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Abstract—The Controller Area Network (CAN) bus has been
a widely implemented standard for in-vehicle communication
between vehicle subsystems. However, since CAN was never
designed with a focus on security, attackers can exploit the lack
of message authentication in CAN to inject crafted malicious
payloads to disable critical systems onboard the vehicle. While
previous works in literature focus on detecting deviations in the
normal behavior of the bus, they merely focus on individual
sensors. Hence they fail to identify stealthy attacks that do
not cause individual sensors to deviate substantially from their
expected behavior but still have a significant impact on the bus
state. Further, such approaches often impose a computational
strain on the deployed system due to the high magnitude of con-
sumed resources at run-time. To this end, we propose CANLite, a
lightweight anomaly detection system utilizing multitask learning
to detect such subtle deviations while significantly reducing the
memory footprint. We trained and evaluated our model against
a state-of-the-art baseline approach. Our results indicate that
CANLite reduces the memory footprint by 50% while still
achieving the same level of detection performance as the baseline.

I. INTRODUCTION

Recent advancements in the field of automotive electronics
has enabled modern cars to interact and be more aware
of their surroundings. At present, vehicles can perform a
plethora of functions simultaneously to ensure the safety of
passengers and also those around them. These range from tasks
such as warning the driver of an unlocked door to complex
actions such as semi-autonomous driving. The responsibility
of reliably executing such advanced behaviors falls onto the
Electronic Control Units (ECUs) that drive the corresponding
actuators based on the information retrieved from the sensors
in the vehicle. The ECUs are interconnected through the
Controller Area Network (CAN) bus through which data points
are exchanged in real-time. The CAN bus offers a fault-tolerant
medium to effectively relay time-critical data and hence has
been the de-facto standard for in-vehicle communication net-
works over the past two decades [1]. However, CAN lacks
basic security features such as authentication and encryption
to safeguard vehicular subsystems from attackers trying to
gain unauthorized access. Historically, in-vehicular networks
were typically isolated and therefore executing an attack
required physical access to the vehicle [2]. But currently,
the incorporation of complex wireless technologies such as
C-V2X and Bluetooth has provided a wider attack surface
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for malicious actors to leverage. As such, an attacker can
remotely monitor or execute commands to inject malicious
payloads that could possibly disable critical systems while
the vehicle is in operation. Security researchers in [3]–[5]
demonstrated that an adversary would be able to successfully
compromise an ECU through remote firmware updates and
disable subsystems such as the electronic stability program and
anti-lock braking. Therefore, a prominent method followed by
automotive manufacturers to safeguard the bus is to isolate
it from modules that interact with external networks and
interfaces. However, an internal access port is typically present
to manage data flows and therefore such defense mechanisms
do not render the bus impenetrable.

While some attacks including DoS and fuzzy attacks on the
bus can be identified by analyzing the traffic frequencies [6] or
entropy [7], an attacker can specifically craft payloads while
adhering to the system specifications and thus evade detection.
Such attacks will be more difficult to detect due to their
subtle nature and as such require a collective evaluation of the
bus state during detection. Additionally, the applied payload
encoding substantially increases the complexity as traditional
detection techniques rely on decoded signal values that require
the translation rules from the manufacturer. Although there
exist numerous works in literature that utilize deep learning for
anomaly detection in the CAN bus at a frame-level [2], [8], [9],
they fail to consider this particular attack scenario. In [10], the
authors focus on detecting such stealthy attacks by exploiting
the sensor correlation between data points. They develop an
individual neural network for every identifier and deploy them
on the CAN gateway. However, at run time, this leads to
managing a large number of models in memory. Automo-
tive ECUs are embedded devices with limited computational
resources and therefore such an approach might impose a
huge computational strain on the deployed node, thus affecting
the performance of the detection system. To this end, we
present CANLite, a lightweight deep learning-based detection
model that utilizes multitask learning to effectively curtail the
high memory footprint while not compromising on detection
accuracy. CANLite operates on raw CAN frames and learns
the correlations between sensor datapoints to effectively detect
stealthy attacks on the bus. To the best of our knowledge,
CANLite is the first detection system designed for the CAN
bus to utilize multitask learning on a frame level. In addition,
the shared knowledge model of CANLite allows to localize
the source of the anomaly once detected.



We summarize the main contributions of this work as
follows:

1) We present the design of CANLite, a lightweight deep
learning-based detection model that exploits inter-sensor
relationships in raw CAN frames to identify stealthy
attacks in an automotive CAN bus.

2) We implement and train CANLite over two datasets
comprising raw CAN frames and compare it against a
recently proposed approach called NeuroCAN [10].

3) We present a brief analysis of the corresponding memory
footprints and inference times to substantiate the benefits
of CANLite. Our results indicate that CANLite consumes
only half the size in memory while achieving the same
level of detection accuracy as NeuroCAN [10] with lower
number of false negatives.

The remaining sections of this paper are organized as
follows. Section II summarizes the related works. In Section III
we provide an overview of the CAN protocol and the necessary
machine learning background. We present the architecture of
CANLite in Section IV. Section V discusses our experimental
setup and results. Finally, Section VI concludes the paper.

II. RELATED WORKS

In this section, we provide a summary of a few closely
related works that utilize deep learning for anomaly detection
on the CAN bus. We categorize them into frame level and
signal level detection approaches based on the type of data
used during the detection process, i.e., either raw CAN frames
or decoded signal values.

Frame Level Detection. The authors in [9] proposed a defense
platform for anomaly detection on the CAN bus. Further,
they presented an LSTM-based multiclass classification model
deployed as part of the platform. The network was trained
and evaluated to distinguish DoS, fuzzy and spoofing attacks.
A network utilizing LSTM to predict the bit sequence in
the ECU payload at subsequent time steps was presented in
[2]. The authors evaluated their model over several types of
data modification attacks and anomaly scoring approaches. In
NeuroCAN [10], the authors leveraged the spatio-temporal
relationships between multiple sensors to detect stealthy at-
tacks on the bus. The proposed model utilized a combina-
tion of linear embeddings and LSTM to predict the payload
sequence of an ECU in the next time step and achieved
over 95% accuracy. In CANTransfer [1], the authors adopted
transfer learning with convolutional LSTMs for identifying
DoS attacks. The incorporation of transfer learning enabled
the network to identify new attack scenarios while trained to
only identify a single attack type. A two-stage detection model
with Generative Adversarial Networks (GAN) was proposed
in [11] for detecting DoS and fuzzy attacks. The network
comprised two discriminators where during detection, the first
was used for identifying known attacks while the other focused
on detecting zero-day exploits.

Signal Level Detection. A distributed anomaly detection
framework utilizing GRU-based autoencoders was proposed

in [12]. The system primarily acts on decoded signal values
with a specific focus on detecting subtle changes in the CAN
payload caused by replay and injection attacks. In CANet
[8], a standard autoencoder with LSTM embeddings was used
to detect flooding, replay and data modification attacks. The
authors in [13] jointly utilized an autoencoder and predictor
model to develop a multitask anomaly detection system. The
joint architecture comprised a single encoder and two decoders
with convolutional layers and LSTM. The prediction model
determined the next driving maneuver which was utilized by
the autoencoder to better learn the input representation. The
system was trained and evaluated over finding outliers in six
signals in the payload. In [14], the authors presented a standard
autoencoder and evaluated it over 68 sensor data points in the
AEGIS big data project [15]. Further, different reconstruction
metrics such as Mean Square Error (MSE), Mean Absolute
Error (MAE) and Mean Square Logarithmic Error (MSLE)
were adopted to analyze the robustness of the model.

III. BACKGROUND ON CAN AND ML

A. Controller Area Networks

CAN is a serial bus communication protocol that was
introduced primarily to provide a reliable medium for onboard
vehicular control units to exchange data in real-time. Most
modern vehicles have two CAN topologies with varying
bandwidths, where the low-speed bus is utilized for simple
functions such as indicators for door closure while the high-
speed bus is utilized to manage time-critical applications
such as airbag deployment. At the physical layer, CAN is
implemented by means of two wires, CAN high and CAN
low that drive the state of the bus to either a 1 or 0. These
states have been termed as recessive and dominant in the
CAN standard [16]. CAN enables the exchange of messages
between ECUs by encapsulating the payload within a data
frame. The format of a standard CAN frame is illustrated in
Fig. 1. We specifically describe the identifier and data fields
in the frame as the rest are outside the scope of this paper.
CAN is a broadcast protocol where data sent by a node is
received by others actively connected to the bus. During a
transmission cycle, the 11 bit CAN ID acts as a priority
indicator such that the ECU sending the lowest value identifier
wins control of the bus. An ECU transmitting on the bus
is also capable of monitoring the state of the bus and thus
withdraws from contention if it notices a lower value ID being
sent. Once the payload is sent, proper reception is indicated to
the sender by driving the bus to the dominant state during the
acknowledgment cycle. If an error is noticed, error frames are
transmitted on the bus to destroy the content of the transmitted
frame. The data field in a CAN frame has a maximum size
of 8 bytes comprising various signal values encoded through
custom rules defined by the manufacturer. These rules define
the bit boundaries of the values contained in the payload
and are proprietary. Therefore, traditional detection approaches
require them as they typically act on decoded signal values.
However, CANLite operates at the frame level and hence does
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Fig. 1: Format of a Standard CAN frame
not require any prior knowledge of the signals contained in the
payload.

B. Machine Learning

Long Short-Term Memory. First introduced by Hochreiter
and Schmidhuber, Long Short-Term Memory (LSTM) [17] is a
neural network architecture that is capable of retaining tempo-
ral information over longer periods. Prior to LSTM, Recurrent
Neural Networks (RNN) were essentially used to perform time
series forecasting. RNN maintains hidden states that allow the
network to persist parts of the previous input, thus introducing
the notion of time. During training, backpropagation occurs
over a series of time steps causing the gradients to either shrink
or explode when performed for longer sequences. On the other
hand, an LSTM cell overcomes the problem of vanishing or
exploding gradients by introducing a cell state along with the
hidden state to regulate the amount of information persisted
over time. As such, it allows the network to remember long-
term dependencies while effectively reducing the influence of
short-term memory.

Multi-Task Learning. Inspired by the human ability to lever-
age the knowledge gained over learning a task to another,
Multi-Task Learning (MTL) is a paradigm in machine learning
where a model is trained to jointly learn more than a single
task. MTL strives to generalize the performance of the model
over several related tasks such that multiple models are not
trained from scratch for every targetted task. A reason for MTL
being more effective than single-task learning is attributed
to the additional data from learning other tasks that the
model could utilize at the time of inference [18]. In deep
learning, MTL is achieved either through hard parameter or
soft parameter sharing [19]. Hard parameter sharing models
comprise a shared segment in the network that effectively acts
as a shared knowledge base for all the trained tasks. On the
contrary, a separate model is developed for every task in soft
parameter sharing while the distance between model weights
is reduced during training. Further, the weights are updated
by deriving the gradients over the combined loss of all tasks.
Additionally, jointly learning multiple tasks reduces overfitting
as it introduces a degree of inductive bias that causes the model
to prefer a hypothesis over others.

IV. CANLITE ARCHITECTURE

CANLite is a lightweight anomaly detection model that
primarily focuses on detecting stealthy attacks by identifying
contextual anomalies in the CAN bus. To this end, the network
architecture is fundamentally structured to capture both the
spatial and temporal relationships between multiple sensors.
The architecture of CANLite encompasses three segments,
each with a distinct role to play in the detection process. The

Fig. 2: Structure of CANLite.

structure of CANLite is shown in Fig. 2. In particular, the
network structure comprises an embedding layer, an LSTM
layer and then finally an output layer that specifically predicts
the next payload sequence of the requested CAN ID. As
the payload size of every identifier varies depending on the
particular implementation by the manufacturer, the input to the
network is first processed by the embedding layer to provide a
fixed size feature set. Specifically, the embedding layer applies
a linear transformation over the provided input and focuses
on learning the data patterns within a payload from a single
control unit. The second segment of the model is an LSTM
layer that processes the cumulated embeddings to effectively
learn the variations in sensor readings occurring over time.
We utilize a standard LSTM cell with sigmoid and tanh
activations and a hidden size of 32. The final segment of the
network is an output layer comprising a set of linear units,
one for every CAN ID whose payload the model is trained
to predict. The output from the LSTM layer is passed to
the branching module that channels it to the corresponding
output unit based on the decision parameter. The decision
parameter is essentially the CAN identifier for which the
model has to predict the next data sequence. In particular,
given a set of N identifiers, I = {ID1, ID2, ID3, ..., IDN}
with an associated time series {Xi1, Xi2, . . .Xin} for each
IDi, the network predicts Xi(t+1) given Xit, Wit, Yit and
Zit. Here, Wit, Yit, Zit are the data payloads transmitted by
other nodes between timesteps t and t + 1 and provides the
necessary context for the model to collectively assess the state
of the various nodes on the bus. The directed output unit then
applies a linear transformation over the received input from the
LSTM layer and finally scales it through the sigmoid activation
function yielding values between 0 and 1.

V. EXPERIMENTS AND RESULTS

In this section, we first provide an overview of the utilized
datasets and the applied preprocessing. Later, we present an



TABLE I: Dataset overview.
Dataset Messages Normal Injected

Gear dataset 4,443,142 3,845,890 597,252
RPM dataset 4,621,702 3,966,805 654,897

outline of our training setup and finally discuss our experi-
mental results.

A. Dataset Specification

We trained and evaluated our neural network model on
two datasets comprising raw CAN frames logged through the
OBD port. The datasets were developed by The Hacking and
Countermeasure Research Lab, Korea [11] and were acquired
upon request. Fabricated CAN messages were simultaneously
injected into the bus while capturing the network traffic.
Specifically, the gear module and rpm gauge were targeted
and frames containing the modified data fields were injected.
Table I provides an overview of each dataset. We specifically
focus on the data field of the CAN frame as we intend to
train our model to learn the inter-sensor relationships between
signal values encompassed in the payload. Prior to training,
each dataset was split, with 70% allocated for training and the
rest for testing. Further, the data fields were extracted and all
hexadecimal values were converted and normalized such that
each input feature represented one byte in the CAN payload.

B. CANLite Training

We jointly train the network over the two datasets such that
at every timestep the model predicts the upcoming sequence
of values expected in the data payload of a CAN ID. Further,
to ensure that one task does not influence the model weights in
the shared portion of the network, we combine the individual
losses at every output unit and effectively derive the gradients
over the cumulative error score at every forward pass of data.
We trained our model only with normal CAN frames and uti-
lized mini-batch training with a batch size of one. The smaller
batch size can be attributed to the varying context size between
timesteps and therefore is not feasible to combine over a larger
input batch. The Adam optimizer [20] was utilized for training
with the learning rate set to 0.001. For our experiments, we
implemented our model with PyTorch [21]. We performed
the necessary data preprocessing and performance evaluation
with pandas [22] and scikit-learn [23]. The training
was performed on a Linux CentOS 8 machine with a Tesla
V100 GPU and 32 GB of memory.

C. Anomaly Score and Performance Measure

In our approach, we compared the network prediction for
every sample in the test set against the expected data sequence
and derived an anomaly score through Mean Square Error
(MSE) given by

MSE(X, X̂) = 1/k
∑k

i=1(xi − x̂i)
2 . (1)

The performance of an anomaly detection system is highly
sensitive to the decision threshold that allows to effectively
segregate the anomalous samples such that the system achieves

Fig. 3: Memory footprint at inference time.

a high true positive rate. We determined that the optimal
threshold for every CAN ID resulted in being the one with
the maximum F1-score. The F1-score is the harmonic mean
between the precision and recall and provides an accurate
measure on the performance of a machine learning model. Fur-
ther, we measured the detection performance of our network
through the Receiver Operating Characteristic (ROC) curve.

D. Baseline Model

In this paper, we present a lightweight detection model that
primarily focuses on identifying contextual anomalies on the
CAN bus. To highlight the performance of our approach, we
compare it with NeuroCAN [10] that serves as our baseline.
Similar to CANLite, the baseline also strives to identify
contextual anomalies in CAN bus data at a frame level.
However, in [10], a separate model was trained for every
targeted identifier leading to a large number of detection
models to be held in memory by the system at the time of
inference. Furthermore, developing every model from scratch
also imposes a higher computation cost while significantly
increasing the time required for training.

E. Results and Discussion

Memory Footprint. We determined the memory footprint of
both models at the time of inference to comprehend the posed
overhead on the deployed node on the bus. Owing to the shared
learning between the embedding and LSTM layer in CANLite,
it only consumes half the space taken by NeuroCAN, as
depicted in Fig. 3. On evaluation, we observed that CANLite
consumed 30.91 KB while NeuroCAN consumed 59.71 KB
in memory. The higher footprint under the baseline approach
is due to loading all the trained models into memory for
the detection system to scan the appropriate frames while
the vehicle is in operation. As such, it poses a significant
computation overhead to achieve a high level of performance
while meeting the necessary inference deadlines. On the other
hand, our experimental results establish that CANLite achieves
the same level of performance while reducing the unnecessary
memory overhead, as presented in the next sub-section.
Detection Performance. The ROC curves obtained over eval-
uation against the Gear and RPM datasets are presented in
Figs. 4(a) and 4(b). In comparison with the baseline, we
achieve lower false-negative and false-positive rates while
maintaining the detection accuracy with the Gear dataset.
As such, CANLite achieves a lower rate of misclassification
over the baseline for normal CAN traces thereby considerably
reducing the number of false alarms. With the RPM dataset,



(a) Gear dataset.

(b) RPM dataset.

Fig. 4: Comparison of detection performance.

CANLite does not experience any degradation in performance
when compared against the baseline and is able to successfully
differentiate all injected sequences from normal CAN traffic.
We summarize the detection measures along with the F1-score
of both models in Table II.
Anomaly Localization. Once an anomaly has been identified,
the detection system can then perform the necessary maneu-
vers to atleast warn the driver of the observed misbehavior.
While previous approaches utilizing autoencoders [12] [14] do
offer detection models that can substantially identify outliers
at a frame level, they fail to localize the malicious node on the
network. The malicious node could then potentially continue
to transmit until the vehicle is completely stalled. However,
CANLite approach of evaluating an ECU individually while
analyzing the collective state of the bus allows to identify the
malicious node by associating it with the corresponding CAN
identifier. At the time of inference, we observed that CANLite
was able to extract misbehaving node identifiers 043f and
0316, which are the CAN IDs in the injected anomalous
frames.

VI. CONCLUSION

The increasing number of connected vehicles in recent years
has facilitated the need to secure onboard vehicular systems
such as the CAN bus to ensure the safety of all road users. In
this paper, we propose CANLite, a lightweight deep learning-
based detection model to identify stealthy attacks in CAN

TABLE II: Evaluation Results.

Dataset Model TPR FPR FNR TNR F1 score

Gear CANLite 0.91 0.0001 0.088 0.99 0.9541
NeuroCAN 0.90 0.00065 0.093 0.99 0.9508

RPM CANLite 1.0 0.0 0.0 1.0 1.0
NeuroCAN 1.0 0.0 0.0 1.0 1.0

bus data. Our results indicate that CANLite achieves over
95% detection accuracy while imposing half the resource
overhead posed by the existing approaches. Further, CANLite
also facilitates in localizing the source of an anomaly thus
enabling the system to reduce the impact of the malicious
node when detected. In our future work, we plan to subject
our model to incremental training as repeated learning would
be necessary to account for the changes in vehicle behavior
over time and also enable addition of new nodes to the bus.
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