Distributed optimization protocol : To further enhance the effectiveness of IRM optimiza-
tion, we propose a distributed optimization protocol that has been inspired by Proof-Carrying
Code [24]. Specifically, an untrusted code producer sends a software component to a dis-
trusting code consumer for execution. To promote usage of the component, the code pro-
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ducer ships a version of the component that has been annotated with optimization directives,
which are hints on how the code consumer can aggressively optimize the monitor code to
be injected into the component for IRM enforcement. As the code producer could very well
be malicious, blindly following the optimization directives could lead to the omission of key
monitoring logic, thus compromising security. To counter this, the code consumer injects
into the component specially designed run-time checks thatwill be completely optimized
away if the code producer is honest about the optimization directives, but will detect the
dishonesty at run time if the code producer attempts to mislead the code consumer.

The rest of this paper outlines the proposed policy representation (Sect. 3), the optimization pro-
cedure that takes advantage of this policy representation (Sect. 4), a corresponding distributed
optimization protocol (Sect. 5), extensions to support Java-style language constructs (Sect. 6), as
well as an implementation (Sect. 7) and its empirical evaluation (Sect. 8).

2 Related Work

What we call history-based access control policies are safety properties. Schneider characterized
the security policies enforceable by execution monitoringto be safety properties [30], and proposed
Security Automata (SA) as the standard representation of execution monitors. (A recent sharpening
of this result can be found in [19].) Inlined Reference Monitoring was first proposed in [36] as
a framework to unify previous work [14, 15] that employs binary rewriting to enforce history-
based access control policies. Fong proposed an information-based characterization of security
policies enforceable by execution monitors consuming onlya limited portion of history information
[17]. The goal was to understand the trade-off between the differentiating power of an execution
monitor and the resource to which it is made available, a goalfirst articulated by Ligattiet al
[5, 22]. The work has been refined by Talhiet al to obtain a characterization of execution monitors
operating under memory constraints [33, 34]. Our work posesa related but novel question: can
the expressiveness of policy representation be restrictedto facilitate IRM optimization? Our policy
representation is formally akin to STRIPS planning operators [16].

A first principled design of optimization procedures for IRM enforcement mechanisms is [12],
which assumes each transition has a constant cost. Our optimization procedure is designed for
unbounded state space, and thus we adopted a different performance metric (see Sect. 4). As
IRM enforcement could be seen as a special-case of Aspect-Oriented Programming (AOP) [21],
previous work on optimization techniques for AOP languages(e.g., [4]) is also relevant. Our work
is unique in that we facilitate optimization by trading off policy expressiveness and by adopting a
distributed optimization protocol.

Proof-Carrying Code (PCC) [24] pioneered the idea of self-certifying code. Specifically, a
proof of safety is shipped along with an untrusted program, allowing the code consumer to verify
safety in a tractable manner. Rose and Rose proposed a lightweight Java bytecode verification
framework [27], in which type states are shipped along with Java classfiles, so that bytecode verifi-
cation can be performed more efficiently. In model-carryingcode [31], the code producer ships an
untrusted program together with its behavior model. The model is checked by the code consumer
against a preset policy for compliance. The verified model isthen employed to monitor the execu-
tion of the untrusted program. In [2], a PCC-style safety proofis attached to an untrusted program
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manager();
if (...) {
accountant();

}
if (...) {
critical();
manager();

}
accountant();
critical();

(a) Original program

Program Point Event

aftermanager() m

afteraccountant() a

beforecritical() c

(b) Event interpretation

bool pm = false;
bool pa = false;
manager();
pm = true;
if (...) {
accountant();
pa = true;

}
if (...) {
if (pm ∧ pa) { pm = false; pa = false; }
else throw new IRMException();
critical();
manager();
pm = true;

}
accountant();
pa = true;
if (pm ∧ pa) { pm = false; pa = false; }
else throw new IRMException();
critical();

(c) Execution monitor is inlined

Figure 1: IRM Enforcement of Separation of Duty

to certify that an execution monitor has been properly inlined. Compared to the work above, ours
is unique in that we are the first to propose annotations for facilitating IRM optimization rather
than verification.

CMV [32] is a model checker for verifying complete mediation [28] in the Stack Inspection
enforcement mechanism of a Java Virtual Machine (JVM) implementation. Our work could be
seen as a generalization of the static analysis performed byCMV to (1) support a more general
class of safety properties and (2) inject dynamic checks when a target property cannot be statically
verified. Both systems employ a notion of method interfaces (called method summaries in [32])
to modularize analysis. While method summaries are computedby a special-purpose algorithm,
method interfaces are generated by a work-list-based whole-program analysis (Appendix A).

3 An Optimization-Friendly Policy Representation

Notations Given a recordr with schema〈f1, . . . , fk〉, we refer to thefi component ofr by
the notationr.fi. Thus, if o is an instance of the schema〈pre, eff 〉, theno.pre refers to the first
component ofo.

3.1 Inlined Reference Monitor

Consider the enforcement of Separation of Duty [11] in an example program shown in Fig. 1
(a) (adapted from [12], in turn inspired by [20, 6]). Our goalis to ensure that thecritical()
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operation is performed only under the endorsement of both the manager() andaccountant()
operations. To precisely articulate this policy, we interpret the run-time traversal of certain program
points to be security-relevant events (Fig. 1 (b)): eventsm, a andc correspond respectively to the
three operations. Program execution therefore generates an event sequence. For example, if both of
the “then” branches are executed, then the event sequencemacmac will be generated. Our policy
can then be phrased as a safety property regarding the generated event sequences [30]. One way to
enforce such a policy is through Inlined Reference Monitors (IRMs) [36]. Specifically, monitoring
code is injected into the program points of interest, tracking the history of execution, and aborting
execution whenever a policy violation is detected. In Fig. 1(c), monitoring code has been injected
into the original programs identified in Fig. 1 (b), trackingthe occurrences of eventsm anda, and
ensuring that every occurrence of eventc is properly guarded.

Since [30, 35, 36], history-based access control policies are represented by Security Automata.
A Security Automaton (SA)is a quadrupleM = 〈Σ, Q, q0, {δa}a∈Σ〉, where

• Σ is a countable set ofaccess events,

• Q is a countable set ofmonitor states,

• q0 ∈ Q is a distinguishedstart state, and

• {δa}a∈Σ is a family of transition functions, indexed by access events, such that each tran-
sition functionδa : Q ⇀ Q is a partial function mapping the current monitor state to an
optional next state.

Given an event sequencew ∈ Σ∗, we write δw for the partial function defined inductively as
follows: δ(ǫ) = ιQ, the total identity function forQ, andδa·w = δw◦δa (i.e., function composition).
Note that, sinceδw is partial,δw(q) may not be defined for every stateq. An event sequencew ∈ Σ∗

is considered policy compliant iffδw(q0) is defined.
At the program points corresponding to eventa, IRM injects a code fragment that simulates

δa. The inlining of such code fragments causes degradation of execution efficiency. A competitive
IRM implementation will subject these code fragments to aggressive optimization.

3.2 A Constrained Policy Representation

Any practical policy representation must place constraints on theQ andδ components [35, 36,
3]. We consider representation constraints that facilitate IRM optimization. Our proposed policy
representation is based on two design choices that balance efficiency considerations against policy
expressiveness.

Design choice 1: Unbounded state space, finitary transitions Unlike [12], which assumesQ to
be finite, we anticipate the state space to be unbounded for practical IRM. Specifically, we envision
the employment of IRM rewriting at load time, such that the state space may have to be expanded
when new code units are dynamically loaded. It is therefore assumed that each application domain
is associated with acountablesetΠ of propositional variables1, calledstate variables. A Π-state,

1Although we focus on boolean state variables here, our scheme can be readily generalized to handle variables of
finite domains.
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or simply a state, is an assignment of truth values to propositional variables fromΠ, such that
the assignment differs from one of the following three truthassignments for only finitely many
propositional variables: (i) all propositions are undefined, (ii) all propositions are false, and (iii)
all propositions are true. Such a truth assignment can be represented using only a finite amount
of memory. Henceforth, we identify a state by the set of literals that are satisfied by the state. If
neither of the literals for a proposition appears in the set,then the proposition is undefined in the
state. Thus the empty set denotes the state in which all propositions are undefined. Unless specified
otherwise, it is assumed2 thatq0 = ∅. Under this assumption, the cardinality of aΠ-state is finite.

To render execution monitoring tractable, every transition function must befinitary, meaning
that:

1. only a finite number of state variables determine if the transition is defined at a given state,
and

2. the resulting state can be obtained by altering only a finite number of state variables, so that
the new value of each variable is a function of only a finite number of state variables in the
original state.

A finitary transition function is called anoperator.

Design choice 2: Conjunctive preconditions, constant effects (CPCE) An operator can be
represented by two elements:

1. aprecondition expression, which is a boolean expression in terms of a finite number of state
variables, indicating if the transition is defined at a givenstate, and

2. for each state variable that can potentially be altered bythe transition function, aneffect
expression(a boolean expression in terms of a finite number of state variables) that computes
the new value for the variable.

While this arrangement is fully general, we impose further syntactic restrictions to arrive at a
representation that is optimization-friendly:

1. the precondition expression must be aconjunction of literals, and

2. every effect expression must be aconstant truth value.

Operators satisfying these restrictions are calledCPCE operators. Formally, we represent a CPCE
operator by a pair〈pre, eff 〉, where:

pre: a finite set ofpreconditions, each of which is aliteral (i.e., p or ¬p), such that, for each
propositionp, at most one ofp or¬p belongs to the set

eff : a finite set ofeffects, each of which is ageneralized literal(i.e.,p, ¬p, or ?p), such that, for
each propositionp, at most one ofp, ¬p or ?p appears in the set

2The proposed optimization scheme can be easily adopted to the case when this assumption does not hold.
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The state obtained by applying the CPCE operator〈pre, eff 〉 to a stateS (i.e., a set of literals) is:

〈pre, eff 〉(S) =

{

S ⊕ eff if pre ⊆ S

undefined otherwise

where, given a setP of propositions, a setS of literals and a setL of generalized literals,

S ⊕ L = (S \ lits(vars(L))) ∪ (L ∩ lits(vars(L)))

vars(L) = {p ∈ Π | p ∈ L ∨ ¬p ∈ L ∨ ?p ∈ L}

lits(P ) = P ∪ {¬p | p ∈ P}

Intuitively, the operator is defined at stateS if the conjunctionpre is satisfied by the truth assign-
mentS. In the resulting state, a propositional variablep is set to true ifp ∈ eff , false if¬p ∈ eff ,
undefined if?p ∈ eff , or otherwise the same value as in the original state. As a special case, the
empty operator〈∅, ∅〉 represents the total identity functionιQ for monitor states. Also notice that
the preconditions of an operator cannot be used for detecting if a proposition is undefined in a
given state, but effects could set propositions to undefined. This intentional asymmetry serves an
important function to be discussed in the sequel (in the proof of Thm. 8).

3.3 Evaluation of Expressiveness

We evaluate the expressiveness of the proposed policy representation by a number of case studies.

Complete Mediation Complete Mediation [32, 28] requires every sensitive operation to be per-
formed only after a monitoring operation has been invoked. The policy prescribes an event set
Σ = {sen,mon}. To enforce the policy, a monitor is constructed with state variable setΠ = {pm},
and transition functionsδsen = 〈{pm}, {¬pm}〉 andδmon = 〈∅, {pm}〉. The transition function
δmon assertspm, thus enablingsen, which in turn negatespm.

Separation of Duty Separation of Duty (Sect. 3.1) prescribes an access event set Σ = {a,m, c}.
The policy is enforced by a monitor for whichΠ = {pa, pm}, wherepa and pm indicate, re-
spectively, that eventsa andm have occurred. The transition functions are defined as follows:
δa = 〈∅, {pa}〉, δm = 〈∅, {pm}〉, δc = 〈{pa, pm}, {¬pa,¬pm}〉. The monitor ensures thatc only
occurs after botha andm have occurred, without imposing an ordering ofa andm.

Generalized Chinese Wall Policy The Chinese Wall Policy [10] prevents conflicts of interest
that may arise from allowing access to data sets that belong to competing parties. Lin proposed
a generalization, in which conflict relationships need not form an equivalence relation [23]. In
extensible systems, Lin’s Generalized Chinese Wall Policy can be employed to ensure that con-
flicting operations are not executed by an untrusted component, thereby protecting the integrity of
the application core. Formally, a Generalized Chinese Wall Policy is characterized by a conflict
graph〈Σ, E〉, whereΣ is a countable set of operations, and each undirected edge inE connects a
pair of operations in conflict with one another. Execution ofan operationa ∈ Σ renders all neigh-
bors ofa forbidden in the future. Under the mild assumption that vertices of the conflict graph
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has bounded degrees, the Generalized Chinese Wall Policy canbe expressed as CPCE operators as
follows. DefineΠ = {pa | a ∈ Σ}, q0 = {¬pa | a ∈ Σ}, and setδa = 〈{¬pb | ab ∈ E}, {pa}〉. The
construction ensures that the set of executed operations isalways an independent set in the conflict
graph.

Hierarchical One-Out-Of-k Authorization One-out-of-k authorization [14] classifies applica-
tions into equivalence classes based on the access rights required for successful execution. For
example, abrowserneeds the right to open network connections but never accesses user files, and
an editor needs the right to access user files but never connects to the network. The protection
goal is to ensure that untrusted code only exercises the access rights of a known application class:
e.g., an application that both reads a user file and connects to the network is neither a browser nor
editor, and thus must be rejected. Formally, an One-Out-Of-k Policy is characterized by a family
{Ci}1≤i≤k of application classes such thatCi ⊆ Σ. The policy requires that, every time a program
is executed, there is aCi such that every access right exercised during that execution belongs toCi.
One-out-of-k authorization, in its full generality, is not necessarily expressible as CPCE operators.

Theorem 1. There is an One-Out-Of-k Policy that cannot be enforced by CPCE operators.

Proof. Consider the One-Out-Of-k Policy for whichΣ = {a0, a1, a2} andCi = {ai, a((i+1) mod 3)}
for 0 ≤ i < 3. By way of contradiction, assume that there is a setΠ of propositions, an initial
stateq0 and transition functionsδai

, for 0 ≤ i < 3, that enforce the policy. Becausea0a1a2 is not
a safe sequence, there must be a literall ∈ δa2

.pre such thatl 6∈ δa0a1
(q0). But thena0a2 is safe,

which meansl ∈ δa0
(q0). Consequently, it must be the case thatl ∈ δa1

.eff , wherel is the negation
of literal l, or else the change of membership ofl betweenδa0

(q0) andδa0a1
(q0) would not have

occurred. Nowδa1a2
(q0) is not defined, contradicting the fact thata1a2 is a safe sequence.

Fortunately, there is an important special case of one-out-of-k that the CPCE representation
can capture.

Definition 2. An One-Out-Of-k Policy{Ci}1≤i≤k is said to behierarchical iff both of the following
hold:

∀i, j . Ci ∩ Cj 6= ∅ ⇒ ∃m . Cm = Ci ∩ Cj (1)

∀i, j,m . (Ci ⊆ Cm ∧ Cj ⊆ Cm) ⇒ (Ci ⊆ Cj ∨ Cj ⊆ Ci) (2)

Condition (1) asserts that the family of application classesis closed under non-empty intersec-
tion. Condition (2) asserts that the subclasses of any given class are totally ordered. The Hasse
diagram [13] of classes satisfying the two conditions is a forest (hence “hierarchical”).

Theorem 3. Every hierarchical One-Out-Of-k Policy is enforceable by CPCE operators.

Proof. Consider a Hierarchical One-Out-Of-k Policy {Ci}1≤i≤k. Without loss of generality, as-
sume that everya ∈ Σ belongs to at least oneCi. Define thehome classH(a) of accessa ∈ Σ to
be

⋂

{ C ∈ {Ci}1≤i≤k | a ∈ C }, that is, the smallest class containinga. (The existence of such a
class is guaranteed by condition (1).) A pair of accesses, say a andb, is said to beconsistentiff they
belong to the same application class: i.e.,∃i . {a, b} ⊆ Ci. Otherwise, they arein conflict. Notice
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thata andb are consistent iffH(a) ⊆ H(b)∨H(b) ⊆ H(a). (The “if” direction is immediate. The
“only if” direction follows from {a, b} ⊆ Ci by an application of condition (2).)

To obtain the required CPCE representation of{Ci}1≤i≤k, constructΠ = {pC | C ∈ {Ci}1≤i≤k},
q0 = {¬pC | C ∈ {Ci}1≤i≤k}, andδa = 〈prea, eff a〉, where:

prea = {¬pC | H(a) 6⊆ C ∧ C 6⊆ H(a)}

eff a = {pH(a)}

It is easy to see that, with the CPCE operators above, at run time, the setH of accesses that have
occurred so far are pair-wise consistent. What we want is thatthere is aCi such thatH ⊆ Ci. We
prove this by induction.

The base cases for|H| ≤ 2 can be handled trivially. Suppose, for somek > 2, all event set
H with |H| = k is such thatH ⊆ Ci for somei wheneverH contains pairwise-consistent events.
Consider a setH ′ = H ∪{a} where|H| = k, a 6∈ H, and events inH ′ are pairwise consistent. By
way of contradiction, assume the following holds:

There is noCi such thatH ′ ⊆ Ci. (3)

BecauseH contains pairwise-consistent events, the induction hypothesis implies that there is a
classC⋆ such thatH ⊆ C⋆. Also, a is consistent with every member ofH. Thus, for eachb ∈ H,
let Cb be a class containing botha andb. By (1),C◦ =

⋂

b∈H Cb is a class. By assumption (3), there
is an eventb⋆ ∈ H such thatb⋆ 6∈ C◦. By (1), C• = C⋆ ∩ Cb⋆ is a class. Now,a ∈ C◦, buta 6∈ C•;
b⋆ ∈ C•, butb⋆ 6∈ C◦. SoC◦ andC• are distinct, incomparable subsets ofCb⋆, contradicting (2).

Although the construction of Thm. 3 is representationally sufficient, that encoding of Hierar-
chical One-Out-Of-k Policies by CPCE operators could lead to precondition and effect sets having
a size ofO(k). Whenk is large, such an encoding incurs a significant performance overhead (see
Sect. 4 for a precise definition of performance overhead). The following theorem demonstrates that
there is occasionally a more efficient encoding. For hierarchies with a few balanced trees, in which
the height of the hierarchy is logarithmically related to the number of application classes and the
branching factor is bounded by a constant, the following policy encoding leads to precondition or
effect sets of sizeO(log k).

Theorem 4. There is a CPCE representation of a Hierarchical One-Out-Of-k Policy {Ci}1≤i≤k

such that the size of each precondition or effect set isO(h · b + r), whereh is the maximum tree
height of the forest induced by the policy,b is the maximum branching factor, andr is the number
of trees in the forest.

Proof. Given a familyF of sets, defineminimal(F) = {S ∈ F | ∀S ′ ∈ F . S ′ 6⊂ S}. Consider
the following CPCE encoding. DefineΠ = {pC | C ∈ {Ci}1≤i≤k}, q0 = {¬pC | C ∈ {Ci}1≤i≤k}
and setδa = 〈prea, eff a〉, where

prea = {¬pC | C ∈ minimal({Ci | Ci 6⊆ H(a) ∨H(a) 6⊆ Ci})}

eff a = {pCi
| Ci ⊆ H(a)}

We claim that this operator formulation is equivalent to theone defined in the proof of Thm. 3. To
establish the claim, it suffices to show that, for everya, b ∈ Σ, H(a) ⊆ H(b) ∨ H(b) ⊆ H(a) iff
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H(a) ⊆ Ci ∨ Ci ⊆ H(a) for everyCi ⊆ H(b). The “if” direction is immediate. Consider the “only
if” direction. In the case whenH(b) ⊆ H(a), the claimed consequent is immediate. In the case
whenH(a) ⊆ H(b), the claimed consequent follows from condition (2).

|eff a| is obviouslyO(h). To obtain a bound on|prea|, notice thatprea contains those literals
¬pC for two types of classC. Firstly, C may be the root of a tree completely disjoint from the tree
in whichH(a) belongs. There are at mostO(r) of these literals. Secondly,C may be a child of an
ancestor ofH(a). There are at mostO(h · b) of these literals. The bound in the statement of this
theorem follows immediately.

Most naturally-occurring One-Out-Of-k Policies are either hierarchical, or can be made hier-
archical without affecting safety (e.g., the policy in [17,Sect. 4.3] is an example). To demonstrate
this, we begin with the following definition:

Definition 5. The(non-empty) intersection closureof an One-Out-Of-k Policy {Ci}1≤i≤k is the
following family of application classes:

clos({Ci}1≤i≤k) =

{

⋂

i∈H

Ci | H ⊆ {1, 2, . . . , k} ∧ H 6= ∅

}

\ {∅}

An One-Out-Of-k Policy {Ci}1≤i≤k is said to beproto-hierarchical iff clos({Ci}1≤i≤k) is hierar-
chical.

Theorem 6. Given a proto-hierarchical policy{Ci}1≤i≤k, an equivalent hierarchical policy
{C′

j}1≤j≤k′ can be constructed, such thatk′ = O(k).

Proof. Construct{C′
j}1≤j≤k′ = clos({Ci}1≤i≤k). By definition,{C′

j}1≤j≤k′ is hierarchical.
We show that{C′

j}1≤j≤k′ is equivalent to{Ci}1≤i≤k. Suppose an event sequencew is permitted
by {Ci}1≤i≤k. Then there is someCi such that every event occurring inw is a member ofCi. By
constructionCi ∈ {C′

j}1≤j≤k′, hencew is permitted by{C′
j}1≤j≤k′. Conversely, suppose an event

sequencew is permitted by{C′
j}1≤j≤k′. Then there is someC′

j such that every event occurring in
w is a member ofC′

j. By construction, there is aCi such thatC′
j ⊆ Ci, hencew is permitted by

{Ci}1≤i≤k.
We show thatk′ = O(k). A classC′

j is said to besyntheticiff C′
j 6∈ {Ci}1≤i≤k. As pointed

out previously, the Hasse diagram of{C′
j}1≤j≤k′ is a forest. Observe that, by construction, every

synthetic class has more than one child. By simple induction,it can be shown that the number of
synthetic classes is strictly less thank (i.e., the number of non-synthetic classes). The required
bound follows.

4 The Basic Optimization Procedure

Given a program represented as control flow graphs (CFGs) [20,6], an IRM enforcement mecha-
nism proceeds in three phases:

Phase 1: By consulting a security policy, construct an associative array op[·], assigning to every
program pointn some (possibly empty) operatorop[n].
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Phase 2: Optimize the operator assignment by updating the entries inop[·], in some semantic-
preserving manner, with the objective that the resulting execution time is improved.

Phase 3: Instrument the target program by injecting, (a) at the program entry point, a code frag-
ment that initializes a globally accessible monitor state,and, (b) at each program pointn, a
code fragment simulatingop[n]. The latter code fragment will behave as follows at run time:

• The preconditions inop[n].pre are checked against the current monitor state. If any of
the preconditions is not satisfied, the a security exceptionis raised3.

• The effects are asserted into the monitor state.

The focus of this work isPhase 2— the design of optimization procedures.
Givenop[·], a control flow path isfeasibleiff all operator preconditions are satisfied along the

path. Unlike [12], which assumes all transitions to have thesame cost, we adopt the following
performance metric: theoverheadof a feasible path is the total number of preconditions checked
and effects asserted along the path. More precisely, an operator 〈pre, eff 〉 incurs an overhead
of |pre| + |eff | every time it is executed. The fewer preconditions and effects are involved in
an operator, the less overhead it incurs on the target program. For example, the empty operator
does not impose an overhead of zero. This performance metricis adopted because the number
of propositions appearing in aΠ-state can in principle be unbounded, and thus no constant-time
implementation of transitions is available.

An execution traceis a control flow path that starts at the entry point of the program. An
optimization procedure issafe iff infeasible execution traces remain infeasible, andunobtrusive
iff feasible execution traces remain feasible. Ensuring safety is central to the security enterprise. A
safe optimization procedure iseffectiveiff, (a) the overhead of a feasible execution trace is never
increased by the procedure, and (b) there is at least one program and a feasible execution trace for
that program such that the overhead isstrictly reduced by the procedure. Notice that the notion of
effectiveness is only defined for safe optimization.

We focus on two kinds of optimization: precondition and effect elimination. That is, the op-
timization procedure eliminates redundant members ofop[n].pre andop[n].eff . As the overhead
of a feasible path is never increased by an optimization procedure that is based on precondition
and effect elimination, such a procedure is always effective so long as it is safe. The remaining
challenge is to conduct precondition and effect elimination without sacrificing safety or incurring
obtrusiveness.

4.1 Simple Programs

4.1.1 Program Representation

We describe how precondition and effect elimination can be performed for simple programs, each
of which is represented as a control flow graph. Initiating the discussion with such a simple rep-
resentation allows us to introduce key concepts in an easilycomprehensible form. Specifically, a
control flow graph is a tuple〈N,nentry , nexit , Ninstr , E〉:

3It is assumed that the target program cannot catch such an exception. How this can be enforced will be further
discussed in Sect. 7.
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• N is a set of nodes, partitioned into{nentry} ∪ {nexit} ∪ Ninstr . The distinguished nodes
nentry andnexit are the entry and exit nodes of the program.Ninstr is the set of instruction
nodes, which correspond to actual program instructions.

• E is a set of directed edges, such thatE ⊆ ({nentry}∪Ninstr)×({nexit}∪Ninstr). Intuitively,
the subset requirement mandates thatnentry is a source, andnexit is a sink.

The sets of predecessors and successors ofn in a setE ′ of edges are defined as follows:

pred [n |E ′] = {m ∈ N | (m,n) ∈ E ′ }

succ[n |E ′] = {m ∈ N | (n,m) ∈ E ′ }

We also writepred [n] andsucc[n] for pred [n |E] andsucc[n |E] respectively.
An execution traceis simply a control flow path starting atnentry .

4.1.2 Optimization Procedure

The input to the optimization procedure consists of the following:

• a program〈N,nentry , nexit , Ninstr , E〉

• an operator assignmentop[·] that maps each node to an operator (henceforth, we assume that
op[n] = 〈∅, ∅〉 initially for n 6∈ Ninstr )

The optimization procedure proceeds in four steps, a pattern to be preserved in the sequel as we
consider other program representations:

Step 1 Compute a conservative approximation of the guaranteed set for each program point.A
literal l belongs to theguaranteed setof a program pointn iff l is established by every feasible
path fromnentry to n. This forward analysis is a form of constant propagation [25]:

GUAout [n] = (GUAin [n] ⊕ op[n].pre) ⊕ op[n].eff for n ∈ Ninstr (4)

GUAout [n] = ∅ for n ∈ {nentry} (5)

GUAin [n] = ∩m∈pred [n]GUAout [m] for n ∈ Ninstr ∪ {nexit} (6)

Note the form of (4). By checking the preconditions, an operator has essentially ruled out infeasible
paths. Those paths that remain must have the preconditions established as a result. Consequently,
preconditions could be seen asimplicit assertions, while effects areexplicit assertions. Notice
also that the order of assertion is significant: explicit assertions override implicit assertions.

Step 2 Eliminate the redundant preconditions.A preconditionl is considered redundant at pro-
gram pointn if l is guaranteed to be established atn.

op[n].pre := op[n].pre \GUAin [n] for n ∈ Ninstr (7)

When a precondition is removed, the implicit assertion associated with the precondition is also
removed. This does not affect correctness, as both the precondition check and the associated
implicit assertion are already guaranteed to be established.
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Step 3 Compute a conservative approximation of the live set at each program point.A proposi-
tion p is live at program pointn iff there is a path fromn to another program pointn′ such that (1)
p is checked atn′, and (2) there is no (implicit or explicit) effect assertioninvolving p along any
path fromn to n′ [25]. This backward analysis is defined as follows:

LIVin [n] = (LIVout [n] \ killLIV[n]) ∪ gen
LIV

[n] for n ∈ Ninstr (8)

LIVin [n] = ∅ for n ∈ {nexit} (9)

LIVout [n] = ∪m∈succ[n]LIVin [m] for n ∈ Ninstr ∪ {nentry} (10)

where, forn ∈ Ninstr ,

killLIV[n] = vars(op[n].eff )

gen
LIV

[n] = vars(op[n].pre)

Note that the preconditions eliminated inStep 2are not considered in this step. That is, effect
elimination is performed on the updated version ofop[n]. Also,killLIV[n] could have been defined
asvars(op[n].pre)∪vars(op[n].eff ) to explicitly account for implicit assertions. We opt for a less
redundant formulation because propositions invars(op[n]) are generated bygen

LIV
[n] anyway.

Step 4 Eliminate the redundant effects.A proposition isdeadat program pointn iff it is not live
atn. An effect is considered redundant if the effect proposition is dead at the program point where
the effect is asserted.

op[n].eff := op[n].eff ∩ {p,¬p, ?p | p ∈ LIVout [n]} for n ∈ Ninstr (11)

Theorem 7. The four-step optimization procedure is safe, unobtrusiveand effective.

Proof. Since only guaranteed preconditions and dead effects are eliminated, the feasibility of a
path is not altered by the optimization procedure. Safety and unobtrusiveness thus follow. Effec-
tiveness follows from the fact that the procedure performs only precondition and effect elimina-
tion.

Discussion Precondition elimination (Step 2) achieves more than removing unnecessary checks;
by reducing the number of live propositions,Step 2also creates optimization opportunities for
effect elimination (Step 4). However,Step 2andStep 4are both “optional”. Neither is dependent
on the other. Omitting one of them will not cause the optimization procedure to become unsafe or
obtrusive.

By adopting conjunctive preconditions and constant effects, rather than unconstrained precon-
dition and effect expressions, we have obtained an elegant and informed optimization procedure.
First, a function of the formfL(S) = S ⊕ L for a fixed setL of generalized literals is a monotone
function [25]. Our representation is thus readily amenableto guaranteed set analysis. Second, the
syntactic restriction allows the analyses to deduce more information about guaranteed sets (see (4))
and live sets (see (8)) than an unconstrained representation.
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4.2 Procedure Calls

4.2.1 Program Representation

To accommodate programs made up of multiple procedures, we extend our program representation,
so that a program is a collection of CFGs, one for each procedure. Specifically, a program is a tuple
〈ID , idmain ,CFG , proc, invoke〉, such that:

• ID is a set of procedure identifiers.

• idmain ∈ ID is a distinguished procedure identifier, called the main procedure, that repre-
sents the global entry point of the program.

• CFG is a set of control flow graphs with disjoint node and edge sets. Each control flow
graph is a tuple〈N,nentry , nexit , Ncall , Nret , Ninstr , E〉, such that:

– N is a set of nodes. The set is partitioned into five disjoint subsets:{nentry}, {nexit},
Ncall , Nret andNinstr . Besides the previously introduced node types,Ncall is the set of
call nodes, andNret is the set ofreturn nodes. Ncall andNret must have the same size.

– A well-formed control flow graph must have an edge setE that can be partitioned into
two disjoint subsets:Ereg andEinv . Ereg is the set ofregular edges, such that:

Ereg ⊆ (Ninstr ∪ Nret ∪ {nentry}) × (Ninstr ∪ Ncall ∪ {nexit})

Einv is the set ofinvocation edges, such that:

Einv ⊆ Ncall × Nret

Each invocation edge represents a procedure invocation. Inaddition,Einv must define
a bijection fromNcall to Nret . This requirement is reflected in our notation: if(n, n′) ∈
Einv , then we writeEinv(n) andE−1

inv(n
′) to denoten′ andn respectively.

Fixing CFG , we writeN⋆ to represent the union of all node sets. Notations such asN⋆
call ,

N⋆
exit , E⋆ andE⋆

inv can be defined similarly.

• proc : ID → CFG is a bijection mapping procedure identifiers to control flow graphs.

• invoke : N⋆
call → ID is a function mapping call nodes to procedure identifiers.

One of the reasons for carefully articulating the program representation is to ensure that control
flow paths and execution traces are properly defined, so that key notions such as safety, obtrusive-
ness and effectiveness are properly defined as well. Specifically, an execution trace can be defined
in a mutually recursive manner, as in Fig. 2.
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• A G-local entry path, whereG is a control flow graph (i.e., a procedure body), is a path
beginning with the entry node ofG, ending at any node inG, and traversing only the edges
of G (possibly including edges that are not regular).

• A G-local ground entry path, whereG is a control flow graph, is aG-local entry path that
traversesonly regular edges.

• A G-local expanded entry path, whereG is a control flow graph, is one of the following:

[LEEP-1] aG-local ground entry path

[LEEP-2] a sequence of nodes that can be constructed as follows: take aG-local entry path,
and, for each invocation edge traversed, insert between thecorresponding call node and
return node aG′-local expanded entry path that ends at the exit node ofG′, whereG′ is
the procedure invoked by the invocation edge

[LEEP-3] a path that can be constructed by concatenating the following two sequences:
(i) a G-local expanded entry path ending with a call node for procedureG′, and (ii) a
G′-local expanded entry path

• An execution traceis a G-local expanded entry path, whereG is the body of the main
procedure.

Figure 2: Definition of execution traces for programs with procedure calls.
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4.2.2 Optimization Procedure

We envision a modular optimization scheme, in which the four-step optimization procedure is
applied to CFGs one at a time, and the order in which CFGs are processed is not material. This
allows the optimization procedure to be performed at program loading time in an environment
supporting lazy, dynamic linking. (The Java Virtual Machine (JVM) is such an environment.) To
this end, we adjust data flow equations (5), (6), (9) and (10) as follows:

GUAout [n] = ∅ for n ∈ Nret ∪ {nentry} (12)

GUAin [n] = ∩m∈pred [n]GUAout [m] for n ∈ Ninstr ∪ Ncall ∪ {nexit} (13)

LIVin [n] = Π for n ∈ Ncall ∪ {nexit} (14)

LIVout [n] = ∪m∈succ[n]LIVin [m] for n ∈ Ninstr ∪ Nret ∪ {nentry} (15)

While (13) and (15) are cosmetic changes, (12) and (14) pose significant challenges:

Challenge #1 On entry to a procedure, no knowledge about the caller’s state at the call node
is available. We are forced to assume the guaranteed set at the procedure entry node is
empty (i.e., (12)), thereby reducing the opportunities forprecondition elimination within the
procedure body.

Challenge #2 On exit from a procedure, no knowledge about the caller’s live set at the return
node is available. We are forced to assume that all propositions are live (i.e., (14)), thereby
reducing the opportunities for effect elimination within the procedure body.

Challenge #3 By (14), effects asserted prior to a call node cannot be readily eliminated.

Challenge #4 By (12), precondition checks following a return node cannot be readily eliminated.

In the next section, we discuss a distributed optimization protocol that would allow an untrusted
code producer to assist a distrusting code consumer in addressing the above challenges.

5 A Distributed Optimization Protocol

5.1 Cooperative Optimization without Assuming Trust

Consider a program distribution scenario inspired by [24], in which an untrusted code producerP
distributes a programP to a code consumerC for execution. SupposeC employs IRM to enforce a
history-based access control policy, whileP, eager to promote the usage ofP, offers to help boost
the optimization effectiveness ofC. How canC securely accept the contribution ofP? We propose
the followingdistributed optimization protocol.

Stage 1: C publishes, over anuntrustedmedia, a security policyπ = 〈Π, {δa}, α〉, whereΠ is a set
of state variables,{δa} a family of operators forΠ-states, andα a procedure that computes,
for a programP, an associative arrayop[·] mapping every program point inP to an operator
from {δa}.
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Stage 2: P submitsπ and anuntrustedprogramP to anuntrustedoracle, which generates a setD
of optimization directives. D contains annotations designed to informC of how aggressive
optimization can be achieved.

Stage 3: P ships the package〈P, D〉 to C via anuntrustedchannel.

Stage 4: C performs the steps below before executingP:

Phase 1: Use procedureα to construct operator assignmentop[·] for P.

Phase 2: Updateop[·] as follows:(a) D is exploited to optimizeop[·] aggressively.(b) As
D cannot be fully trusted, blindly following the optimization directives may destroy
the safety of the optimization procedure. Additional “guards” are injected intoop[·], so
that fraudulent annotations are detected whenP is executed.

Phase 3: Injectop[·] into P.

The protocol is particularly appropriate for aC that is computationally constrained (e.g., IRM via
load-time binary rewriting), and aP having access to a computationally powerful oracle (e.g.,
offline certification service). In the sequel, we specializethe protocol for addressing the four
optimization challenges outlined in Sect. 4.2.

5.2 Procedure Interfaces

We postulate that the code producer attaches aprocedure interfaceto every procedure it ships.
Specifically, a program is a tuple〈ID , idmain ,CFG , proc, invoke, interface〉, such that:

• interface : ID → (2lits(Π) × 2lits(Π) × 2Π × 2Π) is a mapping from procedure identifiers to
procedure interfaces. Each procedure interface is a tuple〈pre, post , dead in , deadout〉, where:

– pre is a set of literals guaranteed by the caller to be established at the call node.

– post is a set of literals guaranteed by the procedure to be established at the exit node.

– dead in is a set of propositions guaranteed by the procedure to be dead at the entry node.

– deadout is a set of propositions guaranteed by the caller to be dead atthe return node.

The main procedure must have an interface of〈∅, ∅, Π, Π〉. Interfaces of other procedures can be
generated by the code producer using an appropriate whole-program analysis (see Appendix A for
a complete algorithm).

5.3 Using Procedure Interfaces as Optimization Directives

The code consumer treats the procedure interfaces as optimization directives. Specifically,C uses
the interfaces to perform more accurate analyses inStep 1andStep 3of the four-step optimization
procedure. To facilitate discussion, we writesymtbl(n) as a shorthand forinterface[invoke[n]] for
n ∈ N⋆

call .
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Step 1 - guaranteed set analysis We replace data flow equation (12) by the following:

GUAout [n] = pre for n ∈ {nentry} (16)

GUAout [n] = symtbl(E−1
inv(n)).post for n ∈ Nret (17)

(The expressionsymtbl(E−1
inv(n)) refers to the callee’s procedure interface forn ∈ Nret .) Rather

than indiscriminately taking guaranteed sets to be∅ at the entry node and the return nodes, the
interface componentspre and post now inform guaranteed set analysis, thereby creating more
opportunities for precondition elimination, and thus addressingChallenges 1 & 4. This works so
long aspre andpost are trustworthy annotations.

Step 3 - liveness analysis We replace data flow equation (14) by the following:

LIVin [n] = (Π \ deadout) ∪ vars(op[n].pre) for n ∈ {nexit} (18)

LIVin [n] = (Π \ symtbl(n).dead in) ∪ vars(op[n].pre) for n ∈ Ncall (19)

(The subexpressionvars(op[n].pre) does not concern us for now, because, by settingop[n] ini-
tially to 〈∅, ∅〉 for n 6∈ Ninstr , the subexpression is essentially∅. It becomes indispensable when
op[n] is not empty, as is the case once (20), (21) and (22) have been introduced.) If the interface
componentsdead in anddeadout are trustworthy, then they inform liveness analysis at the exit node
and the call nodes, thereby addressingChallenges 2 & 3.

5.4 Guarding Against Fraudulent Procedure Interfaces

But the procedure interfaces are not to be trusted! They couldcause essential monitoring logic
to be optimized away. To prevent this,Steps 2and4 of the four-step optimization procedure are
adapted as follows.

Step 2 - precondition elimination This step now involves two subtasks. First, associate an
auxiliary operatorto the exit node and each call node:

op[n] := opguard(symtbl(n).pre) for n ∈ Ncall (20)

op[n] := opguard(post) for n ∈ {nexit} (21)

where, given a setS of literals,opguard(S) is the effect-less operator〈S, ∅〉. The injected operators
guarantee that the assumptions made in data flow equations (16) and (17) are verified at run time.

The second subtask is precondition elimination, which is performed also on the newly intro-
duced operators:

op[n].pre := op[n].pre \GUAin [n] for n ∈ Ninstr ∪ Ncall ∪ {nexit} (22)

Step 4 - effect elimination Again, this step is now divided into two subtasks. First, an auxiliary
operator is assigned to every entry and return node.

op[n] := opassert(GUAout [n], dead in) for n ∈ {nentry} (23)

op[n] := opassert(GUAout [n], symtbl(E−1
inv(n)).deadout) for n ∈ Nret (24)
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where, given a setS of literals and a setP of propositions,opassert(S, P ) is the precondition-less
operator〈∅, (S ∩ lits(P )) ∪ {?p | p ∈ P\vars(S)}〉. The operator assigns a value to each of the
propositions inP . For each proposition inP that also appear in a literal inS, the assigned value is
specified by the literal. For each proposition inP that does not appear in a literal inS, the assigned
value is undefined. Essentially, the operator forces all propositions inP to become dead at run
time, and serves as a “guard” for the assumptions made in (18)and (19).

The second subtask is effect elimination, which is also performed on the newly introduced
auxiliary operators.

op[n].eff := op[n].eff ∩ {p,¬p, ?p | p ∈ LIVout [n]} for n ∈ Ninstr ∪ Nret ∪ {nentry} (25)

Theorem 8. The revised optimization procedure is safe.

Proof. Suppose the value ofop[n] has been updated from〈∅, ∅〉 to opguard(S) for some setS of
literals. As the operator is effect-less, every infeasiblepath containingn remains infeasible. The
introduction ofopguard(S) in updates (20) and (21) thus preserves safety.

Now, suppose the value ofop[n] has been updated from〈∅, ∅〉 to opassert(GUAout [n], P ), for
some setP of propositions. Consider an effect asserted by the auxiliary operator. If the effect
is of the form?p, then it only causes future precondition checks to fail, butnever establishes any
precondition. If the effect is a literal, and it establishesa precondition, then the precondition is
already guaranteed prior to the assertion of the literal. Ineither case, infeasible paths remain
infeasible. Updates (23) and (24) thus preserve safety.

The interface〈pre, post , dead in , deadout〉 of a procedureproc is said to beconservativeiff all
the following hold: (a)pre ⊆ GUAin [n] for every call noden for which proc is the callee, (b)
post ⊆ GUAin [n] for the exit noden of proc, (c) dead in ⊆ Π \ LIVout [n] for the entry noden of
proc, and (d)deadout ⊆ Π \ LIVout [n] for every return noden for whichproc is the callee.

Theorem 9. With conservative interfaces, the revised optimization procedure is unobtrusive and
effective.

Proof. If all interfaces are conservative, then the updates (22) and (25) will completely remove the
preconditions and effects of the auxiliary operators introduced in (20), (21), (23) and (24).

In other words, if the code producer is honest about the optimization directives, all the run-
time checks for fraud detection will be optimized away (Thm.9). However, if the code producer
attempts to mislead the code consumer by sending fraudulentprocedure interfaces, the fraud will
be detected by the IRM at run time (Thm. 8). Lastly, conservative procedure interfaces can be
generated by the interface generation algorithm describedin Appendix A.

6 Accommodating Java-Style Language Constructs

The revised optimization procedure can be further extendedto accommodate Java-style exception
handling constructs as well as dynamic method dispatching.
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6.1 Exception Handling

6.1.1 Program Representation

To accommodate Java-style exception handling, a program isrepresented as a tuple〈ID , idmain ,
CFG , proc, invoke, interface〉. Most of the components have the same roles as before, exceptfor
the following differences in the representation of controlflow graphs and procedure interfaces:

• A control flow graph (i.e., a member ofCFG) is a tuple of the following form:

〈N,nentry , nexit , nfail , Ncall , Nret , Nhndlr , Ninstr , E〉

– The node setN is partitioned into seven disjoint subsets:{nentry}, {nexit}, {nfail},
Ncall , Nret , Nhndlr , andNinstr .

∗ The distinguishedfailure nodenfail represents the program point through which
exception escapes from the procedure.

∗ Nhndlr is the set ofhandler nodes, each of which represents the entry point of an
exception handler.

– A well-formed control flow graph must have an edge setE that can be uniquely parti-
tioned into four disjoint subsets,Ereg , Einv , Ethr andEesc, such that:

∗ Ereg is the set ofregular edges, such that:

Ereg ⊆ (Ninstr ∪ Nret ∪ Nhndlr ∪ {nentry}) × (Ninstr ∪ Ncall ∪ {nexit})

∗ Einv is the set ofinvocation edges, such that:

Einv ⊆ Ncall × Nret

Einv must also define a bijection fromNcall to Nret .

∗ Ethr is the set ofthrow edges, such that:

Ethr ⊆ Ninstr × (Nhndlr ∪ {nfail})

∗ Eesc is the set ofescape edges, such that:

Eesc ⊆ Ncall × (Nhndlr ∪ {nfail})

• The interface of a procedure takes the form of:

〈pre, post , esc, dead in , deadout , dead fail〉

The new components have the following role:

esc: a set of literals guaranteed by the procedure to be established at the failure node

dead fail : a set of propositions guaranteed to be dead by the exception handler who catches
an exception escaping from the procedure
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As a result of introducing these new components, the signature of interface becomesID →
(2lits(Π) × 2lits(Π) × 2lits(Π) × 2Π × 2Π × 2Π).

The componentdead fail is introduced to create more opportunities for eliminatingeffects as-
serted in normal flow of control. Specifically, if a program iswritten so that all propositions
are always dead on entry to exception handlers, thendead fail can be set toΠ, and opportu-
nities for eliminating effect assertions along normal flow of control will be maximized. The
escape-conditions (esc) are introduced for symmetry.

We extend the definition of execution traces in Fig. 2 by substituting the following for[LEEP-2] :

[LEEP-2′] a sequence of nodes that can be constructed by applying the following two steps to a
G-local entry path:

• for each invocation edge traversed, insert between the corresponding call node and
return node aG′-local expanded entry path that ends with an exit node, whereG′ is the
control flow graph of the procedure invoked by that invocation edge

• for each escape edge traversed, insert between the tail and head nodes aG′-local ex-
panded entry path that ends with a failure node, whereG′ is the control flow graph of
the procedure invoked by that escape edge

6.1.2 Optimization Procedure

The modular optimization procedure expects the following input:

• a control flow graph〈N,nentry , nexit , nfail , Ncall , Nret , Nhndlr , Ninstr , E〉

• a procedure interface〈pre, post , esc, dead in , deadout , dead fail〉 for the above control flow
graph

• a function symtbl : N⋆
call → (2lits(Π) × 2lits(Π) × 2lits(Π) × 2Π × 2Π × 2Π) that maps

each call node to the procedure interface of the callee (i.e., symtbl(n) is a shorthand for
interface[invoke[n]])

• an operator assignmentop[·] that maps each node to an operator, so thatop[n] = 〈∅, ∅〉 if
n 6∈ Ninstr

The optimization procedure proceeds as follows.
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Step 1 - guaranteed set analysis

GUAin [n] =
⋂

m∈pred [n]

GUAout [m] for n ∈ Ninstr ∪ Ncall ∪ {nexit}

GUAin [n] =
⋂

m∈pred [n]

GUAfail [m] for n ∈ Nhndlr ∪ {nfail}

GUAout [n] = pre for n ∈ {nentry}

GUAout [n] = symtbl(E−1
inv(n)).post for n ∈ Nret

GUAout [n] = (GUAin [n] ⊕ op[n].pre) ⊕ op[n].eff for n ∈ Ninstr

GUAout [n] = GUAin [n] for n ∈ Nhndlr

GUAfail [n] = GUAin [n] ⊕ op[n].pre for n ∈ Ninstr

GUAfail [n] = symtbl(n).esc for n ∈ Ncall

Step 2 - precondition elimination

• First, introduce the following auxiliary operators:

op[n] := opguard(symtbl(n).pre) for n ∈ Ncall

op[n] := opguard(post) for n ∈ {nexit}

op[n] := opguard(esc) for n ∈ {nfail}

• Second, eliminate preconditions:

op[n].pre := op[n].pre \GUAin [n] for n ∈ Ninstr ∪ Ncall ∪ {nexit} ∪ {nfail}

Step 3 - liveness analysis

LIVout [n] =
⋃

m∈succ[n |Ereg ]

LIVin [m] for n ∈ Ninstr ∪ Nret ∪ Nhndlr ∪ {nentry}

LIVfail [n] =
⋃

m∈succ[n |Ethr∪Eesc ]

LIVin [m] for n ∈ Ninstr ∪ Ncall

LIVin [n] = ((LIVout [n] \ killLIV[n]) ∪ gen
LIV

[n])

∪ (LIVfail [n] ∪ gen
LIV

[n]) for n ∈ Ninstr

LIVin [n] = LIVout [n] for n ∈ Nhndlr

LIVin [n] = (Π \ symtbl(n).dead in) ∪ vars(op[n].pre) for n ∈ Ncall

LIVin [n] = (Π \ deadout) ∪ vars(op[n].pre) for n ∈ {nexit}

LIVin [n] = (Π \ dead fail) ∪ vars(op[n].pre) for n ∈ {nfail}

Step 4 - effect elimination
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• First, introduce the following auxiliary operators:

op[n] := opassert(GUAout [n], dead in) for n ∈ {nentry}

op[n] := opassert(GUAout [n], symtbl(E−1
inv(n)).deadout) for n ∈ Nret

op[n] := opassert(GUAout [n], D[n]) for n ∈ Nhndlr

where
D[n] =

⋃

m∈pred [m |Eesc ]

symtbl(m).dead fail

• Second, eliminate effects as follows:

op[n].eff := op[n].eff ∩ LIVout [n] for n ∈ Ninstr ∪ Nret ∪ Nhndlr ∪ {nentry}

6.2 Method Overriding

6.2.1 Program Representation

As in every other modern object-oriented programming platforms, the Java language supports dy-
namic method dispatching. This feature slightly complicates the treatment of procedure/method
invocations (from now on we use the word “procedure” and “method” interchangeably). Specifi-
cally, a program is represented as follows:

〈ID , idmain , overrides,CFG , proc, invoke, interface〉

• The binary relationoverrides ⊆ ID × ID is a partial ordering of procedure identifiers,
modeling method overriding. Specifically, we writeoverrides(id1, id2) if id1 overridesid2.
Note that, asoverrides is reflexive, every procedure identifier overrides itself bydefinition.

• The mappingproc is a partial function, meaning that some procedure ids are not assigned
a control flow graph (abstract method do not have bodies). It is understood that the main
procedure does have a body. It is also understood that, at runtime, any one of the control
flow graphs overriding the procedure identifier named at a call site may be dispatched non-
deterministically.

The definition of execution traces in Fig. 2 is extended by substituting the following for[LEEP-2]
and[LEEP-3] :

[LEEP-2′′] a sequence of nodes that can be constructed by applying the following two steps to a
G-local entry path:

• for each invocation edge traversed, insert between the corresponding call node and
return node aG′-local expanded entry path that ends with an exit node, whereG′ is
the control flow graph of a method overriding the method signature invoked by that
invocation edge (becauseoverrides is reflexive, the two methods may be identical)

• for each escape edge traversed, insert between the tail and head nodes aG′-local ex-
panded entry path that ends with a failure node, whereG′ is the control flow graph of a
method overriding the method signature invoked by that escape edge
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[LEEP-3′′] a path that can be constructed by concatenating the following two sequences: (i) aG-
local expanded entry path ending with a call node for method signatureid , and (ii) aG′-local
expanded entry path, whereG′ is the control flow graph of a method overriding the method
signature invoked by the call node.

6.2.2 Static Constraints

In the presence of dynamic method dispatching, the code consumer must verify that method
overriding honors certain constraints among method interfaces. Given method interfacesI =
〈pre, post , esc, dead in , deadout , dead fail〉 andI ′ = 〈pre ′, post ′, esc ′, dead ′

in , dead ′
out , dead

′
fail〉, we

write I ′ ⊑ I iff all of the following hold:

pre ⊇ pre ′ post ⊆ post ′ esc ⊆ esc ′

dead in ⊆ dead ′
in deadout ⊇ dead ′

out dead fail ⊇ dead ′
fail

The constraints follow the usual contravariant pattern of function subtyping [26]. To preserve
safety, the code consumer must verify thatI ′ ⊑ I whenever a method with interfaceI ′ overrides
a method with interfaceI. Since⊑ is transitive, only direct method overrides need to be verified.
The interface generation algorithm in Appendix A can be usedby the code producer to generate
method interfaces guaranteed to satisfy the above.

7 Implementation Strategy

We developed a Java prototype for the revised optimization procedure (Sect. 5), with Java bytecode
as the target language. Our prototype was developed in Soot [37], a framework for Java bytecode
manipulation and optimization. Soot provides facilities for converting Java bytecode into more
manageable internal representations, performing controlflow analysis to construct control flow
graphs, as well as providing infrastructure code for iterative, intraprocedural data flow analyses.
Specifically, our prototype consists of three components: (1) a modular optimization procedure,
which applies the revised four-step optimization procedure to a CFG and an operator assignment,
(2) an instrumentation module that converts a CFG and an operator assignment to Java bytecode,
and (3) a method interface generator, which is a whole-program analysis built on top of the modular
optimization procedure (Appendix A).

Soot’s built-in control flow analyzer has been adopted to construct control flow graphs in the
presence of exceptions. Although Soot provides “hooks” forprogrammers to customize the control
flow analyzer so that more accurate exception flows can be obtained, we refrain from following
that trail, as precise exception escape analysis is outsideof the scope of this work. We however
modified the code base of the Soot data flow analysis frameworkto accommodate the complex data
flow equations caused by exception handling.

8 Empirical Evaluation

We employed our prototype to empirically assess the degree to which an IRM enforcement mecha-
nism can benefit from the four-step optimization procedure (Sect. 4), as well as the further improve-
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Name/Version Description # classes # methods

BCEL/5.2 framework for manipulating Java bytecode 384 3184
BcVer/1.0 prints classfile version 11 120
JavaCC/4.0 parser generator 137 2091
JavaTar/2.5 tar-style archiving tool 15 176
ProGuard/4.2 classfile shrinker, optimizer, obfuscater & pre-verifier 447 4211
SableCC/3.2 parser generator 285 2366

Figure 3: Benchmarking suite

ments brought about by adopting method interfaces as optimization directives in a distributed op-
timization protocol (Sect. 5). To benchmark our optimization schemes against production-quality
control flow graphs, we selected a suite of open source Java applications for our experiments (see
Fig. 3). We intentionally consider only batch-processing applications, so that we can fully auto-
mate the benchmarking process. For each program, we also select a naturally-occurring input to
accompany the program.

To profile the performance of our optimization procedure against history-based access control
policies of various structural characteristics, we designed a stochastic procedure for generating
benchmarking policies. Given a programP and an inputI, an instance of theexperimental config-
uration EC[pnode , peff , ppre ] (wherepnode , peff andppre are probabilities) is an operator assignment
op[·] stochastically constructed as follows:

1. Select a setN of program points fromP as targets of operator injection. Each program
point is selected with probabilitypnode . Operator assignmentop[n] will remain 〈∅, ∅〉 for
n 6∈ Nodes.

2. Fix a setΠ of ten propositions. For eachn ∈ N , setop[n] to 〈∅, eff n〉, where eacheff n

is constructed independently as follows: Select a subsetP of Π, such that eachp ∈ Π is
selected independently with probabilitypeff . Then, constructeff n such that, for eachp ∈ P ,
with equal probability eitherp or¬p appears ineff n.

3. InstrumentP with op[·] and then executeP on inputI. Record the traversed control flow
path.

4. For each program pointn ∈ N that appears on the recorded path, compute the setGUAin [n]
of literals guaranteed to be satisfied atn during the above execution.

5. For eachn ∈ N , select a subsetpren of literals fromGUAin [n], such that each member of
GUAin [n] is selected with probabilityppre .

6. Setop[n] to 〈pren, eff n〉 for eachn ∈ N . This is the operator assignment we seek to
construct.

The probabilitypnode measuresoperator density, while the probabilitiespeff and ppre measure
effect densityandprecondition densityrespectively. The construction procedure guarantees that,
on inputI, programP honors the policy represented byop[·], and thus benchmarking will not be
interrupted by security exceptions.
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Figure 4: Optimization effectiveness with and without method interfaces.

Given a programP, an inputI, and an operator assignmentop[·], the effectiveness of an op-
timization procedureΩ is measured as follows. First,P is instrumented withop[·], and the in-
strumented program is executed with inputI. The overhead of execution (as defined in Sect. 4)
is recorded. To better assess the relative effectiveness ofprecondition and effect elimination,
we record the number of preconditions checked asOorg

pre , and the number of effects checked as
Oorg

eff . Second, the process is repeated with an optimized operatorassignment obtained by apply-
ing Ω to op[·]. The overhead of execution as incurred by precondition checks and effect asser-
tions are recorded asOopt

pre andOopt
eff . Optimization effectiveness is then expressed as the ratios

Rpre = 1 − Oopt
pre/O

org
pre andReff = 1 − Oopt

eff /Oorg
eff . (More effective optimization procedures have

largerRpre andReff .)
Our experiments were conducted on an IntelCore 2 Duo 2.33GHz iMac with 2GB of RAM,

running Mac OS X 10.4.9, JDK 1.6.0 Update 3, Soot 2.2.5 and Jasmin 2.2.5.

8.1 Experiment 1: Optimization With and Without Optimization Directi ves

In a first experiment, two instantiations of the revised optimization procedure (Sect. 5) were con-
sidered. In the first instantiation, all method interfaces are set to〈∅, ∅, ∅, ∅, ∅, Π〉. Adopting an
(almost) empty method interface reduces the revised optimization procedure to the basic version
reported in Sect. 4, except that by settingdead fail to Π we avoid confusing the optimization al-
gorithm with the overly conservative control flow analysis built into Soot for analyzing exception
flow. In the second instantiation, we employed the method interface generation algorithm (Ap-
pendix A) to generate conservative method interfaces for all methods, and then setdead fail to Π
for the same reason.

We generated ten instances ofEC[0.5, 0.5, 0.5] for each program in Fig. 3, and then measured
the optimization effectiveness ratiosRpre andReff for each instantiation of the optimization proce-
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Figure 5: Rpre with different (a)peff (b) ppre (c) pnode .
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Figure 6: Reff with different (a)peff (b) ppre (c) pnode .

dure. The measurements for the ten instances were averaged and shown in Fig. 4. The bars labeled
pre (empty) andeff (empty) show the averageRpre andReff for the optimization procedure with
empty method interfaces, whilepre (inferred) andeff (inferred) correspond to averageRpre and
Reff for the optimization procedure with inferred method interfaces.

Three observations can be made from Fig. 4. (1) Both precondition and effect elimination de-
liver significant reduction in performance overhead, even when method interfaces are not present.
(2) Precondition elimination has a much higher effectiveness than effect elimination. (3) The added
effectiveness of method interfaces is noticeable but not dramatic.

8.2 Experiment 2: Varying Policy Characteristics

To characterize optimization effectiveness under variouspolicy structures, we subject the revised
optimization procedure (with inferred method interfaces)to different experimental configurations.
Specifically, we varied each ofpnode , peff andppre from 0 to 1, by increments of 0.1, while keeping
the other two parameters fixed at 0.5. Again, ten instances ofeach experimental configuration were
generated, and the average effectiveness ratiosRpre andReff for each configuration are depicted
respectively in Fig. 5 and 6.

From Fig. 6 (a) and (b), we notice thatReff increases with an increasing effect density (peff ),
but decreases with an increasing precondition density (ppre). We argue that this can be readily ex-
plained by data flow equation (8). A higherpeff increases the size ofkillLIV[·], creating larger dead
sets, and thus promotes effect elimination. A higherppre , however, increases the size ofgen

LIV
[·],

creating smaller dead sets, and thus discourages effect elimination. Similarly, from Fig. 5 (a) and
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(b), we notice thatRpre increases with either an increasing effect density (peff ) or an increasing pre-
condition density (ppre). This can be explained readily by data flow equation (4), in which larger
effect and precondition sets produce larger guaranteed sets, which in turn promote precondition
elimination. Notice also that implicit assertion is overridden by explicit assertion, thus explaining
why Fig. 5 (b) shows a less dramatic increase than Fig. 5 (a). The above observations imply that:

If two different encodings of the same security policy incur similar overhead, then we
should prefer the encoding with more effects and less preconditions, for such a policy
is more amenable to optimization.

Fig. 5 (c) and 6 (c) show that higher operator density (pnode) produces higher optimization effec-
tiveness.

IRM benefits more from precondition and effect elimination when more program points
are interpreted as access events.

9 Concluding Remarks

We proposed a constrained policy representation for facilitating IRM optimization. Our policy rep-
resentation is expressive enough to represent simple integrity policies, Generalized Chinese Wall
Policies, and Hierarchical One-Out-Of-k Policies. Our core optimization procedure is safe, unob-
trusive and effective. The optimization procedure has beenextended to accommodate a distributed
optimization protocol, in which an untrusted code producermay formulate method interfaces to
boost the optimization effectiveness of a distrusting codeconsumer. A prototype of the procedure
has been implemented, and demonstrated to exhibit positiveperformance characteristics.

We are exploring alternative optimization directives thatcould lead to more effective optimiza-
tion than our current design of method interfaces. While our current policy representation and
distributed optimization protocol are designed for supporting control flow-based policies, we are
also exploring how they can be extended to enforce data flow constraints [7].

References
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A Generating Method Interfaces

This appendix describes a whole-program analysis that computes method interfaces for program
representations involving procedure interfaces (Section5.2), exceptions (Section 6.1) and method
overriding (Section 6.2). To fix thoughts, we assume the program representation described in
Section 6.2, which subsumes all the preceding program representations.

The basic idea of the whole-program analysis (see below for full listing) is that, we begin with
assigning to each method signature an overly conservative method interface (i.e., all interface com-
ponents are empty sets), and then conduct two whole-programdata flow analyses to incrementally
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improve the accuracy of the interfaces. The first whole-program analysis computes the interface
componentspre, post andesc for each method, and the second computes thedead in , deadout and
dead fail components. Each whole-program analysis is a standard work-list algorithm: the work
list tracks which method needs processing. In each iteration, the work-list algorithm examines one
method, and invokes one of the intraprocedural analyses (i.e.,Step 1andStep 3of the optimization
procedure in Sect. 6.1) as a subroutine.

The algorithm tracks two associative arrays:GUA
⋆[·] andLIV

⋆[·]. The mappingGUA
⋆[·] assigns

a conservative guaranteed set to each node inN⋆
call ∪N⋆

exit ∪N⋆
fail . Specifically,GUA

⋆[·] tracks the
GUAin [·] values of call, exit and failure nodes. The guaranteed set components (i.e.,pre, post and
esc) of the inferred method interfaces are computed from the elements of this associative array.
Every time the intraprocedural guaranteed set analysis (i.e., Step 1) is invoked, the estimates in
GUA

⋆[·] are improved. The improved estimates are then employed to improve the guaranteed
set components of the method interfaces. The improvements in method interfaces then induce
further improvements in the accuracy of the intraprocedural guaranteed set analyses. The process
terminates when the estimates stabilize. Similarly, the mappingLIV

⋆[·] tracks theLIVout [·] values of
return and entry nodes, as well as theLIVfail [·] values of call nodes. The dead set components (i.e.,
dead in , deadout anddead fail ) of the inferred method interfaces are computed from the elements of
these live sets. As in the previous case, each invocation of the intraprocedural liveness analysis (i.e.,
Step 3) improves the estimates inLIV

⋆[·], thereby producing improved method interfaces. This in
turn yields a more accurate intraprocedural liveness analysis. Again, the process terminates when
the values stabilize.

The method interfaces inferred by the algorithm are constructed to be both conservative (Sect.
5.4, page 19) and compliant to the method overriding constraints (Sect. 6.2). For instance, thepre

component of the method interface for a methodid is set to
⋂

m∈C GUA
⋆[m], whereC = {m ∈

N⋆
call | overrides(id , invoke[m]) }. In other words, a literal is in thepre component ofid iff it is

in GUA
⋆[m] for all call sitesm of eitherid or any of the methods it overrides. The other method

interface components are constructed in a similarly conservative manner.
In the following, the domain of a partial functionf is denoted bydom(f).

Step 1 Initialize method interfaces.

for id ∈ ID do
interface[id ] := 〈∅, ∅, ∅, ∅, ∅, ∅〉;

Step 2 Compute guaranteed set components (i.e.,pre, post andesc).

for n ∈ N⋆
call ∪ N⋆

exit ∪ N⋆
fail do

GUA
⋆[n] := ∅;

WL := dom(proc);
while WL 6= ∅ do

/* Extract next procedure from work list */
selectid ∈ WL;
WL := WL \ {id};
/* Compute guaranteed sets */
runStep 1of the optimization procedure in Section 6.1 onproc[id ];
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let GUAin [·] be the guaranteed sets computed by that step;
/* Propagate guaranteed sets ofNcall */
for n ∈ proc[id ].Ncall do

if GUA
⋆[n] 6= GUAin [n] then

GUA
⋆[n] := GUAin [n];

for id ′ ∈ ID such thatoverrides(id ′, invoke[n]) do
let

C = {m ∈ N⋆
call | overrides(id

′, invoke[m]) };
G =

⋂

m∈C GUA
⋆[m];

in
if interface[id ′].pre 6= G then

interface[id ′].pre := G;
if id ′ ∈ dom(proc) then

WL := WL ∪ {id ′};
/* Propagate guaranteed set ofnexit */
let

n = proc[id ].nexit ;
in

if GUA
⋆[n] 6= GUAin [n] then

GUA
⋆[n] := GUAin [n];

for id ′ ∈ ID such thatoverrides(id , id ′) do
let

E = { proc[id ′′].nexit | id
′′ ∈ ID such thatoverrides(id ′′, id ′) };

G =
⋂

m∈E GUA
⋆[m];

in
if interface[id ′].post 6= G then

interface[id ′].post := G;
if id ′ ∈ dom(proc) then

WL := WL ∪ {id ′};
/* Propagate guaranteed set ofnfail */
let

n = proc[id ].nfail ;
in

if GUA
⋆[n] 6= GUAin [n] then

GUA
⋆[n] := GUAin [n];

for id ′ ∈ ID such thatoverrides(id , id ′) do
let

F = { proc[id ′′].nfail | id
′′ ∈ ID such thatoverrides(id ′′, id ′) };

G =
⋂

m∈F GUA
⋆[m];

in
if interface[id ′].esc 6= G then

interface[id ′].esc := G;
if id ′ ∈ dom(proc) then

WL := WL ∪ {id ′};
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Step 3 Compute dead set components (i.e.,dead in , deadout anddead fail ).

for n ∈ N⋆
ret ∪ N⋆

call ∪ N⋆
entry do

LIV
⋆[n] := Π;

WL := dom(proc);
while WL 6= ∅ do

/* Extract next procedure from work list */
selectid ∈ WL;
WL := WL \ {id};
/* Compute live sets */
runStep 3of the optimization procedure in Section 6.1 onproc[id ];
let LIVout [·] andLIVfail [·] be the live sets computed by that step;
/* Propagate live sets ofNret */
for n ∈ proc[id ].Nret do

if LIV
⋆[n] 6= LIVout [n] then

LIV
⋆[n] := LIVout [n];

for id ′ ∈ ID such thatoverrides(id ′, invoke[(E⋆
inv

−1)(n)]) do
let

R = {m ∈ N⋆
ret | overrides(id

′, invoke[(E⋆
inv

−1)(m)]) };
D = Π \

⋃

m∈R LIV
⋆[m];

in
if interface[id ′].deadout 6= D then

interface[id ′].deadout := D;
if id ′ ∈ dom(proc) then

WL := WL ∪ {id ′};
/* Propagate live sets at the “failure port” ofNcall */
for n ∈ proc[id ].Ncall do

if LIV
⋆[n] 6= LIVfail [n] then

LIV
⋆[n] := LIVfail [n];

for id ′ ∈ ID such thatoverrides(id ′, invoke[n]) do
let

C = {m ∈ N⋆
call | overrides(id

′, invoke[m]) };
D = Π \

⋃

m∈C LIV
⋆[m];

in
if interface[id ′].dead fail 6= D then

interface[id ′].dead fail := D;
if id ′ ∈ dom(proc) then

WL := WL ∪ {id ′};
/* Propagate live set ofnentry */
let

n = proc[id ].nentry ;
in

if LIV
⋆[n] 6= LIVout [n] then

LIV
⋆[n] := LIVout [n];

for id ′ ∈ ID such thatoverrides(id , id ′) do
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let
E = { proc[id ′′].nentry | id ′′ ∈ ID such thatoverrides(id ′′, id ′) };
D = Π \

⋃

m∈E LIV
⋆[m];

in
if interface[id ′].dead in 6= D then

interface[id ′].dead in := D;
if id ′ ∈ dom(proc) then

WL := WL ∪ {id ′};
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