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Abstract

To load a webpage, a web browser first downloads the base HTML file of the

page in order to discover the list of objects referenced in the page. This process

takes roughly one round-trip time and constitutes a significant portion of the

web browsing delay on mobile devices as wireless networks suffer from longer

transmission and access delays compared to wired networks. In this work, we

propose a solution for eliminating this initial delay, which is transparent to

end systems, does not require modifying HTTP, and is well suited for web

browsing on mobile devices. Our solution, called WebPro, relies on a network

proxy that builds an up-to-date database of resource lists for the websites visited

frequently by network users. The proxy resides in the wired part of the network,

and hence can afford to pro-actively build and refresh the resource list database

periodically. When a request for a webpage comes to the proxy, it simultaneously

fetches the base HTML and all referenced objects required to render the webpage

using the corresponding resource list stored in the local database. We also

show that the benefits of WebPro become more significant by increasing the

complexity of webpages as it is able to circumvent the inter-object dependencies

in a webpage. We have built a working prototype of WebPro and have used real-

world traffic traces along with live experiments over WiFi and LTE networks to

IA preliminary version of this work appeared in the IEEE/ACM International Symposium
on Quality of Service (IWQoS) 2015 [1]
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assess its performance. Our results show an average of 26% reduction in page

load time for a mix of popular web sites chosen from categories such as news,

sports and shopping. Moreover, in comparison to another best known proxy-

based solution, WebPro provides delay reductions ranging from 5% to 51% for

a variety of web sites.

Keywords: Web browsing, Mobile devices, Browsing delay.

1. Introduction

1.1. Motivation

Recent advances in cellular technology have given rise to the widespread

adoption of mobile devices such as smartphones and tablets. Among numerous

mobile apps, web browsing is still one of the most popular applications on mobile

devices. Due to limited bandwidth and longer access delays in wireless networks

(more specifically, cellular networks), however, web browsing is generally slower

on mobile devices, which could frustrate users and lead to lost online business

opportunities. For example, it is estimated that a 2 second increase in the load

time of Bing’s home page can reduce revenue per user by 4.3% [2].

Prior work [3, 4] has shown that different from desktop computers, there is a

new set of factors causing the slow browsing experience on smartphones, which

calls for solutions tailored to mobile web browsing. Some of these factors are:

1. Compared to the enterprise Ethernet typically used by desktop comput-

ers, wireless hop has longer access delays which dominate the end-to-end

round trip time (RTT) and consequently result in longer RTTs. The

long network RTT makes resource loading the bottleneck of web brows-

ing on smartphones. On the contrary, compute intensive operations such

as scripting, style formatting and layout are the bottleneck in desktop

browsers.

2. Limited processing power of smartphones affects the resource loading pro-

cess as it is associated with network stack and OS services.
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3. Many webpages are not designed specifically for web browsing on mobile

devices. For example, analysis of the traces of 25 iPhone users in [4]

shows that over half of the webpages visited by smartphone users are not

optimized for mobile devices or are non-mobile webpages.

Recently, there has been a significant amount of work on reducing the latency

of mobile web browsing [5, 6, 7, 8, 9, 10, 11, 12]. Some of these efforts rely

on modifying the web access protocol. For example, SPDY [9], a new protocol

designed by Google, aims to minimize the latency of web browsing by adding

request multiplexing, support for prioritization and a number of other advanced

features. However, this solution requires changing the client and server side

software which limits its widespread adoption. There are also prior attempts

that rely on client side optimizations. This category includes solutions based

on client side caching [13] and prefetching [5, 6] along with a recently proposed

technique called speculative loading [7]. The short expiration times of most web

objects limit the efficiency of caching techniques, while prefetching solutions

suffer from wasted wireless bandwidth and battery resources that result from

incorrect predictions (not a problem on wired desktop browsing). On the other

hand, speculative loading technique relies on extensive changes to the mobile

browser which is a hurdle to its adoption.

Other noticeable solutions are those based on network proxies. These solu-

tions mostly try to reduce the computation time or energy consumption of web

browsing by delegating some tasks involved in opening a page to a powerful

entity in the network such as a cloud-based proxy [8, 14, 15]. One of the major

advantages of employing a network-based proxy solution is that a proxy can

offer a better improvement by learning and exploiting the aggregate browsing

behaviour of a diverse mix of mobile users which is not possible in client-only

solutions.

Specifically, some network-based solutions such as VMP [8] and Opera Mini [15]

aim at offloading compute-intensive operations of the page loading process to

a proxy. However, it has been shown that optimizing compute-intensive op-
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erations leads to only marginal improvements in the overall page load perfor-

mance [4]. Thus, other solutions such as EEP [16, 17] and PARCEL [18] try to

offload resource loading operations to a network-based proxy in order to improve

page load performance. Specifically, in these solutions, proxy retrieves the base

HTML file of the page and parses it to discover referenced objects, which could

be then fetched and transmitted to the client in a bundle (in order to reduce

energy consumption of the mobile device).

One essential aspect of such proxy-based solutions is that the proxy can

build and transmit the bundle only after it has finished downloading all the

embedded objects of a page. Considering the request-response nature of the

HTTP protocol, discovering the list of the referenced objects requires at least

one RTT in order to fetch and parse the base HTML file. Also, one or more

redirections might be involved before arriving at the base HTML file which can

further delay the realization of the web objects.

To gain a better insight, we measured the latency of downloading the base

HTML file for the top 100 Canadian websites [19] from a desktop computer

connected to campus Ethernet. Because of the redirections, this time might be

different from the RTT between our device and the corresponding web server.

Figure 1 shows the cumulative distribution function of the time to fetch the base

HTML file of each site. In the median case, it takes 430 ms to fetch the base

HTML file. However, over 6% of the cases experience latencies beyond 1 second.

Also according to the measurement results in [20], the base HTML fetch time

constitutes the largest fraction of the network time for loading a page. This

implies that there is a potential for optimizing mobile browser performance by

eliminating the initial fetch time.

1.2. Our Work

In an effort to reduce the latency of mobile web browsing, we propose the de-

sign and implementation of a system that aims at eliminating the initial round-

trip time required to fetch the base HTML file of a page. Our solution, called

WebPro, is built on two cooperating proxies, one of which resides in the mobile
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Figure 1: CDF of the time to fetch the base HTML file for Canada’s top 100 websites.

In the median case, it takes 430 ms to download the base HTML file. However, this

time can go beyond 1 second in some cases.

device and the other one, remote proxy, is deployed inside the network, prefer-

ably as close to the user as possible (see Figure 3). When a user wants to visit a

page, the remote proxy will fetch all the required objects on behalf of the mobile

device. After downloading all the objects, the remote proxy packs them in a

bundle and pushes it to the local proxy, which will serve all browser’s requests

locally. In this dual proxy architecture, not only we are able to significantly

reduce page load time but also reduce energy consumption by implementing

bundling to eliminate unnecessary power state promotions and demotions in

mobile’s radio for each of the small objects [16, 21].

In order to fetch all the required objects of a page, the remote proxy employs

the speculative loading technique [7]. The main idea behind this approach is to

bypass the extra time for fetching and parsing the base HTML file, by using

a previously recorded list of all the required objects for a webpage, hereafter

called the webpage “resource list”. Figure 2 presents the resource list for an

example webpage. We observed that the amount of change in the structure of

the webpages within a few hours is relatively low and hence it should be feasible

for a proxy to keep track of such changes and maintain an updated resource

list of the popular pages (pages that are popular among its users). Note that

maintaining the resource lists of the webpages is different from caching the actual
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 var f = document.getElementById("ex");
 f.src = 'http://g.org/h.png';

b.js:

<html>
   <head>
     <link rel='stylesheet'  
       href ='a.css'>
   </head>
   <body>
     <img id='ex' />
     <script src='b.js'> </script>
     <iframe 
       src='http://c.com/d.html'>
     </iframe>
     <img src='e.jpg'>
   </body>
</html>

http://someSite/index.html:

http://someSite/index.html
http://someSite/a.css
http://someSite/b.js
http://c.com/d.html
http://someSite/e.jpg
http://g.org/h.png

Resource List:

Figure 2: Resource list for an example webpage. This webpage contains a CSS, a

JavaScript, two images and an HTML iframe. Notice that the embedded JavaScript

file itself refers to another image file which can be identified only after the JavaScript

file is fetched and processed.

web objects, the majority of which can not be cached or have a short expiration

time [7]. Nevertheless, such legacy caching and prefetching techniques can be

added to our system if desired.

Maintaining an updated set of resource lists is achieved by enhancing the

remote proxy with a profiler that periodically visits popular websites and records

their resource lists in a metadata repository. Considering that the proxy resides

in the wired part of the network, it can afford to pro-actively fetch webpages

and construct their resource lists for the most popular websites in the network.

Such a profiling module can be easily integrated with the operational activities

of high-performance dedicated middle-boxes that are already deployed by most

mobile operators for caching, traffic monitoring and optimization purposes [22].

This way, the first step in loading a page at the remote proxy will become

checking the metadata repository. In the case the repository contains the re-

source list of the page, multiple parallel connections will be used to fetch all

the objects of the page from possibly different web servers. Otherwise, the re-

mote proxy will employ a web engine to load the page by first fetching the base

HTML file and then loading the discovered objects. WebPro’s profiler employs
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a web engine to perform all the steps involved in loading a page except render-

ing. This way, profiler will be able to record all the requests that result from

parsing as well as script evaluations. We also implemented a filtering module

to prevent profiler from recording changing URLs that result from third party

advertisements and tracking systems.

In order for the metadata repository to contain the resource lists of the ma-

jority of the requests, profiler should employ an effective mechanism to identify

popular URLs in the network. Considering the flow of URLs into the proxy as

a data stream, we exploit a well-known algorithm in data mining community,

space saving, for identifying the popular URLs at the proxy. Our experiments

using traffic traces collected from University of Calgary’s Internet link shows

that maintaining a metadata repository for the top-1000 URLs in the network,

allows a timely update of their resource lists by the profiler while providing a

high hit ratio to the user requests.

Using resource lists at the proxy also enables WebPro to avoid going through

the iterative process of exploring objects in a webpage. In other words, it

enables WebPro to break the inter-object dependencies in a webpage. The

most common form of such dependencies happens when an embedded object

itself refers to another object, similar to the example in Figure 2. Accordingly,

our experiments using carefully designed synthetic webpages reveals that the

benefits of WebPro will extend as the number of dependencies in a webpage

increases.

We emphasize that in contrast to client-based approaches (e.g., [7]), WebPro

is transparent to the end-points and does not require any changes to the client’s

browser. As a proxy, it exploits the common browsing activity across a diverse

set of mobile users and hence provides a faster browsing experience. Moreover,

in WebPro, the penalty of downloading wrong and unusable objects (in terms

of wireless bandwidth usage and mobile battery consumption) is negligible com-

pared to that of client-based approaches as it resides in the wired part of the

network. Thus, it can afford to pro-actively update the resource lists, which is

very costly to implement on wireless clients.
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We have implemented WebPro on Linux and have conducted an extensive

set of measurement experiments. We believe that the common approach taken

by proxy-based solutions EEP [16, 17] and PARCEL [18] is the state of the art

and one of the most complete proxy-based solutions for improving web brows-

ing performance on mobile devices1. We call this approach PBB (Proxy Based

Browsing) and use it as benchmark to evaluate the performance of WebPro. In

comparison to PBB, our scheme achieves lower page load times. Specifically

in the case of a workload consisting of the 20 popular webpages from different

categories, our approach loads 73% of the pages in less than two seconds while

under PBB, only 28% of the pages load in that time. To the best of our knowl-

edge, this paper is the first work to use the speculative loading approach in a

dual proxy architecture for improving mobile user experience.

1.3. Paper Organization

The rest of the paper is organized as follows. Section 2 introduces our

proposed solution and discusses different aspects of it. Section 3 offers results

on the performance evaluation of the system. Section 5 presents a detailed

review of the related work. Finally, the paper is concluded in Section 6.

2. WebPro: Proxy-Based Speculative Loading

2.1. System Architecture

In order to eliminate the initial fetch time at the remote proxy, we take

advantage of the speculative loading approach. The basic idea of speculative

loading is to use the previously recorded knowledge about the structure of a

website during the page load process. Our system, called WebPro, is depicted

in Figure 3. WebPro equips the remote proxy with a profiling module that pro-

actively and periodically loads webpages from a set of top visited websites and

records their resource lists in a metadata repository. The list of top websites

1The difference between EEP and PARCEL solutions is discussed in the related work

section of this paper.
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Figure 3: High Level Architecture of WebPro.

can be inferred from the web browsing behaviour of the users of the system. As

will be discussed later, the memory footprint of keeping resource lists is very

low, which means that the proxy can easily keep metadata for a large number

(on the order of thousands) of websites.

After receiving a request to load a webpage at the remote proxy, if the

resource list of that page already exists in the metadata repository, multiple

parallel connections will be used to fetch the objects in the resource list. In case

the remote proxy receives a request for the first time and notices the absence

of the corresponding resource list, it will use the legacy approach of PBB by

loading the page in a web engine. Once all the required objects of a webpage are

fetched, the remote proxy packs them in a bundle and sends the bundle to the

local proxy. Figure 4 shows the download pattern of WebPro and PBB. Notice

that both WebPro and PBB bundle objects when transferring them from proxy

to the client. The flow chart in Figure 5 shows the operations performed at

WebPro’s remote proxy for serving a user request.

A defining feature of WebPro is that the profiler on the remote proxy can

always keep a fairly recent version of the resource lists for user requested web-

pages. However, the freshness of the maintained resource lists will depend on

the frequency of change in the structure of the webpages. In Section 3.4.1, we
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Figure 5: Flow Chart of Operations Performed at Remote Proxy

will present measurement results indicating that on average the amount of such

change within a few hours is relatively small. Therefore, given the abundance of

the computation and communication resources at the remote proxy, it should be
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feasible for the profiler to capture the temporal changes in resource structures

by updating its metadata repository in a timely manner. Notice that doing so on

the mobile device using a client-based approach is not feasible due to bandwidth

and battery limitations. Also it is noteworthy that an optimized implementation

of the proxy will not penalize the page load times in the case of websites with

rapidly changing structures (such as social media news feed sites), but it may

not improve them either.

In order to learn and utilize the aggregate browsing activity of users in

WebPro, whenever the remote proxy loads a page for the first time through

the web engine, it also adds the corresponding resource list to the metadata

repository. This way, the remote proxy will be able to exploit the common

browsing activity across different users.

It is important to note the difference between WebPro and traditional proxy-

based caching systems [23]. Those systems cache the actual content of web ob-

jects, which limits their efficiency as most web objects can not be cached or have

a short expiration time [7]. However, with WebPro, the remote proxy just keeps

a list of the referenced URLs and fetches a fresh copy of the corresponding ob-

jects at each page request. Despite this difference, WebPro could be augmented

with traditional caching as well in case some objects are usable because there

is plenty of storage/processing capacity available at the remote proxy.

2.2. Circumventing Webpage Dependencies

In addition to eliminating the initial HTML fetch time, there are other rea-

sons that lead to a reduced page load time in our approach. Those reasons are

based on the fact that the activities involved in the process of loading a page

are inter-dependent and can block each other [20]. For example, some of the

objects may be referenced by a JavaScript or CSS file and loading those objects

depends on evaluating the referencing scripts. Also, downloading and evaluat-

ing a synchronous JavaScript file blocks HTML parsing during the page load

process.
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The immediate implication of such dependencies is that a web engine’s re-

source loading operations are not fully parallel and discovering web objects can

be further delayed because of script evaluations and other dependencies. How-

ever, WebPro can use a previously recorded resource list and hence load all the

required objects of a page without going through such dependent operations.

2.3. Identifying Popular Websites

As implied in previous sections, WebPro’s profiler keeps a list of popular

URLs in the network and by periodically loading those URLs, updates its meta-

data repository. It is clear that the benefits of WebPro will increase if the profiler

maintains a URL list that achieves higher hit ratios for page requests in the net-

work. The reason is that the presence of a user requested URL in the list of top

URLs (hit occurrence) means that the proxy already has the updated resource

list of that page in its metadata repository and hence can load the page faster.

A simple approach for constructing such a list of URLs would be keeping a SET

data structure and adding all the URLs to the SET upon their arrival at the

proxy.

To gain a better insight, we applied this approach to network traffic traces

that were collected from University of Calgary’s Internet link. These traces

contain summary information of all the HTTP transactions and are recorded

by Bro [24], an open source Network Intrusion Detection System. We wrote

an AWK script to extract the URLs of the landing pages from HTTP traces of

six consecutive days (May 1, 2015 to May 6, 2015). We ran an offline analysis

on the extracted traces and constructed the URL set by adding elements to it

using the set union operation. Before adding a URL to the list, a dictionary

lookup operation is performed to test whether it already exists in the list, and

if so, a hit counter is incremented. In this experiment, we kept adding URLs

to the same list for the entire six day period. For each day, we compute the hit

ratio as the number of hits on that day divided by the total number of requests

during that day. We also record the size of the SET at the end of each day

which is the number of distinct URLs observed by that time. The results are
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Day Number Hit Ratio # of Distinct URLs

1 93.4 % 18482

2 95 % 24725

3 97 % 28156

4 94.6 % 38235

5 95.3 % 46565

6 96 % 54040

Table 1: Hit ratio and top URL set size that result from running the simple algorithm

over University of Calgary’s HTTP traces collected between May 1, 2015 and May 6,

2015

presented in Table 1. It can be seen that in all days a high hit ratio of at least

93% is achieved. Also notice that the number of distinct URLs is ∼ 18K in the

first day and reaches ∼ 54K by the end of the sixth day.

Notice that storing the resource lists of such a large number of URLs is

feasible because of small size of resource lists (on average 11.7 KB for a page in

our top 20 page selection) and abundance of storage space in the remote proxy.

However, considering that on average a page can take about 6 seconds to load

on a Desktop computer [25], it would take about 33 hours to visit 20000 pages

back to back and update their resource lists in metadata repository. Such a long

update interval can compromise the freshness of resource lists for some of the

fast changing websites.

Notice that the above problem stems from a large number of page requests

constantly flowing into the proxy. As a result, we can cast it as an instance

of identifying most popular k items in a data stream. Rather than storing

all the distinct URLs in a set, in this setting we are interested in an online

algorithm that accurately reports top-k elements of a data stream by taking

only a single pass over data. This is one of the well-studied problems in data

mining community. For instance, authors of [26] presented a survey of some of

the most popular algorithms in this area and conducted experiments to compare

the performance of these algorithms. Their findings indicate that for insert-only
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streams2, the space saving algorithm [27] performs better in terms of precision3,

recall4, used space and update speed. As a result, we select this algorithm for

identifying top-k URLs in the stream of URLs arriving at the proxy.

2.3.1. Space Saving Algorithm

In order to identify top-k elements of a data stream, the space saving algo-

rithm maintains k elements with their associated counters. Upon arrival of a

new URL at the proxy, in case it is already monitored (exists in the list), we

just increment its associated counter. Otherwise, if the URL list is not full, we

insert the URL into the list and set its counter to 1. If the URL list is full and

the URL does not match a monitored item, we find the URL with the least

count, min, and replace it with the new URL. Finally, min+1 is assigned to

the count of the new URL. The authors of [27] proposed a data structure called

Stream-Summary that ensures constant time for finding the minimum element.

Also incrementing counters in Stream-Summary can be performed using O(1)

pointer operations.

2.4. Practical Considerations

Webpage Customization: A growing number of websites provide a mobile

version of their content which contains fewer and smaller images and short and

concise text [3]. Also browser-dependent code in some webpages can download

different set of objects for different browsers [18]. Therefore in order to comply

with users’ actual needs, the remote proxy needs to be aware of the client at-

tributes such as user-agent and device’s screen information. To this end, client

provides this information to the proxy when it sends the initial request for the

page. By using such information, the proxy will be able to imitate the client

device when requesting objects from web servers. This way, the proxy can also

incorporate the resource list of the corresponding mobile website in its metadata

2As opposed to streams where elements can be both inserted and deleted
3Proportion of the items reported by the algorithm that are true frequent items
4Proportion of the true frequent items that are reported by the algorithm
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repository.

Incremental Rendering: The bundling feature in WebPro enables the mo-

bile device to stay in low power state during the entire time that the remote

proxy fetches the embedded objects of a page. While this can reduce energy

consumption of mobile web browsing, it delays receiving the first set of objects

by the browser which is required for the partial rendering of the page. To enable

drawing intermediate displays in a browser, we can envision WebPro without

bundling in which the proxy forwards each object to the client as soon as it

receives the object from a web server. Clearly, such a scheme has the potential

to further reduce page load times at the cost of increased energy consumption

(compared to WebPro with bundling). We note that implementing WebPro

without bundling can benefit from native Virtual Private Network (VPN) sup-

port in vast majority of modern mobile devices. Similar to Meddle proposed

in [28], in this setting, a VPN tunnel can be used to direct all the Internet

traffic of mobile device to the remote proxy. Such a VPN-based approach will

eliminate the need to deploy a local proxy component on the mobile device.

Cost of Stale Records in Resource List: A webpage’s structure can change

since the last visit by the profiler which can lead to staleness of some of the

records in its corresponding resource list. Considering the superior network

connectivity and processing power of the remote proxy, we can ignore the over-

head of fetching such stale objects on the proxy. On the other hand, a recent

study of object sizes in the top 500 Alexa websites reveals that most of the

web objects are typically small to moderate, with the median size being 18

KB [18]. Also because of selective compression component in WebPro, some of

those small objects will be compressed before being included in the batch which

is usually around a few megabytes for popular webpages. As a result, the over-

head of stale objects for mobile device appears as a few extra kilobytes added

to the size of a typically large batch file. However, the benefits of WebPro, and

specifically elimination of base HTML fetch time, far outweighs such a negligible
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overhead. On the contrary, a client-only solution may incur significant costs in

terms of energy and delay as fetching each of those stale objects can cause state

promotion and demotion in the radio of the device, which is a well-known cause

of battery drainage on wireless devices.

Profiling Overhead: In WebPro, it is expected that usually the profiler’s

visit to a page will occur at an earlier time than serving a user request for that

page. However in PBB (the solution proposed in [16, 17, 18]), each page request

triggers a new process of identifying page resources at the proxy. Therefore, in

a setting that most webpages already have a corresponding resource list at the

proxy, the majority of user requests can be served without incurring any over-

head due to profiling.

Handling Asynchronous JavaScript Requests: Most modern webpages

use Asynchronous JavaScript requests (AJAX) to dynamically load contents

such as advertisements even after the page is loaded (i.e., after the onload

event). Usually such requests are for session dependent content and hence it

would be better to fetch those objects directly from the web servers rather than

the proxy. To accomplish this, the local proxy adopts a selective forwarding

approach in which it forwards the initial page request to the remote proxy and

after receiving the page batch from the remote proxy, forwards all subsequent

requests to objects not present in its cache to the corresponding web servers.

2.5. Prototype Implementation

Our current implementation of WebPro uses the Qt SDK version 5.3. Specif-

ically, QWebKit class which is a result of integration of WebKit into Qt enabled

us to develop the web engine component of the system. Also considering that

for evaluating WebPro, we compare its performance with PBB, both approaches

were implemented using the same Qt libraries. Here we briefly introduce the

important parts of our implementation.
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2.5.1. Resource Profiler

Profiler is responsible for constructing and updating webpage resource lists

and storing the metadata information on the remote proxy. The Profiler is

basically a WebKit-based web engine which loads webpages on demand. Note

that loading a page in the profiler involves all the steps of opening a webpage

except rendering. This way, we can obtain the list of all the objects whether they

are resulted from parsing or from JavaScript/CSS evaluations. In particular, we

intercept the network activity of this web engine and record the corresponding

URLs of all the HTTP requests.

As mentioned in Section 2, webpages from the set of popular websites should

be loaded periodically in order to keep an up-to-date repository of resource lists

on the remote proxy. This is achieved by a bash script that wakes up periodically

and iteratively invokes profiler with a URL from a list of top visited websites.

A hash function of the URL determines the unique name and directory of the

file that stores its resource list in the repository. In contrast to caching, storage

overhead of this approach is negligible because instead of storing actual content

of the objects, the proxy stores URLs of those objects. In our experiments, the

total space required to store the resource lists of 20 popular websites was about

234 KB. As a result, the entire repository of resource lists can be loaded in the

main memory during the operation of the proxy. Disk access is required only

for backup purposes.

2.5.2. Object Bundling

We use libtar library to implement bundling in the remote proxy and un-

bundling in the client proxy. In our experiments, the time spent in bundling

and unbundling is negligible and has a minimal effect on page load times. For

example, in the case of an experiment with www.cnn.com which contained 139

objects with a total size of 2.6 MB, the time spent in bundling was only 32

milliseconds.

To study the effect of the number of objects on the performance of bundling,

we measured the time spent in bundling for different numbers of objects, all with
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Figure 6: Bundling Performance

size 20KB (the average object size in a modern webpage). Figure 6 depicts the

bundling performance as a function of object numbers. It can be observed that

even for the case of 200 objects, the bundling time is negligible compared to the

overall page load time (in the order of tens of seconds). It is also noteworthy

that the timing values reported here are obtained using a typical machine in

our lab, while it is expected that in a real-world deployment, the proxy will

be hosted on a more powerful computer(s) with dedicated hardware. With the

widespread adoption of cloud computing, we can also envision hosting remote

proxy in a cloud platform which automatically scales up its processing power to

handle an increase in workload.

2.5.3. Selective Compression

According to the results reported in [29], objects that have an image or video

content-type and also most objects with binary data (e.g. app/octet-stream)

already are in compressed form and there is very little room for additional

saving. On the other hand, text files such as HTML, XML, JavaScript, and CSS

can benefit greatly from compression. In line with this, the remote proxy has a

selective compression component that uses the zlib [30] library to compress the

body of HTTP responses with the text MIME type. We implemented bundling

and selective compression in the same way for PBB as well.
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2.5.4. Filtering Dynamic URLs

Many websites these days contain references to third party advertisement

networks and web tracking systems. Tracking or targeted advertising is done

by inclusion of a JavaScript code in a webpage that is executed when a user

visits that page. Usually such JavaScript codes use random numbers or date

information to create requests with dynamic URLs (i.e., different URLs over

different visits). As a result, the URL generated at the client’s browser will

be different from the recorded URL at the remote proxy. In other words, these

URLs will change at every request and hence the Profiler should avoid recording

them. To this end, we have implemented a module in our profiler that filters

those changing URLs during the profiling period. In particular, this module

detects changing URLs based on the prefixes in URLs and also URLs belonging

to a blacklist [31]. To ensure a fair comparison with PBB, we also equipped

PBB’s web engine in the remote proxy with our filtering module.

Given that the advertisements fetched at different visits to a page can be

of varying sizes and/or belong to different domains, we also incorporated the

filtering module in our client side proxy to eliminate such variabilities in object

load times.

2.5.5. Local Proxy

The local proxy is developed using QT’s networking API (QTcpSocket and

QTcpServer) and acts as a server to the mobile browser while acting as a client to

the remote proxy. It also uses the same libraries discussed above for unbundling

and decompression. Specifically, local proxy passes the first request of a page to

the remote proxy and after receiving the page bundle, responds to the browser

with the appropriate object while caching the rest of the objects in the bundle.

For all the subsequent requests, local proxy will try to load the object from its

cache if available, otherwise will forward the request to the corresponding web

server.
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3. Performance Evaluation

In this section, we use our prototype implementation to demonstrate the

effectiveness of WebPro. Notice that we compare WebPro to benchmark system

PBB as opposed to conventional web browsers, because the previous work [16,

18] has already shown the superior performance of PBB in comparison to tra-

ditional browsers.

3.1. Experimental Setup

Client Setup: Figure 7 depicts our experimental setup. We chose an ASUS

UX31A laptop running Ubuntu 14.04 with built-in WiFi adapter as our mobile

terminal. For cellular measurements, we equipped the laptop device with an

LTE USB modem so that it can access the LTE network provided by a major

Canadian cellular carrier. As mentioned in [10], the rationale for using laptops

instead of smartphones is that slower processors of smartphones can influence

our results on page load times. Also, by using laptops, we don’t have to restrict

our experiments to those websites that provide a mobile version of their site.

On the client side, we developed our own browser using QWebKit library.

This way we can log detailed timing information and also clear browser’s cache

programmatically before each experiment. In practice, any browser can benefit

from our proxy-based solution without any modifications. It only requires con-

figuring the browser to use the local proxy.
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Infrastructure Setup: We performed WLAN measurements using a Cisco

Linksys EA2700 wireless router. The router was connected to the proxy server

through the campus LAN (100 Mbps Ethernet). We also conducted cellular ex-

periments over the LTE network at a location with good signal strength. In the

cellular setting, the proxy was configured with a public IP address. The average

TCP throughput between the mobile device and the remote proxy, measured

by iperf tool, was about 52.5 Mbps and 2.5 Mbps in WiFi and Cellular set-

tings, respectively. Also the average ping RTT between the mobile device and

the remote proxy was about 10 ms and 117 ms in WiFi and Cellular settings,

respectively. The remote proxy was hosted on a fairly typical machine running

Ubuntu 14.04 with no special server capability. This machine is connected to

Internet using a 100 Mbps LAN connection. All experiments were conducted in

a lab environment.

3.2. Workload Characterization

We selected 20 webpages from the top Canadian websites listed on Alexa [19].

Similar to [10], we used desktop versions of these websites instead of their mobile

versions because of widespread use of tablets and large screen smartphones.

These webpages were chosen from different categories such as news, auction,

sports, shopping, etc. Table 2 shows the detailed properties of our selected

webpages. The average page size is 2521.05 KB and the total number of objects

ranges from 33 to 148. Anything other than image, JavaScript and CSS is

counted as other.

3.3. Performance Metrics Used

Page Load Time: We use page load time (PLT) as the primary indicator of

user-perceived performance. In our measurements, page load time is the time

elapsed between the initial page request and the time when all associated objects

of a page have been downloaded and processed. This time is identified by the

occurrence of the onload event at the browser and includes the time spent in
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Webpage Size (KB) # of images # of JS # of CSS # of other Total # of objects

cnn.com 2712 90 36 1 12 139

espn.go.com 2404 76 13 3 5 97

mozilla.org 957 18 5 3 7 33

walmart.ca 3239 51 12 3 4 70

bbc.com 1599 43 24 3 3 73

ebay.ca 4078 132 4 3 9 148

shaw.ca/store 1944 26 20 2 10 58

go.com 3224 22 30 8 16 76

nytimes.com 2974 84 40 8 9 141

deviantart.com 2102 68 14 4 2 88

apple.com 1254 25 18 6 1 50

ikea.com/ca/en 2923 56 13 5 3 77

flickr.com 6736 24 4 2 8 38

ca.ign.com 2473 62 24 13 6 105

microsoft.com 1208 35 10 1 7 53

homedepot.ca 2180 32 12 5 11 60

Wikipedia Article 1932 80 9 2 1 92

cbssports.com 1535 37 26 2 5 70

tripadvisor.ca 3510 78 5 1 4 88

about.com 1437 43 5 2 3 53

Table 2: Characteristics of the Websites Used in the Experiments.

executing CSS and synchronous JavaScript files. In the proxy-based systems

discussed here, PLT consists of the following components:

1. Time to request the page from the remote proxy,

2. Time to download all the objects in the resource list (in WebPro) or the

time it takes for the remote proxy’s web engine to load the page (in PBB),

3. Time to receive the bundle from the remote proxy, and,

4. Time to download all the objects that are missing in the bundle until the

entire webpage is loaded.

Hit Ratio: In order to capture the amount of change in webpage structures,

we use the hit ratio metric. The hit ratio associated with a webpage’s resource

list is the number of objects from the resource list that are actually requested

during the page load process, divided by the total number of objects in that
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resource list. It represents the fraction of the resource list that is still valid and

accurate. A high hit ratio means that there has been little change in webpage’s

structure since the last time that the profiler visited the page.

3.4. Measurement Results

3.4.1. Change in Webpage Structures

The underlying hypothesis in WebPro is that the resource structure of a web-

site changes less frequently than the actual content of the objects and webpages.

We note that web publishers usually choose a short expiration time for web ob-

jects and also prevent web resources from being cached by using “no-store” in

the cache-control HTTP header field.

In line with this, our first experiment studies the temporal changes in web-

page structures. In particular, it monitors the average hit ratio of the resource

lists of the websites presented in Section 3.2. As mentioned in Section 3.3, a

decline in the value of the hit ratio associated with a resource list corresponds to

change in that page’s structure. Note that our selected webpages are a combi-

nation of fast changing pages such as news websites as well as stable homepages

of large companies such as Apple.

We conducted five experiments over the span of five weeks, each separated

by one week. In each experiment, we first constructed the resource list of the

webpages and then used them to load the same pages every hour over an 8 hour

period. Figure 8 plots the average hit ratio and 95% confidence intervals of the

webpages among all the experiments as a function of the hours passed since

loading the page for the first time. We see that the highest amount of hit ratio

is achieved in the first hour, as expected. It can be observed that the amount of

change in webpage structures over an eight hour period is relatively low. The

difference between the average hit ratio in the first and eighth hours is less than

0.1 and the maximum amount of hour to hour change in the average hit ratio is

about 0.02. As a result, it should be feasible for the remote proxy to capture the

temporal changes in webpage structures by updating its resource list repository

in a timely manner (every three hours in our experiments). Notice that our
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Figure 8: Temporal Change in Webpage Structures. Drop in the value of the average

hit ratio over time is an indication of the change in the structure of the webpages.

However, the amount of such change is relatively low over an eight hour period.

selected three hour update interval is even less than the 4 hour update interval

proposed by [32] for capturing the flux in dependency structure of webpages.

3.4.2. Comparison with Benchmark

Next, we compare the performance of WebPro and the benchmark PBB,

using the webpages presented in Section 3.2. Because of the variability in load

times between consecutive page visits, we performed ten back to back exper-

iments with each page. Our experiments were conducted during quiet times

and the browser’s cache was cleared programmatically before each experiment.

Speculative loading at the proxy involves using resource lists associated with

user-requested webpages and in our experiments, the remote proxy used the re-

source lists that were constructed three hours before the actual measurements.

Given the abundance of computation and communication resources at the proxy,

it is feasible for the proxy to update its resource list repository of top visited

webpages every three hours. Moreover, the results of our experiment in the

previous section show that the amount of change in webpage structures within

three hours is negligible.

Figure 9 represents the cumulative distribution function of page load time

under these two approaches in WLAN and cellular settings. It can be seen that
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Figure 9: Cumulative Distribution Function of Page Load Time. WebPro outperforms

benchmark PBB. In the WLAN setting, under WebPro, 73% of the pages load in less

than 2 seconds. However, in the PBB approach, 28% of the instances complete loading

within 2 seconds. In the cellular environment, under WebPro, 78% of the page loads

complete within 6 seconds while under PBB, only 55% of the pages complete loading

in that time.

WebPro performs better in terms of page load time. Figure 9(a) shows that in

the WLAN environment, WebPro helps up to 73% of the pages to load in less

than 2 seconds, while with PBB only 28% of the instances complete loading in

that time. Similarly Figure 9(b) shows that in the cellular environment, under

WebPro, 78% of the pages finish loading within 6 seconds, but under PBB,

only 55% of the instances finish loading in that time. In general, across all

the experiments performed in the WLAN and cellular environments, our results

indicate that an average of 26% reduction in page load times can be achieved

by using WebPro. Figure 9(b) also confirms that in cellular networks, the same

webpages experience longer load times underscoring the importance of page load

time reduction in such networks.

Table 3 zooms into the details of these measurements by listing two of the

webpages with the lowest amount of improvement and two of the pages with the

highest reduction in load time. It shows that the improvements can range from

5% to 51%. Note that the variability in improvement across websites results
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Webpage
Page Load Time (ms)

Improvement
PBB WebPro

www.tripadvisor.ca 3835 3623 5.5%

www.deviantart.com 10675 10070 5.7%

www.flickr.com 6717 3278 51.2%

www.about.com 4456 2166 51.4%

Table 3: Improvement in Average Page Load Time.

from several factors, of which we mention only a few:

• The number of domains that web objects are spread across which affects

the number of unique connections required to fetch all the objects.

• The size of the website as indicated by the total number of bytes and also

the number of objects.

• Website design which creates different set of dependencies between oper-

ations of the page load process [20]. This can impose different orders for

retrieving web objects.

• Topological proximity between the client and original web server or an

edge server from content distribution networks (CDNs).

3.4.3. Effect of Page Hit Ratio

In a real deployment, it is possible that the remote proxy will not have the

resource lists associated with all the user requests. In that case, it will load the

page in a web engine and will send the whole page in a bundle to the client.

That is, the remote proxy will employ a combination of the web engine-based

and speculative loading approaches to satisfy user requests.

In light of this, our next experiment evaluates the improvements in page

load time in a more realistic scenario. Here we gradually increase the hit ratio

for the test webpages, that is we increase the fraction of user requests with a

corresponding resource list at the proxy. To distinguish this fraction from the hit

ratio metric introduced in Section 3.3, we call it page hit ratio. Using the same

webpages presented in Section 3.2, we conducted five experiment runs associated
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(b) Cellular Measurements

Figure 10: Back to Back load time for 20 popular webpages as a function of page hit

ratio. An increase in the page hit ratio reduces the total browsing time. In the case

of WLAN and cellular measurements, there is a maximum reduction of 28% and 39%,

respectively. The maximum improvements are achieved at 100% page hit ratio.

with each page hit ratio. At each run, the remote proxy uses resource lists for

a random set of pages that are determined based on the page hit ratio, and

employs ordinary page loading for the rest of the pages. As a clarifying example,

assume that the remote proxy is going to serve 20 distinct page requests. In

the case of 40% page hit ratio, for each run, proxy randomly selects 8 out of

the 20 pages to load using resource lists and employs web engine for loading the

remaining 12 pages.

Figure 10 shows the average value for the total time to visit all 20 webpages

back to back as a function of the page hit ratio. The results are represented with

95 percent confidence intervals. It can be seen that a higher page hit ratio leads

to a greater improvement in user’s browsing experience. The upper bound of

reduction in back to back page load time is 28% and 39% in the case of WLAN

and cellular measurements, respectively. These upper bounds correspond to a

100% page hit ratio in both experiments.

From Figure 10 we can see that the amount of improvement gained from

using resource lists depends on the page hit ratio. We observed in section 2.3

that adding all the new URLs to profiler’s URL list can result in high page hit
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ratios that are close to 100%. However, this may lead to a long update interval

in profiler and endanger freshness of resource lists. The immediate alternative

is to keep a relatively small summary of data stream (stream of URLs) rather

than storing all of them. As discussed before, we propose using the space saving

algorithm to identify top-k popular URLs of the stream.

To study the effectiveness of this approach in a real setting, we ran the

space saving algorithm over network traffic traces collected from the University

of Calgary’s Internet link. Similar to the experiment explained in section 2.3,

we used an AWK script to extract URLs of the landing pages from HTTP traces

and fed them to the space saving algorithm. We performed four experiments

over four different six-day intervals. At each experiment, we constructed the

top-k list for the URL stream of six consecutive days while measuring page hit

ratio separately for each day. Specifically, with each URL in the stream, we

first check the top-k list to determine whether it is among the current popular

elements (hit occurrence), and if so, we increment both its associated counter

in the list and a hit counter. Otherwise, we add the URL and its associated

counter to the top-k list in accordance with the space saving algorithm. Finally,

page hit ratio of each day is calculated as the number of hits during that day

divided by the total number of page requests received on that day.

Figure 11 shows the page hit ratios achieved for different values of k. It can

be seen that by increasing the size of the popular URLs list, k, the page hit ratio

increases. For example, in May 25-30 period, by increasing k from 100 to 1000,

the average page hit ratio increases from 67% to 83%. Figure 11 also shows that

in all four time periods, by keeping a popular URL list with only 1000 items, a

page hit ratio of above 80% can be achieved. By assuming an average 6 seconds

page load time on a Desktop computer [25], updating the resource lists of 1000

websites at the proxy will take only one hour and forty minutes. Comparing

such a short update time to our results in section 3.4.1 on the frequency of

change in webpage structures implies that the profiler would be able to capture

temporal changes in the structure of top-1000 popular webpages (a subset of all

the requests in the network) and still provide a high page hit ratio to its users.
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Figure 11: Page Hit Ratios achieved by applying the space saving algorithm to the

HTTP traces collected from the University of Calgary’s Internet link over four different

six day intervals. Increasing the size of the popular URLs list leads to higher page

hit ratios. Also, on average, keeping just the top-1000 popular URLs in the stream of

URLs that arrive at the proxy, results in over 80% page hit ratios.

3.4.4. Effect of Concurrent Connections

As mentioned in Section 2, WebPro uses multiple concurrent connections to

fetch all objects in the resource list associated with a webpage. Similarly, typical

web engines use concurrent TCP connections to avoid the head-of-line blocking

problem and reduce page load time [33]. However, in modern web engines there

is a limit on the number of concurrent connections per domain. For example,

the Chrome browser on Android mobile operating system limits the number

of simultaneous connections per domain to 6. The WebKit-based web engine

used in our implementation also caps the number of parallel connections per
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Figure 12: Average Page Load Time for a Wikipedia article page as a function of the

number of parallel connections. We see that increasing the concurrency reduces the

page load time. The benefits are greater for WebPro as it can fetch more subresources

concurrently.

host/port combination to 6. This limitation is imposed by Qt’s network access

manager class and hence it is also applied to our implementation of WebPro,

which uses the same class for network operations.

Our next experiment studies the effect of the number of concurrent connec-

tions on the performance of WebPro and PBB. Figure 12 shows the average

page load time for a Wikipedia article page under a varying number of maxi-

mum concurrent connections. The results are averaged over 10 runs and error

bars represent 95% confidence intervals. We observe a significant performance

improvement in both approaches by increasing the number of concurrent con-

nections. Specifically, increasing the concurrency limit from 2 to 8 results in 48%

and 23% faster page load time in the case of WebPro and PBB, respectively.

The justification for better performance of WebPro is that an increased number

of concurrent connections allows more subresources to be fetched in parallel.

We also found that increasing the concurrency limit beyond 6 leads to

marginal improvements in page load times. This can be due to several factors

creating a bottleneck for browsing performance. For example, by increasing

the concurrency beyond a limit, each connection obtains less bandwidth, which

results in longer delays when downloading objects. On the other hand, high
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concurrency requires more TCP connection states and buffers to be maintained

at the remote proxy and hence increases the processing overhead on the proxy.

Figure 12 also shows that WebPro benefits more from increased concurrency,

compared to the PBB approach. In particular, a 4% difference in page load time

between two approaches reaches 36%, by increasing the concurrency restriction

from 2 to 8. This is due to the fact that processing tasks such as JavaScript

evaluation can serialize the page load process in PBB’s web engine. However,

by using the resource list of a webpage, WebPro can utilize the full potential of

concurrent connections.

3.4.5. Effect of Network Delay

As mentioned in Section 2, WebPro improves the performance of mobile web

browsing by eliminating the initial RTT required to fetch the base HTML file

of a webpage. The length of this time varies depending on the distance between

the remote proxy and web servers, and the type of networks involved. Other

factors such as queuing delays or congested links can also contribute to the

variability in the end-to-end delay between the proxy and web servers. In order

to study the impact of network delay on page load time, we conducted a set of

experiments by artificially controlling the amount of packet delay in our tests.

We used the dummynet network emulator [34] to inject extra delay between

the remote proxy and web servers. Specifically, we added 100, 200, 300 and 400

ms extra delay to the round trip time between our device and the servers hosting

the objects referenced in a Wikipedia article page. Figure 13 shows the average

page load time under WebPro and PBB as a function of the network delay.

The results represent the average of ten runs along with the 95% confidence

intervals. It is observed that increasing RTT (i.e., network delay) leads to

a slower browsing experience in both approaches. In particular, raising the

amount of injected delay from 100 ms to 400 ms increases the average page load

time by 136% and 164% in WebPro and PBB, respectively.

Figure 13 also shows that with larger RTTs, the amount of savings achieved

by WebPro increases. This can be explained by the notions of dependency graph
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Figure 13: Average Page Load Time for a Wikipedia article page as a function of

network delay. We see that higher RTT values lead to higher page load times. By

increasing RTT, PBB incurs higher latencies compared to WebPro.

and critical path, introduced in [20]. The dependency graph of a webpage is a

directed acyclic graph with load process activities as nodes. The edges of this

graph represent the dependencies between those activities. Given that each

node is associated with the duration of completing its corresponding activity,

the simplest form of critical path is defined as the longest path in the dependency

graph. Since in PBB, the extra delay impacts all the resource loading nodes

of a critical path, the overall page load time will be affected by the aggregate

of those extra delays. However, WebPro avoids traversing the critical path by

downloading the objects in the resource list of a page.

3.4.6. Effect of Webpage Complexity

As mentioned in section 2.2, there are inter-object dependencies in today’s

webpages that lead to the serialization of network transfers required for loading

a page. One of the common cases of such dependencies is created when an

embedded object itself embeds other objects. For example a JavaScript object

can embed any kind of object and a CSS file can embed background images.

In this case, discovering the object referenced in a script file, requires another

RTT between the browser and the origin server. Because of such dependencies,

a browser (or a web engine) cannot discover all the embedded objects of a page
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right after fetching and parsing the base HTML file. On the contrary, resource

exploration becomes an iterative process in which local computations such as

parsing and script executions are interleaved with network transfers [12].

Other than eliminating the base HTML fetch time, one other reason for

WebPro’s superior performance is that it breaks such object level dependen-

cies by using a previously recorded resource list. To study the benefits that

come from eliminating inter-object dependencies, we carefully designed 4 web-

pages, all with the same set of embedded objects. The base HTML files of

these pages have slight differences but all are of the same sizes (174 Bytes)5.

Also in all the 4 pages, the final rendered page is the same which consists

of just a pigeon image on the screen. The major difference between these

pages is in the amount of dependency between their objects. Specifically, from

the first page (test1.html) to the last page (test4.html), we gradually increase

the length of the critical path in their dependency graphs. Figure 14 de-

picts the dependency graphs for these 4 pages. Test webpages are available

at http://pages.cpsc.ucalgary.ca/∼asehati/webpro/.

We hosted our test pages on an Apache web server running on a Linux

machine in our lab. Similar to the previous section, dummynet was used to

inject 200 ms emulated delay between remote proxy and the web server. Using

the same WiFi setting described in section 3.1, we loaded each test page ten

times with WebPro and PBB and computed the average speedup achieved with

WebPro6. Borrowing the definition from [35], WebPro’s speedup relative to

PBB, is the ratio of page load time using PBB to the page load time under

WebPro. Given that all the 4 pages have the same set of embedded objects

and their base HTML files are of the same size, WebPro results in the same

page load times for all of the test pages. The reason is that the resource list

5The size of the HTML files were made equal by inserting the required number of blank

spaces after the </html> tag.
695% confidence intervals were also computed but are not presented since they were very

small.
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Figure 14: Dependency graphs for four carefully designed test pages with the same

set of embedded objects. In the first test page (a), all the objects can be discovered

after fetching and parsing the base HTML file, giving it a critical path of length 1.

The second page (b) has a critical path of length 2, because the image object can

be revealed after fetching and evaluating the JavaScript object sc1.js. In the third

page (c) with critical path length 3, fetching and evaluating JavaScript object sc2.js,

reveals another JavaScript object, sc1.js, the fetching and evaluation of which reveals

the image object. Finally, in the last page (d) with critical path length 4, evaluating

sc3.js reveals sc2.js, evaluating sc2.js reveals sc1.js and evaluating sc1.js reveals the

image object.

files of all the pages point to the same set of embedded objects hosted on the

same server and also base HTML fetch times are the same. However, different

levels of complexity in these pages lead to different page load times under PBB

which by using a web engine goes through an iterative process of discovering

embedded objects.

Figure 15 depicts WebPro’s speedup relative to PBB as a function of critical

path length under two settings. In one setting (called first setting), persistent

connections were supported by the web server and in the other setting (called

second setting), persistent connections were disabled in the web server. Notice

that for a given test page, WebPro achieves the same load times under these

two settings, but in three out of the four test pages (test 2 through 4), PBB

achieves higher page load times under the second setting. The reason is that

WebPro’s proxy establishes 5 parallel TCP connections to the server right at

the beginning and by using each connection only once, does not get affected
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Figure 15: Speedup of WebPro relative to PBB as a function of critical path length.

As the critical path becomes longer, the speedup with WebPro increases. Also, for

a given webpage, speedups with WebPro are higher under the setting that does not

support persistent connections.

by the lack of support for persistent connections. However in PBB under the

second setting, every time that evaluating one object reveals another object, the

proxy will incur one extra RTT to establish a new TCP connection for fetching

the newly discovered object. For these reasons, we can see in Figure 15 that

for a given webpage, speedups with WebPro are higher if persistent connections

are not used between the proxy and the web server. The only exception is page

1 in which all the objects are referenced in the base HTML and there are no

inter-object dependencies.

From Figure 15, it can also be observed that speedups with WebPro increase

as the critical path becomes longer. By increasing the critical path length from

one to four, the speedup of 1.9 reaches 2.79 and 4.56 in the first and second

settings, respectively. Given that WebPro achieves the same page load times

for all pages, higher speedup comes from higher page load times under PBB.

Specifically, in the first setting, increasing the critical path length by one adds

one RTT to the page load time of PBB which is the time required to fetch and

evaluate the new referencing object inserted in the critical path. In the second

setting, extending the critical path by one edge adds two RTTs to the page

load time of PBB. One RTT is incurred for establishing a new TCP connection
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to the server and another RTT is incurred for fetching and evaluating the new

referencing object.

We observe that in Figure 15, under the first setting, WebPro achieves the

same speedups for page 1 and 2 which again is due to the fact that same page

load times are achieved with PBB for these two pages. Figure 16 shows the

waterfall of loading these two pages using PBB under the first setting. To load

test1.html, Web engine first establishes a connection to the server (we call it

connection 1) to fetch the base HTML file of the page. After fetching and parsing

the base HTML file, the web engine finds links to four new objects (img.jpg,

sc1.js, sc2.js, and sc3.js). Because of persistent connections, connection 1 is still

available and can be used for fetching one of the four newly discovered objects.

Specifically, web engine issues the request for sc1.js over connection 1 and at the

same time initiates three new parallel connections to the server (we call them

connections 2, 3 and 4). Notice that initiating a connection means the exchange

of SYN and SYNACK segments between the proxy and the server which takes

one RTT. On the other hand, considering the small size of sc1.js (65 bytes), it

takes one RTT to request and receive this file at the proxy. As a result, by the

time that those three connections are established, sc1.js has arrived at the proxy

and connection 1 has become available again. Therefore, at this point in time

(marked as 400 ms in Figure 16(a)), the proxy has 4 available connections to the

server (connections 1, 2, 3 and 4) but there are just 3 objects remaining from

the page (img.jpg, sc2.js and sc3.js). The proxy proceeds by using connection

1 for fetching img.jpg and at the same time issues requests for sc2.js and sc3.js

over two of the three newly opened connections (connections 3 and 4). Finally,

the proxy is able to fetch all the required objects of the page without using

connection 2. A similar explanation can be used to describe waterfall of page

test2.html which is downloaded at the proxy after four RTTs.

We note that the last three experiments study the behaviour of WebPro and

PBB under different system conditions, i.e. concurrency limit, network delay

and webpage complexity. Given that these conditions only affect the wired part

of the network between the remote proxy and web servers, we only presented
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Figure 16: Waterfall of loading (a) the first and (b) the second test page using PBB

with persistent connections enabled. In (a), test1.js, sc1.js and img.jpg and in (b)

test2.html, sc1.js and sc3.js are downloaded over the same connection.

the experimental results under WLAN setting. Similar behaviour is expected

in the cellular environment.

3.4.7. Energy Impact of Bundling

As mentioned in section 2, the remote proxy sends all the required objects

of a page in a bundle to the client. Transmitting a batch instead of a sequence

of small objects prevents the radio of the device from constant promotions and

demotions which can quickly drain the battery of the device. On the other

hand, as mentioned in section 2.4 (Incremental Rendering), bundling is not an

indispensable feature of WebPro and we can envision WebPro without bundling.

However, to verify the energy efficiency of WebPro with bundling, we per-

formed a set of experiments using real webpages. To do so, we used most of

the experimental setup described in sections 3.1 and 3.2 of the paper. The

only difference was that we emulated LTE network conditions using dummynet

network emulator. Specifically, dummynet was used to inject extra delay and

throttle bandwidth so that the RTT and throughput of our emulation would be

consistent with real-world settings reported in recent measurement studies [36].

In our experiments we measure the radio-on time which starts from the time

that the client receives the first set of bytes and ends with the reception of the

last byte. In order to consider LTE’s Radio Resource Control (RRC) state ma-

chine, we also incorporated tail time effect in our analysis. Specifically, idle gaps
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Webpage

Radio-on Time (ms)

ImprovementWebPro w/ WebPro w/o

bundling bundling

business.gov.au 2333 3395 31.3%

spark.co.nz 3229 3881 16.8%

mashreghnews.ir 3042 5225 41.8%

zju.edu.cn 3374 4521 25.4%

Table 4: Improvement in Average Radio-on Time with Bundling.

between consecutive objects that are greater than the tail time, only contribute

the amount of tail time to the radio-on time.

Table 4 presents our results for 4 different webpages that are among popular

sites in 4 different countries. All measurement results are averaged over 10 runs.

It can be seen that bundling reduces radio-on time which implies reduction in

energy consumption of mobile web browsing. However, the amount of improve-

ment achieved with bundling varies between different webpages. This is due

to a set of reasons such as different amounts of inter-object idle gaps, different

number of objects and differences in topological distance between the proxy and

the web servers.

4. Discussion

User Mobility: While we addressed the challenges arising from long access

delays of wireless networks, it should be noted that the mobility of users while

surfing the web can make accelerating mobile web even more challenging. Specif-

ically, mobility of users can cause unpredictable network conditions, rate vari-

ability and signaling overheads, all of which can contribute to the poor browsing

experience of mobile users. Considering the recent efforts on the application of

Multi-Path TCP (MPTCP) to mobile devices [37], mobility of users can be fa-

cilitated by using multiple interfaces (WiFi and cellular) available in most of the

mobile devices. In such a setting, MPTCP’s backup mode [38] will be used to

provide the user with a seamless transition experience as he/she walks between

WiFi APs or walks out of the WiFi coverage.
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WebPro in Error-Prone Wireless Networks: In WebPro, the transmission

of bundles between the client and the remote proxy is performed over TCP. This

implies that the TCP protocol will provide a reliable channel service to our sys-

tem, WebPro. Specifically, TCP will react to any packet loss by retransmitting

the missing packets. In other words, the granularity of TCP’s retransmission

is in the packet level and from this perspective, there is no difference between

transmitting individual objects versus transmitting bundles over the wireless

link.

5. Related Work

There is a large body of work on improving the performance, energy usage

and wireless data consumption of web browsing on mobile devices. Here, we

classify the work that is most relevant to ours.

Client-based Solutions. Traditional solutions based on client-side caching

and prefetching fall in this category. As an example, the authors of [6] used

a machine learning approach to model the web browsing signature for each

individual user. This model can predict the future web access patterns, enabling

a prefetching scheme to download web content before the actual user request.

Recently, there have been measurement studies to assess the effectiveness of

client-side caching and prefetching in improving the performance of mobile web

browsing. For instance, Ma et al. [39] conducted comprehensive measurements

to characterize the performance of mobile web caching. They identified redun-

dant transfers and miscached resources (providing out-of-date resources from

cache) as the two main problems that negatively affect mobile web caching per-

formance. Their investigations revealed Same Content (same resources having

different URLs at different times), Heuristic Expiration and Conservative Ex-

piration as the root causes of unsatisfactory cache performance. Wang et al. [7]

used a web dataset collected from 24 iPhone users over a year to quantitatively

evaluate client-only caching and prefetching. Their results indicate that there is

39



a limited efficiency gain due to caching and prefetching when it comes to mobile

web browsing. Consequently, they proposed a new technique called speculative

loading which predicts and loads the required resources of a page in parallel with

the base HTML file of the page. However, their approach requires changing the

mobile browser extensively, which limits its practical feasibility.

One major drawback of the client-only solutions is that any incorrect pre-

diction can lead to downloading data that the user may never use. While not a

significant problem in wired networks, this can waste the scarce resources of mo-

bile battery and wireless bandwidth and hence harm user’s experience rather

than improving it in wireless networks. In order to accurately balance costs

and benefits of prefetching, authors of [5] proposed a system level solution that

provides explicit prefetching support to mobile applications. However, their

solution requires extensive modifications of the existing applications. Another

drawback of client-only solutions is that they cannot observe the aggregate be-

haviour of users and benefit from their common browsing activities which is at

the heart of traditional caching techniques.

Protocol-based Solutions. SPDY by Google [9] is a new application layer

protocol primarily designed for reducing latency of web browsing. SPDY mul-

tiplexes multiple data streams over a single TCP connection. It also enables

unsolicited push of embedded objects by web servers which can speed up the re-

source loading process in the browser. Combined with other advanced features,

SPDY can be very effective in reducing the web browsing delay [9]. However

this protocol relies on web server support and given that only 6.3% of all web-

sites support SPDY [40], its impact so far has been rather limited. Also the

next generation HTTP protocol, HTTP/2, which was standardized on Febru-

ary 2015, evolved from SPDY [41] and therefore inherits most of its features.

However, there are a few differences between SPDY and HTTP/2.0 for example

in their header compression algorithms [42].

With server push being one of the main novelties in SPDY/HTTP 2.0, there

have been several proposals to resolve some of its limitations or to further im-
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prove the efficiency of this feature. For example, notice that the server is oblivi-

ous of client’s cache status and by pushing content that already exists in client’s

cache, it can waste bandwidth and battery of the mobile device. To address

this issue, Khalid et. al. [11] proposed sending cache hints from client to server

in the form of bloom filters. To further adjust the performance of server push,

they also proposed the ideas of half-push and half-pull. In half-push, the server

pushes the content to an edge proxy rather than the client and in half-pull the

client requests the content to be brought to the proxy without traversing the

last mile. Finally, authors of [12] proposed a novel framework that uses the

server push feature in HTTP/2 to preemptively push resource lists of the re-

quested page and all its subpages, to the client. By using these cached meta

files, a future request for a subpage can be issued in parallel with the subre-

source fetching requests of that page. In this scheme, client incurs little extra

bandwidth overhead due to meta data transfers but can benefit from speedup

in downloading subpages.

Infrastructure-based Solutions. Some of the previous work in this category

has tried to improve the energy efficiency of mobile web browsing. Aggrawal et.

al. [43] proposed a cloud-based proxy system to reduce the energy consumption

of the smartphone’s data communication by employing aggregation, redundancy

elimination and opportunistic scheduling when downloading web objects from

the network. Wang et. al. [16, 17] presented a dual-proxy architecture called

EEP that utilizes bundling and compression to reduce the energy consumption

of web browsing in 3G/WLAN networks.

There are also studies that try to reduce both power consumption and delay

of mobile web browsing. For example, Zhao et al. [8] proposed a Virtual-Machine

based architecture in which a VM-hosted proxy performs all the computation

expensive tasks of mobile browsing and sends a screen copy of the rendered page

to the smartphone. However, as mentioned in [4], offloading compute-intensive

operations when loading a webpage has negligible benefits compared to the

improvements resulting from resource loading optimizations. Also Sivakumar et.
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al. [18] proposed PARCEL which uses the same architecture as in EEP while

providing the proxy with the flexibility to optimize the bundle size in a cellular

friendly manner.

Finally, this category includes studies with the goal of reducing latency of

mobile web browsing. Some of them achieve this goal by reducing the amount

of data transmitted because of web browsing [15, 44], while others employ so-

lutions that directly deal with network access delay [45]. For example, Opera

Mini [15] and Amazon Silk [44] are cloud-based browsers that offload portions

of the page load process to cloud-based proxies. These browsers are widely used

today based on the common belief that using compression proxies reduces data

usage of mobile web and thus, reduces latency. However, the results of a re-

cent measurement study in [46] reveals that using compression proxies in good

network conditions can increase page load time rather than improving it. As

a result, they design and implement a framework called FlexiWeb that decides

whether to fetch a resource from middle box or the original server based on the

object size and the network conditions. In line with the findings of [46], a recent

study by Sivakumar et. al. [47] also shows that cloud-based browsers are not

always superior in terms of responsiveness and energy consumption, especially

in dealing with client interactions.

Instead of directly reducing page load time in mobile web browsing, authors

of [32] proposed KLOTSKI that aims at improving mobile user’s quality of

experience by delivering as many high utility resources as possible within tol-

erance limits of mobile users (3-5 seconds). To this end, KLOTSKI employs a

cloud-based proxy to capture and update different properties of websites such

as dependency structure, resource sizes and positions on rendered displays and

stores them in the form of a compact fingerprint. When loading a page, those

fingerprints are used to dynamically reprioritize delivery of different resources.

The closest work to ours is EEP by Wang et. al. [16, 17] and PARCEL by

Sivakumar et. al. [18]. While their focus is on reducing energy consumption by

batching and compression [16, 17, 18], our main goal is latency reduction using

the speculative loading technique. These solutions are orthogonal to each other
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and can be used in combination to create a solution that is both energy efficient

and low latency.

6. Conclusion

In this paper, we proposed a system called WebPro for reducing the latency

of mobile web browsing. WebPro is designed to eliminate the initial round-trip

time required to discover the list of objects referenced in a webpage by using a

previously recorded resource list of the webpage. Using measurements involving

real world websites, we showed that within a few hours, the amount of change in

the structure of webpages is relatively low, and hence it is feasible for WebPro

to maintain an updated resource list of popular websites. We performed a de-

tailed set of experiments to assess the efficiency of a prototype implementation

of the system. Our results indicate that WebPro outperforms state-of-the-art in

terms of the page load time, though the amount of improvement varies between

webpages. This work is a step toward optimizing the existing wireless infras-

tructure and mobile applications for an improved quality of experience. In the

future, we plan to incorporate opportunistic scheduling in WebPro to further

reduce the transmission energy consumption on the mobile device during web

browsing. We also intend to build an analysis model of WebPro in an attempt

to capture the relationship between different parameters of the system.
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