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Abstract

Inlined Reference Monitor (IRM) is the preferred enforcement meisharor history-
based access control policies. IRM enforcement injects monitoring ctaléhi@ binary of
an untrusted program in order to track its execution history. The injectéel denies access
when execution deviates from the policy. The viability of IRM enforcememptéslicated on
the ability of the binary rewriting element to optimize away redundant monitoridg eathout
compromising security.

This work proposes a novel optimization framework for IRM enforcem€&hé scheme is
based on a constrained representation of history-based access polities, which, despite
its constrained expressiveness, can express such policies atimepafrduty, generalized Chi-
nese Wall policies, and hierarchical one-outkofuthorization. An IRM optimization proce-
dure has been designed to exploit the structure of this policy representékie optimization
scheme is then extended into a distributed optimization protocol, in which an teatresde
producer attempts to help boost the optimization effectiveness of an IRMoemient mecha-
nism administered by a distrusting code consumer. It is shown that the optimipaticedure
provably preserves security even in the midst of distributed optimization.ofotype of the
optimization procedure has been implemented for Java bytecode, anddtsefiess has been
empirically profiled.

Keywords: Language-based security, history-based access control polidiesdimefer-
ence monitors, security automata, distributed optimization protocol.

1 Introduction

This paper presents novel implementation techniques #opthtection mechanism of extensible
systems, that is, software systems composed of a trustditamm core collaborating with a
number of untrusted software components, all running withe same address space. To support



the late binding of features to an application, the lattarldde made extensible by adopting a
plug-in architecture or offering scripting support. Theger focuses on language-based extensi-
ble systems [29] such as those developed on the safe langmagenments Java and .Net. In
these systems, untrusted components collaborate withptigation core through a well-defined
Application Programming Interface (API). To protect théeqrity of the resources encapsulated
by the API, it is in the interest of the application core touweasthat access requests made by the
untrusted components through the API honor certain sgcpoiicies. A notable such family of
security policies are history-based access control @dif30]. These policies are safety properties
[30], in which an authorization decision is made solely omltlasis of the execution history of the
target program as observed by the enforcement mechanigm aine. Examples of such policies
include the Chinese Wall policy [10], Biba’s low water markipgl[8], one-out-of% authorization
[14], assured pipelines [9], as well as Stack Inspectioh B8 its variants [1].

Execution monitoring [14, 15, 39] is the standard enforceinmeechanism for history-based
access control policies. The classical implementatiateqy is to interpose a reference monitor at
the entry points of the API, so that the monitor may track ti éalls previously made, arguments
passed, or even the run-time state of the untrusted comptmensure policy compliance. This
is the implementation strategy adopted by the Java platfarits Stack Inspection mechanism
[18]. A modern implementation strategy for execution monitg is Inlined Reference Monitor
(IRM) [36], in which monitoring code is injected into an urgtad component through binary
rewriting. The advantage of IRM over interpositioning istti&iM fully decouples the enforcement
mechanism from the application core, thereby allowing theusty model to evolve separately
from the application code base. An important challengeddnelRM enforcement mechanisms
is the run-time overhead induced by the injected code [3B, \3@bility of the IRM approach is
predicated on the ability of the binary rewriting elemenbdptimize away unnecessary monitoring
code [12].

In this work, we explore the interplay between security @nes and optimization procedures
for IRM enforcement of history-based access control pdic@@ur contribution is twofold:

1. Optimization-friendly policy representation: Since [30, 35, 36], the Security Automa-
ton has become the standard representation for securitygsolo be enforced by execution
monitoring. A research concern [5, 17, 22, 33, 34] of the leagge-based security community
has been the following: Can we trade off the expressivenepslady representation (i.e.,
by adopting a less powerful version of the Security Automafor improved resource con-
sumption (e.g., time, space, information) of the executimmitor? In this work, we address
a related but novel research questi@an we trade off the expressiveness of policy repre-
sentation for improved effectiveness of the optimizatiement in the IRM binary rewriter?
By adopting a declarative state representation and impasimgtures on state transitions,
we have shown that one can employ standard compiler opfiimizgechniques to optimize
away state transition code that would otherwise be injeictiedhe target program, and do so
without compromising security. We also demonstrate thatéisulting policy representation
is still expressive enough to encode a wide range of hidbaged access control policies.

2. Distributed optimization protocol : To further enhance the effectiveness of IRM optimiza-
tion, we propose a distributed optimization protocol the been inspired by Proof-Carrying
Code [24]. Specifically, an untrusted code producer send$t@ae component to a dis-
trusting code consumer for execution. To promote usageeottimponent, the code pro-
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ducer ships a version of the component that has been anth@takeoptimization directives,
which are hints on how the code consumer can aggressiveiyiaptthe monitor code to
be injected into the component for IRM enforcement. As theequ@bducer could very well
be malicious, blindly following the optimization direcéis could lead to the omission of key
monitoring logic, thus compromising security. To counta@st the code consumer injects
into the component specially designed run-time checkswhiabe completely optimized
away if the code producer is honest about the optimizatioectves, but will detect the
dishonesty at run time if the code producer attempts to euisiee code consumer.

The rest of this paper outlines the proposed policy reptasen (Sect. 3), the optimization pro-
cedure that takes advantage of this policy representaect( 4), a corresponding distributed
optimization protocol (Sect. 5), extensions to supporadstyle language constructs (Sect. 6), as
well as an implementation (Sect. 7) and its empirical evadungSect. 8).

2 Related Work

What we call history-based access control policies areysafeperties. Schneider characterized
the security policies enforceable by execution monitotonige safety properties [30], and proposed
Security Automata (SA) as the standard representationemfiigdon monitors. (A recent sharpening
of this result can be found in [19].) Inlined Reference Monitg was first proposed in [36] as
a framework to unify previous work [14, 15] that employs mnaewriting to enforce history-
based access control policies. Fong proposed an informbtised characterization of security
policies enforceable by execution monitors consuming atiyited portion of history information
[17]. The goal was to understand the trade-off between tiereintiating power of an execution
monitor and the resource to which it is made available, a §osl articulated by Ligattiet al

[5, 22]. The work has been refined by Tadhial to obtain a characterization of execution monitors
operating under memory constraints [33, 34]. Our work p@sesated but novel question: can
the expressiveness of policy representation be restriotizgtilitate IRM optimization? Our policy
representation is formally akin to STRIPS planning opesafb8].

A first principled design of optimization procedures for IRMf@rcement mechanisms is [12],
which assumes each transition has a constant cost. Ouripatiom procedure is designed for
unbounded state space, and thus we adopted a differentparfoe metric (see Sect. 4). As
IRM enforcement could be seen as a special-case of Aspeeti®d Programming (AOP) [21],
previous work on optimization techniques for AOP langua@ges., [4]) is also relevant. Our work
is unigue in that we facilitate optimization by trading offlizy expressiveness and by adopting a
distributed optimization protocol.

Proof-Carrying Code (PCC) [24] pioneered the idea of selffy@ng code. Specifically, a
proof of safety is shipped along with an untrusted progrdtawang the code consumer to verify
safety in a tractable manner. Rose and Rose proposed a ligihtwlbva bytecode verification
framework [27], in which type states are shipped along watheXlassfiles, so that bytecode verifi-
cation can be performed more efficiently. In model-carryénde [31], the code producer ships an
untrusted program together with its behavior model. Theehmdchecked by the code consumer
against a preset policy for compliance. The verified mod#ies employed to monitor the execu-
tion of the untrusted program. In [2], a PCC-style safety prsafttached to an untrusted program



manager () ; bool p,, = fal se;
if (...){ bool p, = fal se;
accountant (); manager () ;
} pm = true;
if (...) | if (...) {
critical (); accountant () ;
manager () ; pe = true;
} ¥
accountant (); if (...) {
critical (); if (pmApa) { pm = false; p, = false; }
(a) Original program el se throw new | RVException();
critical ();
| Program Point | Event | manager () ;
aftermanager () m Pm = true,
afteraccount ant () a }
beforecriti cal () ¢ accountant () ;

pe = true;

if (pmApa) { pm = false; p, = false; }
el se throw new | RMException();
critical ();

(c) Execution monitor is inlined

(b) Event interpretation

Figure 1: IRM Enforcement of Separation of Duty

to certify that an execution monitor has been properly edinCompared to the work above, ours
is unique in that we are the first to propose annotations fdtititing IRM optimization rather
than verification.

CMV [32] is a model checker for verifying complete mediati®&8] in the Stack Inspection
enforcement mechanism of a Java Virtual Machine (JVM) imq@atation. Our work could be
seen as a generalization of the static analysis performe@\y to (1) support a more general
class of safety properties and (2) inject dynamic checkswetarget property cannot be statically
verified. Both systems employ a notion of method interfacaligd method summaries in [32])
to modularize analysis. While method summaries are compwea special-purpose algorithm,
method interfaces are generated by a work-list-based wirolgram analysis (Appendix A).

3 An Optimization-Friendly Policy Representation

Notations Given a record- with schema(f,..., fx), we refer to thef; component ofr by
the notationr.f;. Thus, ifo is an instance of the schenjare, eff ), theno.pre refers to the first
component ob.

3.1 Inlined Reference Monitor

Consider the enforcement of Separation of Duty [11] in an gtarprogram shown in Fig. 1
(a) (adapted from [12], in turn inspired by [20, 6]). Our g@ato ensure that theri ti cal ()
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operation is performed only under the endorsement of b@&h#dhager () andaccount ant ()
operations. To precisely articulate this policy, we intetphe run-time traversal of certain program
points to be security-relevant events (Fig. 1 (b)): evemts andc correspond respectively to the
three operations. Program execution therefore genenaw@seat sequence. For example, if both of
the “then” branches are executed, then the event sequemeeac will be generated. Our policy
can then be phrased as a safety property regarding the ¢gshexeent sequences [30]. One way to
enforce such a policy is through Inlined Reference MonittR84s) [36]. Specifically, monitoring
code is injected into the program points of interest, tnagkhe history of execution, and aborting
execution whenever a policy violation is detected. In Fi¢c)l monitoring code has been injected
into the original programs identified in Fig. 1 (b), trackitge occurrences of events anda, and
ensuring that every occurrence of eveid properly guarded.

Since [30, 35, 36], history-based access control poligiesepresented by Security Automata.
A Security Automaton (SAjs a quadruplél/ = (X, @, qo, {94 }aes), Where

e Y is a countable set afccess events
e () is a countable set ghonitor states
e (o € @ is adistinguishedtart state and

e {{.}.ex is a family oftransition functions indexed by access events, such that each tran-
sition functiond, :  — Q@ is a partial function mapping the current monitor state to an
optional next state.

Given an event sequenece € X*, we write §,, for the partial function defined inductively as
follows: §(e) = ¢, the total identity function fo€), andd,.,, = d,, 04, (i.e., function composition).
Note that, sincé,, is partial,d,,(¢) may not be defined for every stateAn event sequence € ¥*
is considered policy compliant iff,(¢o) is defined.

At the program points corresponding to eventRM injects a code fragment that simulates
d.. The inlining of such code fragments causes degradatioramiugion efficiency. A competitive
IRM implementation will subject these code fragments to aggie optimization.

3.2 A Constrained Policy Representation

Any practical policy representation must place constsaort the) andé components [35, 36,

3]. We consider representation constraints that faca#litRiM optimization. Our proposed policy
representation is based on two design choices that balfff@erecy considerations against policy
expressiveness.

Design choice 1: Unbounded state space, finitary transitia Unlike [12], which assumeg to

be finite, we anticipate the state space to be unboundeddotigal IRM. Specifically, we envision
the employment of IRM rewriting at load time, such that théestgppace may have to be expanded
when new code units are dynamically loaded. It is therefeseimed that each application domain
is associated with aountablesetII of propositional variablés calledstate variables A II-state,

1Although we focus on boolean state variables here, our selozm be readily generalized to handle variables of
finite domains.



or simply a state, is an assignment of truth values to préipasil variables fromI, such that
the assignment differs from one of the following three traisignments for only finitely many
propositional variables: (i) all propositions are undedingi) all propositions are false, and (iii)
all propositions are true. Such a truth assignment can besepted using only a finite amount
of memory. Henceforth, we identify a state by the set ofditethat are satisfied by the state. If
neither of the literals for a proposition appears in the thetn the proposition is undefined in the
state. Thus the empty set denotes the state in which all pitogres are undefined. Unless specified
otherwise, it is assumédhatq, = (). Under this assumption, the cardinality oflastate is finite.

To render execution monitoring tractable, every transifilnction must bdinitary, meaning
that:

1. only a finite number of state variables determine if thaditgon is defined at a given state,
and

2. the resulting state can be obtained by altering only afmitmber of state variables, so that
the new value of each variable is a function of only a finite benof state variables in the
original state.

A finitary transition function is called aoperator.

Design choice 2: Conjunctive preconditions, constant eféés (CPCE) An operator can be
represented by two elements:

1. aprecondition expressioywhich is a boolean expression in terms of a finite numberagést
variables, indicating if the transition is defined at a gigtatte, and

2. for each state variable that can potentially be alterethbytransition function, aeffect
expressior(a boolean expression in terms of a finite number of statabas) that computes
the new value for the variable.

While this arrangement is fully general, we impose furthantagtic restrictions to arrive at a
representation that is optimization-friendly:

1. the precondition expression must beoajunction of literalsand
2. every effect expression must be@nstant truth value

Operators satisfying these restrictions are call&€CE operators Formally, we represent a CPCE
operator by a paitpre, eff ), where:

pre: a finite set ofpreconditions each of which is diteral (i.e., p or —p), such that, for each
propositionp, at most one op or —p belongs to the set

eff . afinite set ofeffects each of which is generalized literal(i.e., p, —p, or 7p), such that, for
each propositiop, at most one op, —p or 7p appears in the set

2The proposed optimization scheme can be easily adoptee watte when this assumption does not hold.



The state obtained by applying the CPCE opergtor, ¢ff ) to a stateS (i.e., a set of literals) is:

S @ eff if pre C S
undefined otherwise

(pre, eff )(S) = {

where, given a seP of propositions, a sef of literals and a set of generalized literals,

S@® L= (S\lits(vars(L))) U (L N lits(vars(L)))
vars(L)={pell|peL VvV -peL VvV 7pe L}
lits(P)=PU{-p|pe P}

Intuitively, the operator is defined at stafaf the conjunctionpre is satisfied by the truth assign-
mentS. In the resulting state, a propositional variaples set to true ifp € eff, false if—p € eff,
undefined if’p € eff, or otherwise the same value as in the original state. As eiapeEse, the
empty operator((, ) represents the total identity functiop for monitor states. Also notice that
the preconditions of an operator cannot be used for detgdtia proposition is undefined in a
given state, but effects could set propositions to undefifiés intentional asymmetry serves an
important function to be discussed in the sequel (in thefpgb@®hm. 8).

3.3 Evaluation of Expressiveness

We evaluate the expressiveness of the proposed policysemion by a number of case studies.

Complete Mediation Complete Mediation [32, 28] requires every sensitive op@nab be per-
formed only after a monitoring operation has been invokete policy prescribes an event set
¥ = {sen, mon}. To enforce the policy, a monitor is constructed with stateable sefl = {p,,},
and transition functions,., = ({pm},{-pm}) andd,.., = (0,{p.}). The transition function
Omon @SSEI),,, thus enablingen, which in turn negates,,,.

Separation of Duty Separation of Duty (Sect. 3.1) prescribes an access eventsea, m, c}.
The policy is enforced by a monitor for whidi = {p.,p.}, wherep, and p,, indicate, re-
spectively, that events andm have occurred. The transition functions are defined aswvistlo

60 = (0,{pa})s Om = (0, {pm}): 0c = ({Pa>Pm}, {—Pa, ~Pm}). The monitor ensures thatonly
occurs after botla andm have occurred, without imposing an orderingucndm.

Generalized Chinese Wall Policy The Chinese Wall Policy [10] prevents conflicts of interest
that may arise from allowing access to data sets that belegrhpeting parties. Lin proposed
a generalization, in which conflict relationships need motrf an equivalence relation [23]. In
extensible systems, Lin’s Generalized Chinese Wall Polary lbe employed to ensure that con-
flicting operations are not executed by an untrusted compoptieereby protecting the integrity of
the application core. Formally, a Generalized Chinese Walic¥? is characterized by a conflict
graph(3, E), whereX is a countable set of operations, and each undirected edgeamnects a
pair of operations in conflict with one another. Executiormofoperatiorn € ¥ renders all neigh-
bors ofa forbidden in the future. Under the mild assumption thatigeg of the conflict graph



has bounded degrees, the Generalized Chinese Wall Polidyecaxpressed as CPCE operators as
follows. Definell = {p, | a € ¥}, g0 = {—p. | a € X}, and seb, = ({—py | ab € E},{p.}). The
construction ensures that the set of executed operati@hsays an independent set in the conflict
graph.

Hierarchical One-Out-Of- k£ Authorization One-out-of authorization [14] classifies applica-
tions into equivalence classes based on the access rightsa@ for successful execution. For
example, @drowserneeds the right to open network connections but never aeseser files, and
an editor needs the right to access user files but never connects teethenk. The protection
goal is to ensure that untrusted code only exercises thesscicgts of a known application class:
e.g., an application that both reads a user file and conreette inetwork is neither a browser nor
editor, and thus must be rejected. Formally, an One-Out-Bélicy is characterized by a family
{C; }1<i<x Of application classes such th@tC 3. The policy requires that, every time a program
is executed, there is@ such that every access right exercised during that exechbétmngs tc;.
One-out-ofk authorization, in its full generality, is not necessariypeessible as CPCE operators.

Theorem 1. There is an One-Out-Of-Policy that cannot be enforced by CPCE operators.

Proof. Consider the One-Out-Gf-Policy for whichX = {ag, a1, a2} andC; = {a;, a(i+1) mod 3)}

for 0 < i < 3. By way of contradiction, assume that there is al$eif propositions, an initial
stateq, and transition function§,,, for 0 < ¢ < 3, that enforce the policy. Becausgu,a, is not
a safe sequence, there must be a literald,,.pre such that & d,,4,(q0). But thenaga, is safe,
which means € d,,(qo). Consequently, it must be the case thatd,, .cff, wherel is the negation
of literal [, or else the change of membershipl dfetweend,, (¢o) andd,,., (¢) would not have
occurred. Nowy,, ., (¢0) is not defined, contradicting the fact that, is a safe sequence. [

Fortunately, there is an important special case of onesbuétthat the CPCE representation
can capture.

Definition 2. An One-Out-Ofk Policy {C;}1<;<x is said to benierarchical iff both of the following
hold:

Vuj,m(C, QCm/\CJ ng) = (CZ QCJ\/C] QC,) (2)

Condition (1) asserts that the family of application classetosed under non-empty intersec-
tion. Condition (2) asserts that the subclasses of any gilass @re totally ordered. The Hasse
diagram [13] of classes satisfying the two conditions isragb(hence “hierarchical”).

Theorem 3. Every hierarchical One-Out-Of-Policy is enforceable by CPCE operators.

Proof. Consider a Hierarchical One-Out-@fPolicy {C;}1<i<x. Without loss of generality, as-
sume that every € ¥ belongs to at least on&. Define thehome classH(a) of access:. € ¥ to
beN{C € {Ci}i<i<x | a € C}, thatis, the smallest class containimg(The existence of such a
class is guaranteed by condition (1).) A pair of accessgs; aadb, is said to beonsistentiff they
belong to the same application class: i#.,{a, b} C C,;. Otherwise, they ari conflict. Notice



thata andb are consistent iff{(a) C H(b) V H(b) C H(a). (The “if” direction is immediate. The
“only if” direction follows from {a, b} C C; by an application of condition (2).)

To obtain the required CPCE representatiof@#, <;<x, constructl = {p¢ | C € {C;}1<i<x},
qo = {_'pc | Ce {Ci}lgigk}a andéa = (p?”@a, eﬁa>, where:

pre, = {—pc | H(a) ZCANC L H(a)}
eﬁa = {p’)—[(a)}

It is easy to see that, with the CPCE operators above, at run tivaesetH of accesses that have
occurred so far are pair-wise consistent. What we want istliese is aC; such thatd C C;. We
prove this by induction.

The base cases f¢ff/| < 2 can be handled trivially. Suppose, for some- 2, all event set
H with |H| = kis such thatd C C; for some: wheneverHd contains pairwise-consistent events.
Consider asetl’ = H U {a} where|H| = k, a ¢ H, and events ir{’ are pairwise consistent. By
way of contradiction, assume the following holds:

There is naC; such thatd’ C C;. (3)

BecauseH contains pairwise-consistent events, the induction Hyg®s implies that there is a
classC* such thatd C C*. Also, a is consistent with every member &f. Thus, for eachh € H,
letC, be a class containing bothandb. By (1),C° = (), C» is a class. By assumption (3), there
is an event* € H such that* ¢ C°. By (1),C* = C* N (- is a class. Nowg € C°, buta & C*;
b* € C*, butb* & C°. SoC° andC* are distinct, incomparable subsetg’pf, contradicting (2). [

Although the construction of Thm. 3 is representationallffisient, that encoding of Hierar-
chical One-Out-Ofk Policies by CPCE operators could lead to precondition andtestgts having
a size ofO(k). Whenk is large, such an encoding incurs a significant performameehead (see
Sect. 4 for a precise definition of performance overheadg.féllowing theorem demonstrates that
there is occasionally a more efficient encoding. For hidriascwith a few balanced trees, in which
the height of the hierarchy is logarithmically related te ttumber of application classes and the
branching factor is bounded by a constant, the followingaggancoding leads to precondition or
effect sets of siz€(log k).

Theorem 4. There is a CPCE representation of a Hierarchical One-Outk®elicy {C; }1<i<k
such that the size of each precondition or effect sé€l(is - b + r), whereh is the maximum tree
height of the forest induced by the poliéys the maximum branching factor, amds the number
of trees in the forest.

Proof. Given a familyF of sets, defineninimal(F) = {S € F |VS" € F.S" ¢ S}. Consider
the following CPCE encoding. Defiié = {pc | C € {C;}1<i<k}, @0 = {—wc | C € {Ci}1<i<k}
and seb, = (pre,, eff ,), where

pre, = {—pc | C € minimal({C; | C; € H(a) V H(a) £ C;})}
eff o = {pc, | C; € H(a)}

We claim that this operator formulation is equivalent to dine defined in the proof of Thm. 3. To
establish the claim, it suffices to show that, for every € %, H(a) C H(b) V H(b) C H(a) iff
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H(a) CC; vV C; C H(a) for everyC; C H(b). The “if” direction is immediate. Consider the “only
if” direction. In the case whef{(b) C H(a), the claimed consequent is immediate. In the case
whenH(a) C H(b), the claimed consequent follows from condition (2).

leff ,| is obviouslyO(h). To obtain a bound otpre,|, notice thatpre, contains those literals
—pe for two types of clasg§. Firstly, C may be the root of a tree completely disjoint from the tree
in which’H(a) belongs. There are at maS{r) of these literals. Secondlg, may be a child of an
ancestor ofH(a). There are at mos?(h - b) of these literals. The bound in the statement of this
theorem follows immediately. O

Most naturally-occurring One-Out-Gf-Policies are either hierarchical, or can be made hier-
archical without affecting safety (e.g., the policy in [B&ct. 4.3] is an example). To demonstrate
this, we begin with the following definition:

Definition 5. The (non-empty) intersection closuref an One-Out-Of: Policy {C;}i<;<x is the
following family of application classes:

clos({Cihr<i<k) = {ﬂCl |HC{1,2,....k} N H# (Z)} \ {0}

i€H

An One-Out-Ofk Policy {C;}1<;<x is said to beproto-hierarchicaliff clos({C;}i<i<x) is hierar-
chical.

Theorem 6. Given a proto-hierarchical policy{C;}i<;<x, an equivalent hierarchical policy
{C’}1<j<i can be constructed, such thet= O(k).

Proof. Construc{C’ }1<j<x = clos({C;}1<i<k). By definition,{C; }1<;<x is hierarchical.

We show thaf{C’ } << is equivalent to{C; }1<i<x. Suppose an event sequence permitted
by {C;}1<i<k. Then there is som&; such that every event occurringinis a member of;. By
constructiorC; € {C}}lgjgk/, hencew is permitted by{C}}lSjSk/. Conversely, suppose an event
sequencev is permitted by{C’ },<;<;». Then there is som€; such that every event occurring in
w is a member of’;. By construction, there is & such thatC; C C;, hencew is permitted by
{thigk-

We show that’ = O(k). A classC; is said to besyntheticiff C; ¢ {C;}1<i<x. As pointed
out previously, the Hasse diagram{d; },<;< is a forest. Observe that, by construction, every
synthetic class has more than one child. By simple inducti@an be shown that the number of
synthetic classes is strictly less thar(i.e., the number of non-synthetic classes). The required
bound follows. O

4 The Basic Optimization Procedure

Given a program represented as control flow graphs (CFGsp]2an IRM enforcement mecha-
nism proceeds in three phases:

Phase 1: By consulting a security policy, construct an associativayawp|-], assigning to every
program point: some (possibly empty) operatop|n|.
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Phase 2: Optimize the operator assignment by updating the entriegfn, in some semantic-
preserving manner, with the objective that the resultirecexon time is improved.

Phase 3: Instrument the target program by injecting, (a) at the paogentry point, a code frag-
ment that initializes a globally accessible monitor state], (b) at each program poinf a
code fragment simulatingp[n|. The latter code fragment will behave as follows at run time:

e The preconditions imp[n].pre are checked against the current monitor state. If any of
the preconditions is not satisfied, the a security excefisioaised.

e The effects are asserted into the monitor state.

The focus of this work i®hase 2— the design of optimization procedures.

Givenop[-], a control flow path igeasibleiff all operator preconditions are satisfied along the
path. Unlike [12], which assumes all transitions to haveghme cost, we adopt the following
performance metric: theverheadof a feasible path is the total number of preconditions chdck
and effects asserted along the path. More precisely, aratpepre, eff) incurs an overhead
of |pre| + |eff| every time it is executed. The fewer preconditions and &ffece involved in
an operator, the less overhead it incurs on the target progFRor example, the empty operator
does not impose an overhead of zero. This performance metadopted because the number
of propositions appearing inld-state can in principle be unbounded, and thus no congtasat-t
implementation of transitions is available.

An execution traceis a control flow path that starts at the entry point of the prog An
optimization procedure isafeiff infeasible execution traces remain infeasible, ambbtrusive
iff feasible execution traces remain feasible. Ensuririgtgas central to the security enterprise. A
safe optimization procedure &sfectiveiff, (a) the overhead of a feasible execution trace is never
increased by the procedure, and (b) there is at least onegonoand a feasible execution trace for
that program such that the overheadtisctly reduced by the procedure. Notice that the notion of
effectiveness is only defined for safe optimization.

We focus on two kinds of optimization: precondition and effelimination. That is, the op-
timization procedure eliminates redundant memberspdi|. pre and op[n].eff. As the overhead
of a feasible path is never increased by an optimizationgmioe that is based on precondition
and effect elimination, such a procedure is always effecéiv long as it is safe. The remaining
challenge is to conduct precondition and effect eliminmatithout sacrificing safety or incurring
obtrusiveness.

4.1 Simple Programs
4.1.1 Program Representation

We describe how precondition and effect elimination candréopmed for simple programs, each
of which is represented as a control flow graph. Initiating discussion with such a simple rep-
resentation allows us to introduce key concepts in an easityprehensible form. Specifically, a
control flow graph is a tupléN, nentry, Negit, Ninstr, )

3t is assumed that the target program cannot catch such aptioe. How this can be enforced will be further
discussed in Sect. 7.
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e N is a set of nodes, partitioned iN{@.c,iry } U {nesit} U Ninstr. The distinguished nodes
Nentry ANdn.,; are the entry and exit nodes of the prograi,;, is the set of instruction
nodes, which correspond to actual program instructions.

e Eisasetof directed edges, such that ({nentry } U Ninstr) X ({7exit U Ninstr ). Intuitively,
the subset requirement mandates that., is a source, and.,; is a sink.

The sets of predecessors and successoisoa setl’ of edges are defined as follows:
predn|E'l={m e N |(m,n) € E'}
succn|E'l={m € N |(n,m) € E'}
We also writepred|[n] andsucc|n| for pred[n | E] andsucc[n | E] respectively.
An execution traces simply a control flow path starting at,,;,.,.
4.1.2 Optimization Procedure
The input to the optimization procedure consists of theofeihg:
e a pmgran'KN, nentrya Nexit Ninstr7 E>

e an operator assignmeng|-] that maps each node to an operator (henceforth, we assume tha
op[n] = (0, 0) initially for n & N;,.,)

The optimization procedure proceeds in four steps, a pattebe preserved in the sequel as we
consider other program representations:

Step 1 Compute a conservative approximation of the guaranteedsetich program pointA
literal [ belongs to thegyuaranteed sebf a program point iff [ is established by every feasible
path fromn.,,,, to n. This forward analysis is a form of constant propagatiorj:[25

GUA,.:[n] = (GUA,,[n] & op[n].pre) & op[n)].eff forn € Ny 4)
GUAout [’I’L] = @ forn e {nentry} (5)
GUAm [n] = mmepr«zd[n}GUAout {m] forn € Ninstr U {nem’t} (6)

Note the form of (4). By checking the preconditions, an operaas essentially ruled out infeasible
paths. Those paths that remain must have the preconditstailished as a result. Consequently,
preconditions could be seen esplicit assertions while effects areexplicit assertions Notice
also that the order of assertion is significant: explicieassns override implicit assertions.

Step 2 Eliminate the redundant precondition&. precondition! is considered redundant at pro-
gram pointn if [ is guaranteed to be establishedat

op[n].pre := op[n].pre \ GUA;,[n] for n € Ny (7)

When a precondition is removed, the implicit assertion dased with the precondition is also
removed. This does not affect correctness, as both the qulgmmn check and the associated
implicit assertion are already guaranteed to be estaldishe
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Step 3 Compute a conservative approximation of the live set at eamfjram point. A proposi-
tion p is live at program point. iff there is a path fromrm to another program point’ such that (1)
p is checked at’, and (2) there is no (implicit or explicit) effect assertionolving p along any
path fromn to »n’ [25]. This backward analysis is defined as follows:

LIVin[n] = (LIV o [n] \ killLv[n]) U geny 0] forn € Ny (8)
LIV [n] =0 forn € {nei} 9)
leout [n] - UmEsucc[n]lem [m] for n S Ninst'r U {nentry} (10)

where, forn € Nipsirs

kill v [n] = vars(op[n].eff)
genyy[n] = vars(op[n].pre)

Note that the preconditions eliminated $tep 2are not considered in this step. That is, effect
elimination is performed on the updated versiorwpfn]. Also, killy[n] could have been defined
aswvars(op[n].pre) Uvars(op[n].eff ) to explicitly account for implicit assertions. We opt foress
redundant formulation because propositionsdns(op[n]) are generated byen, ,[n] anyway.

Step 4 Eliminate the redundant effect8.proposition isdeadat program point. iff it is not live
atn. An effect is considered redundant if the effect proposit®dead at the program point where
the effect is asserted.

op[n].eff := op[nl].eff N {p,—p, 70| p € LIV,u[n]} forn € N (11)
Theorem 7. The four-step optimization procedure is safe, unobtruane effective.

Proof. Since only guaranteed preconditions and dead effects mnénated, the feasibility of a

path is not altered by the optimization procedure. Safety/wamobtrusiveness thus follow. Effec-
tiveness follows from the fact that the procedure performly precondition and effect elimina-
tion. n

Discussion Precondition eliminationStep 2 achieves more than removing unnecessary checks;
by reducing the number of live propositiorStep 2also creates optimization opportunities for
effect elimination Step 4. However,Step 2andStep 4are both “optional”. Neither is dependent
on the other. Omitting one of them will not cause the optimiaaprocedure to become unsafe or
obtrusive.

By adopting conjunctive preconditions and constant effeatber than unconstrained precon-
dition and effect expressions, we have obtained an elegahindormed optimization procedure.
First, a function of the fornyf.(S) = S @ L for a fixed setl of generalized literals is a monotone
function [25]. Our representation is thus readily amen#ébiguaranteed set analysis. Second, the
syntactic restriction allows the analyses to deduce mdoermation about guaranteed sets (see (4))
and live sets (see (8)) than an unconstrained represemntatio
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4.2 Procedure Calls
4.2.1 Program Representation

To accommodate programs made up of multiple proceduresgt@ecour program representation,
so that a program is a collection of CFGs, one for each proee@pecifically, a program is a tuple
(ID, id pmain, CFG, proc, invoke), such that:

e D is a set of procedure identifiers.

e id..n € ID is a distinguished procedure identifier, called the maircedare, that repre-
sents the global entry point of the program.

e CFG is a set of control flow graphs with disjoint node and edge. se&ch control flow
graph iS a tupquv nentrya Negit s Ncalla Nret7 Ninstra E>1 SUCh that:

— N is a set of nodes. The set is partitioned into five disjointsstsa {rn .y} {1eit
Nea, Nyt @and N, Besides the previously introduced node typ€sy; is the set of
call nodes andN,.; is the set ofeturn nodes N,,; andN,.; must have the same size.

— A well-formed control flow graph must have an edge Behat can be partitioned into
two disjoint subsetsE,., andE,,,. E,., is the set ofegular edgessuch that:

Ereg g (Nmstr U Nret U {nentry}) X (Nmstr U Ncall U {nemit})
E;,, is the set ofnvocation edgessuch that:
Emv g Ncall X Nret

Each invocation edge represents a procedure invocaticeddition, £;,,, must define
a bijection fromN,; to N,.;. This requirement is reflected in our notation(sif n’) €
Einy, then we writeF;,,,(n) andE; ! (n') to denoten’ andn respectively.

mv

Fixing CFG, we write N* to represent the union of all node sets. Notations sucN gs
N* ., E*andE? can be defined similarly.

exit? inv

e proc : ID — CFG is a bijection mapping procedure identifiers to control floamhs.

e invoke : N*,, — ID is a function mapping call nodes to procedure identifiers.

call

One of the reasons for carefully articulating the prograpresentation is to ensure that control
flow paths and execution traces are properly defined, so dyatdtions such as safety, obtrusive-
ness and effectiveness are properly defined as well. Sgalyifian execution trace can be defined
in a mutually recursive manner, as in Fig. 2.
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e A G-local entry path whereG is a control flow graph (i.e., a procedure body), is a path
beginning with the entry node @f, ending at any node i&, and traversing only the edges
of GG (possibly including edges that are not regular).

e A G-local ground entry path whereG is a control flow graph, is &-local entry path that
traverse®only regular edges.

e A G-local expanded entry pathwhereG is a control flow graph, is one of the following:

[LEEP-1] aG-local ground entry path

[LEEP-2] asequence of nodes that can be constructed as follows: ta#teaal entry path,
and, for each invocation edge traversed, insert betweerotinesponding call node and
return node &’-local expanded entry path that ends at the exit node oivhereG’ is
the procedure invoked by the invocation edge

[LEEP-3] a path that can be constructed by concatenating the folpivio sequences:
(i) a G-local expanded entry path ending with a call node for praced”’, and (ii) a
G’'-local expanded entry path

e An execution traceis a GG-local expanded entry path, whe€e is the body of the main
procedure.

Figure 2: Definition of execution traces for programs witbgadure calls.
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4.2.2 Optimization Procedure

We envision a modular optimization scheme, in which the -&tep optimization procedure is
applied to CFGs one at a time, and the order in which CFGs aregsed is not material. This
allows the optimization procedure to be performed at pnogl@ading time in an environment
supporting lazy, dynamic linking. (The Java Virtual Maahi@VM) is such an environment.) To
this end, we adjust data flow equations (5), (6), (9) and ($@pkows:

GUA,:[n] =0 forn € Nyt U {nepry } (12)
GUA, 1] = Niepredfn] GUA gue [m)] forn € Nipsir U Neau U {Nezit } (13)
LIV, [n] =11 forn € Nea U {newi (24)
LIV oue [1] = Unesuceln) LIV in [m] for n € Nisir U Nyey U {Neniry } (15)

While (13) and (15) are cosmetic changes, (12) and (14) pgséisant challenges:

Challenge #1 On entry to a procedure, no knowledge about the caller's staithe call node
is available. We are forced to assume the guaranteed se¢ @rdicedure entry node is
empty (i.e., (12)), thereby reducing the opportunitiesgi@condition elimination within the
procedure body.

Challenge #2 On exit from a procedure, no knowledge about the caller's §et at the return
node is available. We are forced to assume that all propasitare live (i.e., (14)), thereby
reducing the opportunities for effect elimination withiretprocedure body.

Challenge #3 By (14), effects asserted prior to a call node cannot be rgetiihinated.
Challenge #4 By (12), precondition checks following a return node canretdadily eliminated.

In the next section, we discuss a distributed optimizatiartqeol that would allow an untrusted
code producer to assist a distrusting code consumer in sgldgethe above challenges.

5 A Distributed Optimization Protocol

5.1 Cooperative Optimization without Assuming Trust

Consider a program distribution scenario inspired by [2#}vhich an untrusted code produder

distributes a prograr® to a code consumet for execution. Suppose employs IRM to enforce a
history-based access control policy, white eager to promote the usagelfoffers to help boost
the optimization effectiveness 6f How canC securely accept the contribution®f? We propose
the followingdistributed optimization protocol

Stage 1: C publishes, over anntrustedmedia, a security policy = (I1, {J,}, a), wherell is a set
of state variables{d, } a family of operators fofI-states, and a procedure that computes,
for a prograni?, an associative arrayp|-] mapping every program point ik to an operator
from {J,}.
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Stage 2: P submitst and aruntrustedprogrampP to anuntrustedoracle, which generates a sét
of optimization directives D contains annotations designed to infafnof how aggressive
optimization can be achieved.

Stage 3: P ships the packagéP, D) to C via anuntrustedchannel.
Stage 4: C performs the steps below before executihg

Phase 1: Use procedure to construct operator assignment:| for P.

Phase 2: Updateop|-] as follows:(a) D is exploited to optimizep|-| aggressively(b) As
D cannot be fully trusted, blindly following the optimizatialirectives may destroy
the safety of the optimization procedure. Additional “gisrare injected int@p|-], so
that fraudulent annotations are detected whes executed.

Phase 3:Inject op[-] into PP.
The protocol is particularly appropriate folCathat is computationally constrained (e.g., IRM via
load-time binary rewriting), and ® having access to a computationally powerful oracle (e.qg.,

offline certification service). In the sequel, we specialize protocol for addressing the four
optimization challenges outlined in Sect. 4.2.

5.2 Procedure Interfaces

We postulate that the code producer attachpsoaedure interfaceto every procedure it ships.
Specifically, a program is a tupléD, id,4in, CFG, proc, invoke, interface), such that:

o interface : ID — (21t 5 lits(I) 5 oI 5 9l js a mapping from procedure identifiers to
procedure interfaces. Each procedure interface is a tuplepost, dead;,, dead ), where:
— pre is a set of literals guaranteed by the caller to be estaldliahéhe call node.
— post is a set of literals guaranteed by the procedure to be esialoliat the exit node.
— dead, is a set of propositions guaranteed by the procedure to lwkaiélae entry node.
— dead ., 1S a set of propositions guaranteed by the caller to be dethe aéturn node.
The main procedure must have an interfacé(pf), I1, IT). Interfaces of other procedures can be

generated by the code producer using an appropriate whotggm analysis (see Appendix A for
a complete algorithm).

5.3 Using Procedure Interfaces as Optimization Directives

The code consumer treats the procedure interfaces as patiom directives. Specifically;, uses
the interfaces to perform more accurate analys&iep landStep 3of the four-step optimization
procedure. To facilitate discussion, we writgntbl(n) as a shorthand fanterface[invoke|n]] for
n e N}

call*
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Step 1 - guaranteed set analysis We replace data flow equation (12) by the following:

GUA, i [n] = pre forn € {nepry } (16)
GUA,;[n] = symtbl(E; . (n)).post forn € N, (17)

nuv

(The expressiorymtbl(E; ! (n)) refers to the callee’s procedure interface fioe N,.,.) Rather
than indiscriminately taking guaranteed sets tdjbe the entry node and the return nodes, the
interface componentgre and post now inform guaranteed set analysis, thereby creating more
opportunities for precondition elimination, and thus addingChallenges 1 & 4 This works so

long aspre andpost are trustworthy annotations.

Step 3 - liveness analysis We replace data flow equation (14) by the following:

LIV, [n] = (IT\ dead ,ut) U vars(op[n].pre) forn € {ne} (18)
LIV, [n] = (IT\ symtbl(n).dead,) U vars(op[n].pre) forn € Nea (19)

(The subexpressionars(op[n].pre) does not concern us for now, because, by setiplg| ini-
tially to (0, 0) for n &€ N« the subexpression is essentidilylt becomes indispensable when
op[n] is not empty, as is the case once (20), (21) and (22) have beeduced.) If the interface
componentglead,;, anddead,,; are trustworthy, then they inform liveness analysis at #ien®de
and the call nodes, thereby addres<iiwllenges 2 & 3

5.4 Guarding Against Fraudulent Procedure Interfaces

But the procedure interfaces are not to be trusted! They coalde essential monitoring logic
to be optimized away. To prevent thiSteps 2and4 of the four-step optimization procedure are
adapted as follows.

Step 2 - precondition elimination This step now involves two subtasks. First, associate an
auxiliary operatorto the exit node and each call node:
op[n] 1= 0p yuara(symtbl(n).pre) forn € N (20)
op[n] = 0p yuara(POSL) forn € {nemit} (22)
where, given a sef of literals, op,,,,4(S) is the effect-less operatgf, §)). The injected operators
guarantee that the assumptions made in data flow equatiéparid (17) are verified at run time.

The second subtask is precondition elimination, which i$gomed also on the newly intro-
duced operators:

op[n].pre := op[n].pre \ GUA;,[n] forn € Ninsir U Neay U {Negit } (22)
Step 4 - effect elimination Again, this step is now divided into two subtasks. First, axilaary
operator is assigned to every entry and return node.

op[n] := 0p gesert (GUA i [n], dead ;) forn € {nenry } (23)
op[n] := 0p yesert (GUA i [1], symtbl(E_1 (n)).dead oy ) forn € N, (24)

mnuv
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where, given a sef of literals and a seP of propositionsop ... (S, P) is the precondition-less
operator((), (S N lits(P)) U {?p | p € P\vars(S)}). The operator assigns a value to each of the
propositions inP. For each proposition i that also appear in a literal it\, the assigned value is
specified by the literal. For each propositionArithat does not appear in a literal$h the assigned
value is undefined. Essentially, the operator forces alb@sdions inP to become dead at run
time, and serves as a “guard” for the assumptions made ire(i8j19).

The second subtask is effect elimination, which is alsograréd on the newly introduced
auxiliary operators.

op[n].eff == op[n].eff N {p,—p,?p|p € LiVyu[n]} forn e Ny U Nyt U{neniry}  (25)
Theorem 8. The revised optimization procedure is safe.

Proof. Suppose the value aip[n] has been updated frofi, §) to op,,...(S) for some setS of
literals. As the operator is effect-less, every infeasgaéh containing: remains infeasible. The
introduction ofop ..+ (S) in updates (20) and (21) thus preserves safety.

Now, suppose the value @p[n] has been updated frofd, #) to op ...t (GUA,u[n], P), for
some setP of propositions. Consider an effect asserted by the auxiligerator. If the effect
is of the form?p, then it only causes future precondition checks to fail,ieuter establishes any
precondition. If the effect is a literal, and it establisteeprecondition, then the precondition is
already guaranteed prior to the assertion of the literal.either case, infeasible paths remain
infeasible. Updates (23) and (24) thus preserve safety. n

The interfacepre, post, dead,, dead ;) Of a procedureroc is said to beconservativeff all
the following hold: (a)pre € GUA,,[n] for every call node: for which proc is the callee, (b)
post C GUA,, [n] for the exit noden of proc, () dead;, C IT\ LIV, [n] for the entry node: of
proc, and (d)dead ., C IT\ LIV, [n] for every return node for which proc is the callee.

Theorem 9. With conservative interfaces, the revised optimizatiacpdure is unobtrusive and
effective.

Proof. If all interfaces are conservative, then the updates (22)28) will completely remove the
preconditions and effects of the auxiliary operators ieiticed in (20), (21), (23) and (24). O

In other words, if the code producer is honest about the opdition directives, all the run-
time checks for fraud detection will be optimized away (Tten. However, if the code producer
attempts to mislead the code consumer by sending fraudoiteaédure interfaces, the fraud will
be detected by the IRM at run time (Thm. 8). Lastly, conseveatirocedure interfaces can be
generated by the interface generation algorithm describ&gpendix A.

6 Accommodating Java-Style Language Constructs

The revised optimization procedure can be further extetodl@dcommodate Java-style exception
handling constructs as well as dynamic method dispatching.
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6.1 Exception Handling
6.1.1 Program Representation

To accommodate Java-style exception handling, a prograepresented as a tup{éD, id ,4in,
CFG, proc, invoke, interface). Most of the components have the same roles as before, eocept
the following differences in the representation of contlmlv graphs and procedure interfaces:

¢ A control flow graph (i.e., a member @fF'G) is a tuple of the following form:
<N7 Nentrys Mexity Nfail s Ncalb Nreta Nhndlru Ninstr7 E>

— The node seiV is partitioned into seven disjoint subse®82.nry by {ezit s {Pfair}s
Ncall; Nrety Nhndlr; andestr-

* The distinguishedailure node n,; represents the program point through which
exception escapes from the procedure.

x Npnane 1S the set ohandler nodes each of which represents the entry point of an
exception handler.

— A well-formed control flow graph must have an edge Bdhat can be uniquely parti-
tioned into four disjoint subset;,.,, Ein,, Eur andE,,., such that:

* B, Is the set ofegular edgessuch that:
Ereg € (Ninstr U Nyet U Niair U {entry }) X (Ninstr U Nean U {neqir })
x F,;,, is the set ofnvocation edgessuch that:
Einy © Neat X Niey

E;,, must also define a bijection from.,;; t0 NV,;.
x Fy, 1s the set othrow edgessuch that:

Eunr € Ninstr X (Npnair U {nfair})
x F. IS the set okescape edgesuch that:
Eese € Neat X (Npnair U {nfeir})
e The interface of a procedure takes the form of:
(pre, post, esc, dead ,,, dead oy, dead pqi)

The new components have the following role:

esc. a set of literals guaranteed by the procedure to be establstthe failure node

deady,;: a set of propositions guaranteed to be dead by the excepimtidr who catches
an exception escaping from the procedure
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As a result of introducing these new components, the sigaatiuinterface becomedD —
(2lits(H) % QZits(H) % 2lits(H) x o ¢ oll o 2H)

The componendead,; is introduced to create more opportunities for eliminatffgcts as-

serted in normal flow of control. Specifically, if a progranwigtten so that all propositions
are always dead on entry to exception handlers, thet,,; can be set tdl, and opportu-

nities for eliminating effect assertions along normal flduzontrol will be maximized. The

escape-conditions:£c) are introduced for symmetry.

We extend the definition of execution traces in Fig. 2 by stistg the following for[LEEP-2]:

[LEEP-2'] a sequence of nodes that can be constructed by applyingltbeifay two steps to a
G-local entry path:

e for each invocation edge traversed, insert between thegoonding call node and
return node &’-local expanded entry path that ends with an exit node, whérethe
control flow graph of the procedure invoked by that invoaatage

e for each escape edge traversed, insert between the tailemttiodes &’-local ex-
panded entry path that ends with a failure node, widgris the control flow graph of
the procedure invoked by that escape edge

6.1.2 Optimization Procedure

The modular optimization procedure expects the followimayit:
e a COhtrOl ﬂOW grapk(Na Nentry s Nexit s Nfail Ncalla Nret7 Nhndlr7 Nmstrv E>

e a procedure interfacépre, post, esc, dead,, dead ., dead ;) for the above control flow
graph

e a functionsymtbl : N*, — (200D x lits() o glits(Il) oI 5 oIl 5 21) that maps

each call node to the procedure interface of the calleg ¢yetbl(n) is a shorthand for
interface[invoke|n]])

e an operator assignmenp[-] that maps each node to an operator, so that] = (0, () if
n ¢ Nmstr

The optimization procedure proceeds as follows.
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Step 1 - guaranteed set analysis

GUAw[n] = [ GUAu[m for n € Ninsir U Nean U {nait }
mepredn]

GUAu[] = [ GUAzulm] for n € Nynair U {ngust}
mepredn]

GUA, i [n] = pre forn € {nepry }

GUA,;:[n] = symtbl(E; (n)).post forn € N,

GUA,.t[n] = (GUA,[n] & op[n].pre) & op[n].eff forn € Nipser

GUA,.:[n] = GUA,,[n] forn € Ny,an

GUAun] = GUA,,[n] @ op[n].pre forn € N,,q»

GUAu[n] = symtbl(n).esc forn € N

Step 2 - precondition elimination

e First, introduce the following auxiliary operators:

op[n] := 0p yyara(symtbl(n).pre) forn € Nea
op[n] := 0p yyara(pOst) forn € {ne}
op[n] := op yara(esc) forn € {np.}

e Second, eliminate preconditions:

op[n].pre := op[n].pre \ GUA, [n] for n € Nipsir U N U {negie } U {ngea}

Step 3 - liveness analysis

leout [n} - U lem [m] for n e Ninstr U Nret U Nhndlr U {nentry}
mesucc[n | Ereg]
LIV ar[n] = U LIV, [m] forn € Nipgr U Neau

mesucc[n | EyprUEesc)

LIV [n] = ((LIV o [n] \ Killv[n]) U genyy[n])

U (LIVaa[n] U genyy[n]) for n € Ninsir
LIVin[n] = LIV 0] forn € Ny
LIV, [n] = (H \ symtbl(n).dead,) U vars(opln|.pre) forn € Ny
LIV, [n] = (IT\ dead ) U vars(op[n].pre) forn € {ne}
LIV, [n] = (IT\ deadtqi) U vars(op[n].pre) forn € {ng.}

Step 4 - effect elimination
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e First, introduce the following auxiliary operators:

op[n] := 0p gesert (GUA i [n], dead ;) forn € {nepry }
0p[n] := 0P yesers (GUA G [12], symtbl(E; L (n)). dead py) forn € N,
op [n] = Opassert(GUAOUt [n]v D[TL]) for ne Nhndlr
where
D[n] = U symtbl(m).dead 4:

méepred[m | Eesc]

e Second, eliminate effects as follows:

op[n].eff := op[n].eff N LIV,u[n] for n € Nisir U Nyet U Nipair U {entry }

6.2 Method Overriding
6.2.1 Program Representation

As in every other modern object-oriented programming platk, the Java language supports dy-
namic method dispatching. This feature slightly compésahe treatment of procedure/method
invocations (from now on we use the word “procedure” and ‘rodt interchangeably). Specifi-
cally, a program is represented as follows:

(ID, id yin, overrides, CFG, proc, invoke, interface)

e The binary relationoverrides C ID x ID is a partial ordering of procedure identifiers,
modeling method overriding. Specifically, we writeerrides(idy, ids) if id; overridesids.
Note that, asverrides is reflexive, every procedure identifier overrides itselidgfinition.

e The mappingproc is a partial function, meaning that some procedure ids atr@asgigned
a control flow graph (abstract method do not have bodiesk Uinderstood that the main
procedure does have a body. It is also understood that, d@tmen any one of the control
flow graphs overriding the procedure identifier named at bsttal may be dispatched non-
deterministically.

The definition of execution traces in Fig. 2 is extended byssituiing the following foi{LEEP-2]
and[LEEP-3]:

[LEEP-2"] a sequence of nodes that can be constructed by applyingltbeifa two steps to a
G-local entry path:

e for each invocation edge traversed, insert between thegoonding call node and
return node & ’-local expanded entry path that ends with an exit node, whéiie
the control flow graph of a method overriding the method digreainvoked by that
invocation edge (becauseerrides is reflexive, the two methods may be identical)

e for each escape edge traversed, insert between the tailemtbinfodes &’-local ex-
panded entry path that ends with a failure node, wli#ris the control flow graph of a
method overriding the method signature invoked by thatmseage
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[LEEP-3”] a path that can be constructed by concatenating the foliptwo sequences: (i) @-
local expanded entry path ending with a call node for metlgrksgure:d, and (ii) aG’-local
expanded entry path, whe€é& is the control flow graph of a method overriding the method
signature invoked by the call node.

6.2.2 Static Constraints

In the presence of dynamic method dispatching, the codeucogis must verify that method
overriding honors certain constraints among method iate$. Given method interfac&s =
(pre, post, esc, dead i, dead pyt, dead jy) aNdZ’ = (pre’, post’, esc’, dead’,, dead., ,, dead}ml), we
write Z' C 7 iff all of the following hold:

pre D pre’ post C post’ esc C esc
deady, C dead’, dead oy 2 dead’ , deadon 2 deady,,

The constraints follow the usual contravariant patternusfction subtyping [26]. To preserve
safety, the code consumer must verify that_ 7 whenever a method with interfa@é overrides

a method with interfac&. SinceC is transitive, only direct method overrides need to be \eifi
The interface generation algorithm in Appendix A can be Usgethe code producer to generate
method interfaces guaranteed to satisfy the above.

7 Implementation Strategy

We developed a Java prototype for the revised optimizatioogrlure (Sect. 5), with Java bytecode
as the target language. Our prototype was developed in Séptd framework for Java bytecode
manipulation and optimization. Soot provides facilities €onverting Java bytecode into more
manageable internal representations, performing cofibwl analysis to construct control flow
graphs, as well as providing infrastructure code for ifeeatintraprocedural data flow analyses.
Specifically, our prototype consists of three componerity:a(modular optimization procedure,
which applies the revised four-step optimization procedora CFG and an operator assignment,
(2) an instrumentation module that converts a CFG and an mpeassignment to Java bytecode,
and (3) amethod interface generator, which is a whole-proganalysis built on top of the modular
optimization procedure (Appendix A).

Soot’s built-in control flow analyzer has been adopted tostwmict control flow graphs in the
presence of exceptions. Although Soot provides “hookspfogrammers to customize the control
flow analyzer so that more accurate exception flows can bengstawe refrain from following
that trail, as precise exception escape analysis is outditlee scope of this work. We however
modified the code base of the Soot data flow analysis frametw@&commodate the complex data
flow equations caused by exception handling.

8 Empirical Evaluation

We employed our prototype to empirically assess the degredich an IRM enforcement mecha-
nism can benefit from the four-step optimization proced8ex{. 4), as well as the further improve-
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| Name/Version | Description | # classes| # methods |

BCEL/5.2 framework for manipulating Java bytecode 384 3184
BcVer/1.0 prints classfile version 11 120
JavaCC/4.0 parser generator 137 2091
JavaTar/2.5 tar-style archiving tool 15 176
ProGuard/4.2 | classfile shrinker, optimizer, obfuscater & pre-verifijer 447 4211
SableCC/3.2 | parser generator 285 2366

Figure 3: Benchmarking suite

ments brought about by adopting method interfaces as ggation directives in a distributed op-
timization protocol (Sect. 5). To benchmark our optimiaatschemes against production-quality
control flow graphs, we selected a suite of open source Jglecagons for our experiments (see
Fig. 3). We intentionally consider only batch-processipgleations, so that we can fully auto-
mate the benchmarking process. For each program, we abstt sehaturally-occurring input to
accompany the program.

To profile the performance of our optimization procedurergiaistory-based access control
policies of various structural characteristics, we destha stochastic procedure for generating
benchmarking policies. Given a progrdhand an inpuf], an instance of thexperimental config-
uration EC[prode, Defr s Dpre] (Wherep,o4e, per @andp,,. are probabilities) is an operator assignment
op[-] stochastically constructed as follows:

1. Select a selv of program points fronP as targets of operator injection. Each program
point is selected with probability,.... Operator assignmenip|n] will remain ((), @) for
n & Nodes.

2. Fix a seflI of ten propositions. For each € N, setop[n] to (0, eff ,,), where eackeff,,
is constructed independently as follows: Select a subset I1, such that eacl € II is
selected independently with probabiljtyy. Then, constructff,, such that, for each € P,
with equal probability eithep or —p appears ireff .

3. InstrumentP with op[-] and then execut® on inputl. Record the traversed control flow
path.

4. For each program point€ N that appears on the recorded path, compute thé$at, [n]
of literals guaranteed to be satisfiechaduring the above execution.

5. For eachm € N, select a subsetre,, of literals fromGUA,,[n], such that each member of
GUA,, [n] is selected with probability,,..

6. Setop[n] to (pre,, eff,,) for eachn € N. This is the operator assignment we seek to
construct.

The probabilityp,,..c measureoperator density while the probabilitiegp.; and p,,. measure
effect densityandprecondition densityespectively. The construction procedure guarantees that
on inputl, programP honors the policy represented by[-], and thus benchmarking will not be
interrupted by security exceptions.
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Figure 4. Optimization effectiveness with and without nuetlinterfaces.

Given a progran®, an inputl, and an operator assignment]|-|, the effectiveness of an op-
timization procedure? is measured as follows. FirgP, is instrumented wittvp|-], and the in-
strumented program is executed with infiutThe overhead of execution (as defined in Sect. 4)
is recorded. To better assess the relative effectivenegseabndition and effect elimination,
we record the number of preconditions checked)g¥, and the number of effects checked as
O;’]g? . Second, the process is repeated with an optimized opaxssggnment obtained by apply-
ing 2 to op[]. The overhead of execution as incurred by preconditionlchead effect asser-
tions are recorded a8°"! and Oj;t. Optimization effectiveness is then expressed as thesratio

pre

Rpre =1 =028 /O and Ry = 1 — OZ;t/Ogg?. (More effective optimization procedures have
largerR,,. andR.g.)
Our experiments were conducted on an IntelCore 2 Duo 2.33GHe with 2GB of RAM,

running Mac OS X 10.4.9, JDK 1.6.0 Update 3, Soot 2.2.5 anchiie®.2.5.

8.1 Experiment 1. Optimization With and Without Optimization Directi ves

In a first experiment, two instantiations of the revised mmation procedure (Sect. 5) were con-
sidered. In the first instantiation, all method interfaces set to(0, 0,0, 0, %, IT). Adopting an
(almost) empty method interface reduces the revised ogsitioin procedure to the basic version
reported in Sect. 4, except that by settih@.d,; to II we avoid confusing the optimization al-
gorithm with the overly conservative control flow analysislbinto Soot for analyzing exception
flow. In the second instantiation, we employed the methoeriate generation algorithm (Ap-
pendix A) to generate conservative method interfaces fanathods, and then sé@tad,; to I1
for the same reason.

We generated ten instancesE[0.5, 0.5, 0.5] for each program in Fig. 3, and then measured
the optimization effectiveness ratiés,. andR.g for each instantiation of the optimization proce-
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dure. The measurements for the ten instances were avenadstieawn in Fig. 4. The bars labeled
pre (empty) andeff (empty) show the averag®,,. andR.; for the optimization procedure with
empty method interfaces, whifge (inferred) andeff (inferred) correspond to average,,. and
R,y for the optimization procedure with inferred method inhess.

Three observations can be made from Fig. 4. (1) Both predondind effect elimination de-
liver significant reduction in performance overhead, evlenvmethod interfaces are not present.
(2) Precondition elimination has a much higher effectigsthan effect elimination. (3) The added
effectiveness of method interfaces is noticeable but reondtic.

8.2 Experiment 2: Varying Policy Characteristics

To characterize optimization effectiveness under varalgy structures, we subject the revised
optimization procedure (with inferred method interfadesjlifferent experimental configurations.
Specifically, we varied each of,.4., p.g andp,,. from 0 to 1, by increments of 0.1, while keeping
the other two parameters fixed at 0.5. Again, ten instanceaadf experimental configuration were
generated, and the average effectiveness rétjpsand R for each configuration are depicted
respectively in Fig. 5 and 6.

From Fig. 6 (a) and (b), we notice th&L; increases with an increasing effect densityy{,
but decreases with an increasing precondition dengjty)( We argue that this can be readily ex-
plained by data flow equation (8). A highery increases the size éill y|[-|, creating larger dead
sets, and thus promotes effect elimination. A highgr, however, increases the sizegf, ||,
creating smaller dead sets, and thus discourages effaghation. Similarly, from Fig. 5 (a) and
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(b), we notice thakz,,. increases with either an increasing effect dengity Y or an increasing pre-
condition density 4,,.). This can be explained readily by data flow equation (4), Imclv larger
effect and precondition sets produce larger guarantead siich in turn promote precondition
elimination. Notice also that implicit assertion is ovdden by explicit assertion, thus explaining
why Fig. 5 (b) shows a less dramatic increase than Fig. 5 {&.above observations imply that:

If two different encodings of the same security policy in¢omlar overhead, then we
should prefer the encoding with more effects and less prations, for such a policy
is more amenable to optimization.

Fig. 5 (c) and 6 (c) show that higher operator density ) produces higher optimization effec-
tiveness.

IRM benefits more from precondition and effect eliminatioemimore program points
are interpreted as access events.

9 Concluding Remarks

We proposed a constrained policy representation for fatiig IRM optimization. Our policy rep-
resentation is expressive enough to represent simplerityigolicies, Generalized Chinese Wall
Policies, and Hierarchical One-Out-®@fPolicies. Our core optimization procedure is safe, unob-
trusive and effective. The optimization procedure has lex¢ended to accommodate a distributed
optimization protocol, in which an untrusted code produoay formulate method interfaces to
boost the optimization effectiveness of a distrusting comlgsumer. A prototype of the procedure
has been implemented, and demonstrated to exhibit popitfermance characteristics.

We are exploring alternative optimization directives ttatld lead to more effective optimiza-
tion than our current design of method interfaces. While aurent policy representation and
distributed optimization protocol are designed for sugipgrcontrol flow-based policies, we are
also exploring how they can be extended to enforce data flostcaints [7].
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A Generating Method Interfaces

This appendix describes a whole-program analysis that atespnethod interfaces for program
representations involving procedure interfaces (Sedigin exceptions (Section 6.1) and method
overriding (Section 6.2). To fix thoughts, we assume the gnogrepresentation described in
Section 6.2, which subsumes all the preceding programseptations.

The basic idea of the whole-program analysis (see belowufblidting) is that, we begin with
assigning to each method signature an overly conservattiead interface (i.e., all interface com-
ponents are empty sets), and then conduct two whole-prodagarflow analyses to incrementally
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improve the accuracy of the interfaces. The first whole-m@oganalysis computes the interface
componentgre, post andesc for each method, and the second computesithé,,, dead,,; and
dead,; components. Each whole-program analysis is a standard-hspr&dgorithm: the work
list tracks which method needs processing. In each iteratie work-list algorithm examines one
method, and invokes one of the intraprocedural analyses3tep 1landStep 3of the optimization
procedure in Sect. 6.1) as a subroutine.

The algorithm tracks two associative arragslA*[-] andLIV*[-]. The mappingsUA*[-] assigns
a conservative guaranteed set to each nod€iip U N, U N;,. Specifically,GUA™[] tracks the
GUA,,[-] values of call, exit and failure nodes. The guaranteed sapooents (i.e.pre, post and
esc) of the inferred method interfaces are computed from theefds of this associative array.
Every time the intraprocedural guaranteed set analygs §itep J) is invoked, the estimates in
GUA*[-] are improved. The improved estimates are then employed poowe the guaranteed
set components of the method interfaces. The improvemamsethod interfaces then induce
further improvements in the accuracy of the intraproceldywaranteed set analyses. The process
terminates when the estimates stabilize. Similarly, thppivgLIV*[-] tracks theLIV,,;[-] values of
return and entry nodes, as well as th¥,,;[-] values of call nodes. The dead set components (i.e.,
deady,, dead ,,; anddead,;) of the inferred method interfaces are computed from theetes of
these live sets. Asin the previous case, each invocatidreohtraprocedural liveness analysis (i.e.,
Step 3 improves the estimates IdV*|-], thereby producing improved method interfaces. This in
turn yields a more accurate intraprocedural liveness arglygain, the process terminates when
the values stabilize.

The method interfaces inferred by the algorithm are constrlto be both conservative (Sect.
5.4, page 19) and compliant to the method overriding comésréSect. 6.2). For instance, thee
component of the method interface for a methidds set to(), .. GUA*[m], whereC = {m ¢
N> | overrides(id, invoke[m]) }. In other words, a literal is in there component ofid iff it is
in GUA*[m] for all call sitesm of eitherid or any of the methods it overrides. The other method
interface components are constructed in a similarly coasiee manner.

In the following, the domain of a partial functiofiis denoted bylom( f).

Step 1 Initialize method interfaces.

for id € ID do
interfacelid] = (0,0,0,0,0,0);

Step 2 Compute guaranteed set components (., post andesc).

forne N:,UN;,.,

GUA*[n] :=0;
WL := dom(proc);
while WL # () do

[* Extract next procedure from work list */

selectid € WL;

WL := WL\ {id};

[* Compute guaranteed sets */

run Step 1of the optimization procedure in Section 6.1 ptc[id];

U Np,; do
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let GUA;,[-] be the guaranteed sets computed by that step;
[* Propagate guaranteed sets 0f.,; */
for n € proc[id]. N do
if GUA*[n] # GUA;,[n] then
GUA*[n] := GUA,[n];
for id’ € ID such that overrides(id', invoke[n]) do
let
C ={m € N*,, | overrides(id’, invoke[m)) };
G = e GUA*[m];
In
if interfacelid'].pre # G then
interface(id'].pre := G
if id’ € dom(proc) then
WL = WLU {id'}:
[* Propagate guaranteed set of,; */
let
n = proc[id] Megi;
in
if GUA*[n] # GUA;,[n] then
GUA*[n] := GUA,,[n];
for id’" € ID such that overrides(id, id") do
let
E = { proc[id"|.ne | id” € ID such that overrides(id”, id") };
G = (ner GUAY[m;
in
if interfacelid'].post # G then
interface(id'].post := G;
if id" € dom(proc) then
WL = WLU {id'}:
* Propagate guaranteed set of,; */
let
n = proc[id].ng;
in
if GUA*[n] # GUA,,[n] then
GUA*[n] := GUA;,[n];
for id" € ID such that overrides(id, id") do
let
F = {proclid"].ns; | id" € ID such that overrides(id", id") };
G = (ner GUA [m];
In
if interfacelid'].esc # G then
interface[id'].esc :== G;
if id" € dom(proc) then
WL := WLU {id'};
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Step 3 Compute dead set components (idad,,, dead ,,; anddead s5;;).

forn e N*, U N* do

ret call
LIV*[n] :=TI;
WL := dom(proc);
while WL # () do
[* Extract next procedure from work list */
selectid € WL;
WL := WL\ {id};
/* Compute live sets */
run Step 3of the optimization procedure in Section 6.1 tc|id];
let LIV,,[-] andLIV,,;[-] be the live sets computed by that step;
[* Propagate live sets oV, */
for n € proc[id]. N, do
if LIV*[n] # LIV ,[n] then
LIV*[n] := LIV pue[n);
for id’ € ID such that overrides(id', invoke[(EZ%,, ") (n)]) do
let
R = {m € N%, | overrides(id', invoke[(E%,, ) (m)]) };
D =TI\ U, LIV [m];

UNy

entry

n
if interfacelid'].dead . # D then
interfacelid'].dead s = D;
if id" € dom(proc) then
WL = WLU {id'}:
[* Propagate live sets at the “failure port” ofV,; */
for n € proc[id].N . do
if LIV*[n] # LIV juu[n] then
LIV*[n] := LIV g
for id’ € ID such that overrides(id', invoke[n]) do
let
C ={m € N?, | overrides(id’, invoke[m]) };
_ D =11\ U,,cc LIV [m];
N
if interfacelid'].dead s,y # D then
interface[id'].dead sy == D;
if id" € dom(proc) then
WL := WLU {id'};
* Propagate live set ofi.,,, */
let
n = proclid] Neptry;
in
if LIV*[n] % LIV, [n] then
LIV*[n] := LIV gy [n];
for id’ € ID such that overrides(id, id") do
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let
E = { proc|id"|.nenr, | id" € ID such that overrides(id”, id’) };
D = I\ Uy LIV
In
if interfacelid'].dead, # D then
interfacelid'].dead;, :== D;
if id" € dom(proc) then
WL := WLU {id'};

35



