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Abstract—This paper considers the problem of uplink schedul-
ing in wireless networks supporting successive interference can-
cellation (SIC) at the physical layer. By allowing concurrent inter-
fering transmissions, SIC enables multi-packet reception at the
receiver resulting in increased network throughput. Specifically,
we consider maximum throughput scheduling and proportional fair
scheduling problems and study optimal and heuristic algorithms
for these problems. We prove that the maximum throughput
scheduling problem is NP-hard and develop a throughput effi-
cient polynomial time greedy algorithm for the problem. While
being throughput efficient, the maximum throughput scheduling
can lead to highly unfair rates among the users. The proportional
fair scheduling, on the other hand, is not throughput optimal but
achieves proportional fairness among the users. For scheduling
multiple users in a single time-slot, we show that there exists an
algorithm that solves the proportional fair scheduling problem
in polynomial time. For scheduling in multiple time-slots, we
develop a greedy algorithm that computes a highly fair schedule
in polynomial time. Numerical results are also provided to show
the utility and efficiency of the proposed scheduling algorithms
in various simulated networks.

I. INTRODUCTION

Wireless communications are subject to interference and
noise. While increasing the transmission power can help
reduce the noise effect and hence increase the transmission
rate, it cannot mitigate the effect of interference. On the
contrary, increasing the transmission power, when not carefully
controlled, can increase the interfere among nearby nodes
resulting in reduced network throughput. While noise is usu-
ally structureless, interference has a specific structure as it
is caused by other transmissions in the network or nearby
networks. With interference cancellation, the structured nature
of interference is exploited in order to increase the throughput
of wireless networks.

Scheduling mechanisms are widely used in wireless net-
works to prevent multiple simultaneous transmissions thereby
eliminating interference. While the lack of interference is a
desirable feature from the perspective of individual users,
preventing simultaneous transmissions results in a smaller net-
work throughput. Successive interference cancellation (SIC)
is a multiuser detection technique that can greatly increase
the throughput of wireless networks by allowing simultaneous
transmissions. In contrast to the traditional single user at a
time transmission paradigm, using this physical layer tech-
nique, multiple users can simultaneously transmit if a proper
transmission rate is assigned to each user.

While conventional receivers treat interference as random

noise, a SIC receiver treats the interference as a structured
signal and tries to decode and remove it from the original
signal [1]. In this technique, the receiver, decodes one of the
signals first considering the rest of the signals as noise. After
decoding the first signal, it reconstructs the corresponding
analog signal and subtracts it from the original composite
signal. At this stage, the remaining signal is free from the
interference of the first decoded signal. The process continues
until all the signals are decoded. Since at every stage, the
remaining signals are treated as noise, the maximum rate
achievable by a user depends not only on its received signal
power but also on the order at which its signal is decoded.

The key advantage of SIC compared to other multi-user
detection techniques such as joint detection [2] is that SIC
receivers are architecturally similar to traditional non-SIC
receivers in terms of hardware complexity and cost [3]. This
makes SIC more practical for implementation in wireless
systems. A SIC receiver uses the same decoder to decode the
composite received signal at different stages of decoding. As a
result, neither a complicated decoder nor multiple antennas is
required to increase the throughput of the network [1]. It is also
known that other multiple access techniques such as CDMA
and OFDMA are no more efficient than SIC [4, Ch. 6].

SIC can be employed for both uplink [5] and downlink
[6] transmissions. However, at the uplink direction, SIC is
able to achieve a higher throughput since the total received
power is higher. In this paper, we study the problem of
uplink scheduling with successive interference cancellation.
Although, scheduling and MAC issues have been extensively
studied in traditional wireless networks [7], there are only a
few works that have explicitly considered interference cancel-
lation.

In the broader context of multi-packet reception, there
exist several work on scheduling and MAC protocols [8]–
[10]. Nevertheless, non of them are applicable to SIC-based
networks. For instance, Zhao and Tong [8] develop a MAC
protocol with multi-packet reception capability assuming that
a reception matrix is available for the network. A reception
matrix specifies the probability that k packets are successfully
received when n overlapping transmissions are made in the
network. While this model provides a useful abstraction for a
general multi-packet reception network, it does not accurately
capture the underlying mechanisms of SIC-based networks
such as selection of the transmission rates. Other works on
multi-packet reception, such as [9] and [10], assume even a



simpler model in which a receiver is capable of receiving
up to k packets simultaneously regardless of the transmission
rates and channel conditions. The closest work to ours is due
to Kumaran and Qian [11] where the authors consider the
uplink scheduling problem with SIC. However, their work
differs from ours in that they only consider the case of
scheduling multiple transmissions in a single time-slot in order
to maximize throughput.

Our main contributions in this paper include the following:
• We mathematically model maximum throughput schedul-

ing (MTS) and proportional fair scheduling (PFS) prob-
lems in wireless networks with SIC. Our models are
reasonably abstract, yet capture the key features of SIC-
based systems.

• We prove that the maximum throughput scheduling prob-
lem is NP-hard by reducing the problem to the well-
known number partitioning problem. A greedy algorithm
is then developed that computes a throughput efficient
schedule in polynomial time.

• For scheduling multiple users in a single time-slot, we
show that there exists a polynomial time algorithm for
the proportional fair scheduling problem. For scheduling
in multiple time-slots, we develop a greedy algorithm that
computes a highly fair schedule in polynomial time.

The rest of the paper is organized as follows. In Section II,
we describe our system model and assumptions. Section III
studies the maximum throughput scheduling problem, while
Section IV is devoted to the proportional fair scheduling
problem. Numerical results are presented in Section V. Our
concluding remarks are discussed in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

A. Network Model
The network consists of a set of wireless devices (referred

to as nodes or users) communicating with a single receiver
(e.g., an access point in a wireless LAN or a base station
in a cellular network). The time is divided into scheduling
frames. Scheduling is done once every scheduling frame, at
the beginning of the frame (this is similar to the scheduling
structure of WiMAX networks [12]).

In every scheduling frame z, a set of users Nz =
{1, 2, . . . , nz} are scheduled for uplink transmission. Every
scheduling frame is divided into k time-slots. The aim of the
scheduler is to schedule the set of nodes Nz in the k times-lots
so that a system utility function is maximized. In this work,
we consider two utility functions, namely the sum of the user
rates and the sum of the logarithm of the user rates. A detailed
description of these utility functions and the justification for
considering them is presented in Section II-E.

We only consider the case of |Nz| = nz > k, since
the solution for the case of nz ≤ k is trivial. Each node
is scheduled exactly once in a scheduling frame, thus more
than one node might be scheduled in a time-slot (recall that
scheduling simultaneous transmissions is allowed with SIC).

In an ideal world, to maximize the system throughput, all
nodes have to be scheduled in a single time slot [4]. However,

due to practical limitations, only a few overlapping signals can
be decoded successfully [1]. One reason is that the decoding
time in SIC linearly increases in the number of overlapping
signals. The linear decoding time causes practical difficulties
with large number of users [4]. In our model, such limitations
can be readily captured by controlling k and nz.

B. Throughput Model
The set of received powers of users at the receiver is

denoted by Pz = {p1,z, p2,z, . . . , pn,z}, where pi,z is the
received power of user i at scheduling frame z. For notational
simplicity and wherever clear, we will omit the subscript z
from the equations. Note that we do not consider any specific
signal propagation model, hence our results are very general.
Without loss of generality, we assume p1 < p2 < · · · < pn.

We define the throughput of a user as the maximum error-
free rate achievable by that user, and consider the Shannon
capacity formula in our throughput analysis.

Definition 1 (Single user throughput): The shannon capac-
ity function τ : R+ ×R+ → R+ is defined as follows:

(1)τ (p,N) = log
(

1 +
p

N

)
bits/s/Hz,

where p is the received power, and N is the noise plus
interference power at the receiver.

C. Interference Cancellation
Let Xi denote the received signal of user i at the receiver.

Assume that m ≥ 1 users simultaneously transmit in the
considered time slot. Then the composite signal received at
the receiver is expressed as

(2)X =
m∑

i=1

Xi + Z,

where Z denotes the noise at the receiver. Note that the
amplitude and phase of transmitted signals is affected by the
wireless channel. The received signal Xi includes such effects.
Let pi and N0 denote, respectively, the signal power of Xi and
noise power at the receiver.

A SIC receiver decodes the composite signal X in different
stages. Assume that the signals are decoded by the receiver
in the order Xm, Xm−1, . . . , X1. That is, when decoding
Xm, the rest of the signals are treated as noise. There-
fore, the maximum rate achievable by user m is given by
τ(pm, N0 +

∑m−1
i=1 pi), whereas the maximum achievable rate

by user 1 is given by τ(p1, N0). Since the interference power
for each signal Xi depends on the order of decoding, it is
apparent that the throughput achieved by each user depends
not only on its corresponding received power but also on the
order at which it is decoded.

To cancel out the signal Xi from the composite signal
X , the SIC receiver first encodes the decoded bits using the
same modulation technique used at the transmitter of user i to
reproduce the analog signal transmitted by the user. Then, it
applies the channel transfer function to the reproduced analog
signal to obtain an estimation of Xi. Obviously, the receiver
should have an accurate estimation of the channel transfer
function, otherwise, it cannot reconstruct Xi correctly [1].



D. Sum Throughput

We define the sum throughput of a set of received signal
powers as the maximum rate achievable in a single time slot
subject to some noise power N0.

Definition 2 (Sum throughput): For a given vector of re-
ceived powers P = 〈p1, . . . , pm〉, and some noise power N0,
the sum throughput function ξ : R×Rm → R is defined as

(3)ξ (N0, 〈p1, . . . , pm〉) =
m∑

i=1

τ
(
pi, N0 +

i−1∑
j=1

pj

)
.

The sum throughput function defines the throughput of the
system in a single time-slot. While, as we have already seen,
the throughput of individual users depends on the order of
decoding, the sum throughput of a set of users is independent
of the order of decoding. The following lemma states this
property.

Lemma 1: The order of decoding, does not affect the sum
throughput. More precisely, we have the following result

(4)ξ (N0, 〈p1, . . . , pm〉) = τ
( m∑

i=1

pi, N0

)
.

Proof: The proof is simply done by expanding the right
hand side of (3) and using well-known properties of the
logarithm function (please refer to our technical report for
details [13]).

Since the order of decoding does not change the sum
throughput, thereafter, instead of writing ξ(N0, 〈p1, . . . , pm〉)
we will use the notation ξ(N0, {p1, . . . , pm}). In general, pi’s
can be any real number. However, in practice, only a finite set
of power levels are implemented. Thus, pi’s can be properly
scaled and represented by positive integers. Without loss of
generality, in the remaining of the paper, we assume that the
set of powers are positive integers. Although, our results hold
without this assumption, it simplifies some of the proofs and
derivations presented in Sections III and IV.

E. Proportional Fairness

In addition to the system throughput, fairness is an important
factor in wireless networks. Fairness can be defined in several
ways. In this paper, we consider proportional fairness [14],
which is widely implemented in existing wireless systems [7].
In general, the system throughput is affected by the particular
consideration of fairness in the system. While some fairness
criteria may sacrifice the system throughput for fairness, the
proportional fairness achieve a reasonable tradeoff between
fairness and throughput [7].

Definition 3 (Proportional fairness): Assume that schedule
Γ gives the throughput vector ν = 〈ν1, . . . , νm〉, where
νi denotes the throughput of user i. A schedule Γ∗ with
throughput vector ν∗ = 〈ν∗1 , . . . , ν∗m〉 is proportionally fair
if and only if the following condition holds for any other
schedule Γ with throughput vector ν:

(5)
m∑

i =1

νi − ν∗i
ν∗i

≤ 0 .

It has been shown that a proportionally fair schedule maxi-
mizes the sum of users’ utilities (i.e., the system utility) where
the utility of each user is defined as the logarithm of its
throughput [14]. The following definition and lemma states
this property formally.

Definition 4 (Fairness index): For a given sequence of re-
ceived powers P = 〈p1, . . . , pm〉, and some noise power N0,
the proportional fairness index φ : R×Rn → R is defined as

φ (N0, 〈p1, . . . , pm〉) =
m∑

i=1

log

(
τ
(
pi, N0 +

i−1∑
j=1

pj

))
. (6)

Lemma 2: A schedule Γ is proportionally fair if it maxi-
mizes the fairness index φ.

Please see [14] for a proof.

III. MAXIMUM THROUGHPUT SCHEDULING

A. Problem Formulation

In this section, we study the problem of maximum through-
put scheduling (MTS) in a network with SIC. From Lemma 1,
we already know that the order of decoding in a single time
slot does not affect the sum throughput. Consequently, for
scheduling in multiple time slots, we only need to assign
the users to the proper time slots in order to maximize the
throughput (i.e., we don’t need to specify the order of decoding
in each time slot). Later, we will show that MTS, even for the
special case of having only two time slots, is NP-hard.

In the maximum throughput scheduling problem, we want
to schedule m nodes in k time slots so that: (i) every node
is scheduled exactly once, and (ii) the sum throughput (see
definition 3) over all time slots is maximized. The following
definition states the problem formally.

Problem 1 (MTS): For a given set of received powers P =
{p1, . . . , pm}, an integer 1 ≤ k < m, and some noise
power N0, partition P into k subsets P1, P2, . . . , Pk such that
∪k

i=1Pi = P and ∀i, j Pi ∩Pj = ∅, so that
∑k

i=1 ξ(N0, Pi) is
maximized.

B. Computational Complexity

Lemma 3: Problem 1 is NP-hard.
Proof: To prove the NP-hardness of Problem 1 we will

show that there exists a polynomial reduction from the well-
known number partitioning problem to Problem 1. First, we
define the number partitioning problem.

Problem 2 (Number partitioning): Given a set of positive
integers {a1, . . . , an}, find a subset A ⊂ {1, 2, . . . , n} so that
the following is minimized:

(7)E(A) =
∣∣∣∑

i∈A

ai −
∑
j /∈A

aj

∣∣∣ .
Problem 2 is a well-known NP-complete problem [15].
For a given set of positive integers P = {p1, . . . , pn}, we

will show that the solution of Problem 1 for an arbitrary
N0 > 0 and k = 2 is the same as the solution of the
number partitioning problem. That is, if P is partitioned into



P1 and P2 so that ξ(N0, P1) + ξ(N0, P2) is maximized, then
|(
∑

a∈P1
a)− (

∑
b∈P2

b)| is minimized:

ξ (N0, P1) + ξ (N0, P2)

= τ
(
N0,

∑
a∈P1

a
)

+ τ
(
N0,

∑
b∈P2

b
)

= log
( (N0 +

∑
a∈P1

a)(N0 +
∑

b∈P2
b)

N2
0

)
.

(8)

It is well known that if the summation of two numbers is con-
stant, their product is maximized when their difference is mini-
mized. Since (N0+

∑
a∈P1

a)+(N0+
∑

b∈P2
b) = 2N0+

∑
i pi

is constant, (8) is maximized when |(
∑

a∈P1
a)− (

∑
b∈P2

b)|
is minimized.

C. Efficient Greedy Scheduling

Since the MTS problem is NP-hard, we develop an efficient
polynomial time greedy algorithm for it called GreedyMax.
Alg. 1 concisely describes GreedyMax. The algorithm, first
sorts the received powers in a descending order. Then, starting
from the node with the largest received power, it assigns the
node to the time slot that maximizes the system throughput
that can be achieved so far. Finally, it sorts the nodes in each
time slot with respect to their received powers in an ascending
order. The purpose of the final sorting is to make the algorithm
as fair as possible without reducing the sum throughput of the
system (as stated in Lemma 1).

Alg. 1 GreedyMax
P ← list of received powers
Sort P in descending order
S ← ∅
for i← 0 to length(P )− 1 do

Schedule Pi at the time slot that maximizes ξ(N0, S)
end for
Sort Pi’s in each time slot of S in ascending order
return S

IV. PROPORTIONAL FAIR SCHEDULING

A. Problem Formulation

In this section, we study the problem of proportional fair
scheduling (PFS) with SIC. This problem is similar to the MTS
problem, but the objective function is different. The following
formally defines the problem.

Problem 3 (PFS): Given a set of received powers P =
{p1, . . . , pm}, an integer 1 ≤ k < m, and some noise power
N0, partition P into k vectors P1, . . . , Pk so that ∪k

i=1Pi = P
and ∀i, j Pi ∩ Pj = ∅ in order to maximize

∑k
i=1 φ(N0, Pi).

Since the order of decoding affects the fairness index φ(.),
we partition the set P into vectors, not sets. PFS, in contrast
to the MTS problem, not only assigns the users to time slots
but also specifies the order of decoding in each time slot. We
next prove that in PFS, the strongest signal is decoded first,
the second strongest signal is decoded next, and so on until the
weakest signal is decoded. We show that any other decoding
sequence is not proportionally fair.

Lemma 4: Assume {P1, . . . , Pk} is a solution of problem 3,
where Pi = 〈pi

1, p
i
2, . . . , p

i
ni
〉. The following holds

pi
1 ≤ pi

2 ≤ . . . ≤ pi
ni
. (9)

Note that (9) is a necessary but not sufficient condition.
Proof: The proof is by contradiction. Assume for some

index j, pi
j > pi

j+1. It can be shown that [13]:

(10)φ(N0, 〈pi
1, . . . , p

i
j , p

i
j+1, . . . , p

i
ni
〉)

< φ(N0, 〈pi
1, . . . , p

i
j+1, p

i
j , . . . , p

i
ni
〉),

which completes the proof. Please refer to our technical report
for the details of the proof [13].

B. Efficient Greedy Scheduling

Utilizing Lemma 4, we develop a polynomial time greedy
algorithm for the PFS problem. The algorithm called Greedy-
Fair is listed in Alg. 2. The algorithm sorts the received powers
in an ascending order. Then, starting from the smallest received
power, it assigns the nodes to the time slot that currently has
the minimum sum of received powers (i.e., minimum noise
power for the currently being scheduled node).

Alg. 2 GreedyFair
P ← list of received powers
Sort P in ascending order
S ← ∅
k ← number of time slots (i.e., frame size)
for i← 0 to length(P )− 1 do

Schedule Pi at the time slot t = (i mod k) of S
end for
return S

Though we do not have a formal proof yet, we conjecture
that GreedyFair computes the optimal solution of the PFS
problem. The reasoning is that: (i) GreedyFair is compatible
with the result of Lemma 4, and (ii) in our simulations over
millions of test cases, the schedule computed by GreedyFair
always matched the schedule computed with a brute force
search. We leave this as a topic for future research.

V. NUMERICAL RESULTS

In this section, we provide numerical results to show the
utility and efficiency of the proposed scheduling algorithms in
various simulated network scenarios.

A. Simulation Setup

Simulations were conducted using a custom built simulator
written in the Java programming language. For simulations,
we consider a disk-shape network with radius 1000, where
the access point is places at the center of the disk. In each
simulation run, n nodes are positioned in the network fol-
lowing a uniform distribution over the disk area. To compute
the received powers at the access point, we use a free-space
path loss model in which the received power is inversely
proportional to the square of the distance from the access
point. Recall that our results and algorithms are insensitive



to the specific propagation environment as we have assumed
that the access point has knowledge about users’ channel
information (as is the case in 3G/4G networks). The noise
power at the receiver is set to unity in every simulation run.
Each point in the plots is computed by averaging over 50
simulation runs with different seeds.

We compare both the throughput and the fairness of the
proposed algorithms. We use the sum throughput (Definition 3)
over all time slots as the measure of throughput. Furthermore,
we use the Jain’s fairness index [16] as the measure of fairness
for comparison. For a given set of throughputs {x1, . . . , xn},
the Jain’s fairness index is defined as follows:

J({x1, . . . , xn}) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

.

B. Simulated Scheduling Algorithms
In addition to the GreedyMax and GreedyFair algorithms

presented in subsections III-C and IV-B, we simulate two other
scheduling algorithms for comparison purposes:
• MaxThroughput: This is a brute force search algo-

rithm to find the schedule that maximizes the system
throughput. Once an schedule is found, the nodes that
are scheduled in the same time slot are sorted by their
received powers in an ascending order. The sorting step
improves the fairness of the algorithm without affecting
its sum throughput (see Lemma 4).

• Random: This algorithm randomly assigns the nodes to
the time slots such that at least one node is assigned to
each time slot. Once an schedule is found, the nodes that
are scheduled in the same time slot are sorted by their
received powers in an ascending order.

C. Simulation Results
Since MaxThroughput takes exponential amount of time to

complete, running the algorithm for more than a few number of
nodes is extremely time consuming. Thus, in our initial set of
results, where all four scheduling algorithms are compared, we
vary the number of nodes in the network from 5 to 10. In the
subsequent simulations, we do not simulate MaxThroughput,
and instead vary the number of nodes from 10 to 50.

1) Initial Set of Results: Fig. 1 shows the throughput perfor-
mance of different scheduling algorithms. In this experiment,
frame size is set to K = 2 time-slots. The y-axis shows the
sum throughput achieved by each algorithm as a percentage of
the optimal sum throughput achieved by MaxThroughput. It is
observed that the greedy algorithms achieve throughput values
that are very close to that of MaxThroughput, while clearly
outperforming Random. Moreover, due to the logarithmic
behavior of our throughput function, the sum throughput is
relatively insensitive to the scheduling algorithms when the
total received power at the receiver is large. 1

1Please note that the non-uniform fluctuations seen in some plots
(e.g., the throughput of Random for 7 nodes in Fig. 1) are the artifact
of our relative performance measures. Both the throughput percentage
and fairness index are relative metrics. For all algorithms, the absolute
throughput values are uniformly increasing by increasing the number of
nodes.
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Fig. 2 shows the Jain’s fairness index for the four algo-
rithms. It is observed that the GreedyFair algorithm results in
the highest fairness index indicating a fair allocation of trans-
mission rates among the users. Interestingly, GreedyMax and
MaxThroughput perform quite similarly in terms of fairness;
both performing worse than Random.

2) Extended Set of Results: In this subsection, we study the
performance of scheduling algorithms GreedyMax, Greedy-
Fair and Random for different network configurations in terms
of the frame size and number of users. Simulation results
for throughput and fairness are presented in Figs. 3 and 4,
respectively. The number of nodes varies from 10 to 50, while
the scheduling frame size K is set to 5 and 10 time-slots. The
sum throughput is normalized by the frame size in each case
resulting in a higher throughput when frame size is K = 5.

These results essentially confirm the behavior that was
observed in Figs. 1 and 2. That is, GreedyFair and GreedyMax
are both throughput efficient but GreedyFair achieves a higher
fairness index as well. An interesting observation is that by
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increasing the frame size from K = 5 to K = 10, the fairness
of all algorithms improves. This behavior is expected as a
larger frame size distributes users more sparsely; scheduling
fewer users in each time slot.

To summarize, our simulation results indicate that the
GreedyFair algorithm is considerably efficient in terms of
throughput, while achieving a high degree of fairness among
the users. This is a polynomial time algorithm that can
potentially be implemented in practice.

D. Discussion

In practice, there are several issues with SIC that prevent
real systems to reach the theoretical limits. For example, we
assumed that signals are decoded in an error-free manner.
However, in case an error occurs while decoding a signal,
it is unlikely that the signal is correctly removed from the
composite signal. Thus, at later stages the signals cannot
be decoded correctly [4]. Also, due to imperfect channel
estimation and analog-to-digital quantization errors, the analog

version of a decoded signal cannot be perfectly reconstructed.
Thus, the interference removal might be imperfect, which
causes lower throughput gains at later stages [17].

VI. CONCLUSION

In this paper, we considered the problem of uplink schedul-
ing in wireless networks supporting SIC at the physical layer.
We presented theoretical and simulation results on efficient
and fair uplink scheduling. We proved that the maximum
throughput scheduling problem is NP-hard. We then developed
GreedyMax and GreedyFair, two greedy scheduling algorithms
with polynomial time complexity, to solve the max throughput
and proportional fair scheduling problem, respectively. Our
simulation results indicate that GreedyMax and GreedyFair
both achieve throughput that is close to the optimal, while
GreedyFair is highly fair as well. For the future work, we plan
to investigate our conjecture that the GreedyFair algorithm is
in fact proportionally fair.
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