Cooperative Diversity Routing in Wireless Networks

Majid Ghaderi Department of Computer Science University of Calgary

joint work with Mostafa Dehghan, Universiy of Calgary Dennis Goeckel, University of Massachusetts Amherst What is the Problem?

energy efficiency in wireless networks is critical

□ significant progress at physical layer
 ○ energy-efficient multi-antenna systems
 ○ distributed multi-antenna → cooperative communication

extensive work on energy-efficient routing

O wireless network → a graph of point-to-point links
 O oblivious to specific physical layer characteristics
 → e.g., multi-point-to-point cooperative links

Our work: *joint optimization* of physical-layer cooperation and network-layer routing

Contributions

minimum energy cooperative routing
 only knowledge of channel statistics
 optimal power allocation to form links
 opportunistic routing to select links
 simple heuristic algorithms

□ benefits:

- 60% more energy savings compared to routing along the shortest path
- 20% more energy savings compared to equal power allocation

Outline

- model and assumptions
- cooperative link formation
- optimal route selection
- simulation examples
- □ summary

Channel Model

□ slotted channel

- \Box y_j : signal received at node j
- \Box x_i : signal transmitted by node *i*
- \square n_j : noise at node j
- \square h_{ii} : complex channel gain between nodes *i* and *j*
- \square p_i : transmit power at node i
- \Box d_{ii} : distance between nodes *i* and *j*
- $\square \alpha$: path-loss exponent

Cooperation Model

multiple transmitters to multiple receivers

- cooperative transmission → diversity gain
- \bigcirc individual reception \rightarrow cooperative reception is difficult
- special cases : point-to-point and broadcast

$$T \begin{pmatrix} t_1 & t_m \\ t_2 \end{pmatrix} \begin{pmatrix} r_1 & r_n \\ r_2 \end{pmatrix} R$$

received power
$$p_j = \sum_{t_i} \left(\frac{|h_{ij}|^2}{d_{ij}^{\alpha}} \right) p_i$$

Routing Model

cooperative link l_k
between sets T_k and R_k
C(T_k, R_k): cost of link l_k
cooperative path l
sequence of cooperative links {l₁, ..., l_K}

Minimum Energy Routing Formulation

$$\min_{\ell} \sum_{\ell_k \in \ell} C(T_k, R_k)$$

$$s.t. \quad \rho(\ell) \ge \rho_0 \quad \text{average throughput}$$
path throughput

Cooperative Link Cost

(1) What is the cost of forming a cooperative link for given *T* and *R*?

we are interested in minimizing link cost

$$C(T_k, R_k) = \min_{\mathbf{p}} \sum_{t_i \in T_k} p_i$$

s.t. $\exists \lambda$: $\min_{r_j \in R_k} \rho_j(\lambda) = \rho_0$
 $\rho_j(\lambda) = \lambda(1 - \wp_j(\lambda))$
 \checkmark
average throughput at r_j subject to transmission rate λ

Example: Rayleigh Fading

at receiver r_j

 \Box SNR due to transmitter t_i

$$\gamma_{ij} = \frac{1}{d_{ij}^{\alpha}} \frac{p_i}{P_n} |h_{ij}|^2 \rightarrow \text{Exponentially distributed}$$

 \Box SNR due to transmitting set *T*

$$\gamma_{j} = \sum_{t_{i}} \gamma_{ij} \rightarrow \text{Sum of Exponentials}$$

check the paper for a closed-form expression!
$$\wp_{j}(\lambda) = \Pr(\gamma_{j} < 2^{\lambda} - 1)$$

minimum rate

Optimal Link Selection

cost

(2) How to choose *T* and *R* at every step?

T = {all nodes that previously received data}
 o power allocation algorithm optimally selects transmitting nodes

R: subset of nodes that have not received data yet
 o selected by Opportunistic Bellman-Ford

$$\pi(T) = \min_{R \subseteq \overline{T}} \left\{ C(T, R) + \sum_{R_0 \subseteq R} \pi(T \cup R_0) \cdot (1 - \wp(R_0)) \right\}$$

to reach destination
from set T set of receivers
not in outage

Heuristic Cooperative Routing

optimal routing has exponential complexity

- 1. limited cooperation by limiting the set of transmitters or receivers
- 2. cooperation along the shortest non-cooperative path
- 3. local cooperation with optimal power allocation

Simulation Environment

randomly distributed nodes
node density = 2
max node power = 1
path-loss exponent = 2
path throughput = 0.2

Energy Cost Comparison

ONCR: non-cooperative CASP: along the shortest path DSTC: equal power allocation CASPO: proposed algorithm

Optimal v.s. Heuristic Cooperative Routes

Optimal v.s. Equal Power Allocation

DSTC: distributed equal power allocation

DCASP: proposed distributed optimal power allocation

Limited Cooperation

Summary

optimal cooperative diversity routing
 only statistical knowledge about fading

optimal power allocation
 (20% more energy savings that equal power allocation)

 opportunistic cooperation (60% more energy savings that no-cooperation)

• open problem: distributed implementation

Thank you.