
Parallel HTTP for Video Streaming

in Wireless Networks

Mohsen Ansari

Dept. of Computer Science

University of Calgary

Calgary, Canada

mohsen.ansari@ucalgary.ca

Majid Ghaderi

Dept. of Computer Science

University of Calgary

Calgary, Canada

mghaderi@ucalgary.ca

Abstract—To stream video using HTTP, a client device se-
quentially requests and receives chunks of the video file from
the server over a TCP connection. It is well-known that TCP
performs poorly in networks with high latency and packet loss
such as wireless networks. On mobile devices, in particular, using
a single TCP connection for video streaming is not efficient, and
thus, the user may not receive the highest video quality possible.
In this paper, we design and analyze a system called ParS that
uses parallel TCP connections to stream video on mobile devices.
Our system uses parallel connections to fetch each chunk of the
video file using HTTP range requests. We present measurement
results to characterize the performance of ParS under various
network conditions in terms of latency, loss rate and bandwidth.

Index Terms—parallel HTTP; Video streaming; DASH;

I. INTRODUCTION

A. Motivation

Video streaming over HTTP has become extremely popular

and is adopted by major online streaming services such as

YouTube and Netflix. Internet video streaming now takes

the majority of worldwide Internet traffic and its share will

continue to grow. It is estimated that, globally, Internet video

traffic will be 80 percent of all consumer Internet traffic in

2019, up from 64 percent in 2014 [1].

There are several HTTP-based video streaming services

implemented by different organizations. Adobe’s HTTP Dy-

namic Streaming [2], Apple’s HTTP Live Streaming [3] and

Microsoft’s Smooth Streaming [4] are a few examples of

such services. Meanwhile, Dynamic Adaptive Streaming over

HTTP (DASH) is being developed as an international standard

to unify HTTP-based video streaming over the Internet [5].

The DASH standard is composed of two main parts. One

part defines the Media Presentation Description (MPD) that

is used by the client to discover the URLs for accessing

the video content. The other part defines the format of the

video content. In a DASH system, the video streaming server

sends video content to clients via the HTTP protocol. Before

transmission, a video is encoded into different bit rates on the

server. The encoded video file at every bit rate is fragmented

into small chunks, each chunk contains only several seconds

(e.g., 10 seconds) of the video. A client sends HTTP requests

to the server to download video chunks sequentially. At the

time of streaming, a client can dynamically change the target

video chunk’s bit rate based on its available resources such as

available bandwidth and remaining battery [6].

HTTP video streaming systems, including DASH, rely on

TCP which has poor performance in networks with high la-

tency and packet loss. In such networks, TCP and consequently

the video streaming application is unable to fully utilize the

available bandwidth leading to lower quality of experience

for users [7]. We measured the measured throughput of a

single TCP connection1 over a 10 Mbps link. We increase

round-trip-time (RTT) under different packet loss rates and

measure the throughput. When RTT and packet loss are set to

50 milliseconds and 0.1%, respectively, TCP can utilize nearly

86% of the available bandwidth. By increasing RTT and packet

loss the throughput drops drastically to a point where, when

RTT is set to 150 milliseconds and packet loss is 1%, TCP

can only utilize 13% of the bandwidth.

Wireless networks often suffer from high latency and packet

loss [8]. Moreover, wireless bandwidth is generally more

limited compared to wired bandwidth. This means that HTTP-

based video streaming over mobile devices is negatively

affected by TCP’s inability to fully utilize the wireless band-

width, which could result in lower video quality and buffering

delays during video playback. To improve TCP throughput,

the use of parallel connections has been considered. For

example, GridFTP [9] is an extension of traditional FTP in

which multiple TCP connections are used to transfer data

resulting in significant improvements over single connection

FTP. This concept has been also applied to video streaming.

For instance, Parallel TCP connections have been used in [10]

and [7] to improve the quality of video by using multiple

connections to download multiple video chunks from the

server simultaneously.

B. Our Work

In this work, we also employ parallel TCP connections to

improve video streaming quality on mobile devices. How-

ever, different from the existing works (as in [10] and [7]),

rather than using multiple connections to fetch different video

chunks, we use multiple connections to download the same

chunk. We note that when multiple connections are used, the

1We use the terms “flow” and “connection” interchangeably.
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Fig. 1: Parallel TCP connections with loss probability of 0.1%
and RTT of 50 ms. While the aggregate throughput increases

with the number of connections, the per-connection throughput

decreases.

available bandwidth between the client and server is divided

among the connections. This means that, while the aggregate

throughput increases, the throughput of each individual con-

nection actually decreases as depicted in Fig. 1. For instance,

when there are 5 parallel connections the throughput of each

connection on average is less than 2 Mbps.

In wired networks, where the bandwidth between the client

and server is plenty, even the reduced per-connection band-

width is large enough to sustain video streaming at a good

quality. Thus, it makes sense to use multiple connections

to download different video chunks. In wireless networks

however, the bandwidth is limited. Thus, when using multiple

connections, the share of each individual connection may be

so low that it cannot sustain video playback at a reasonable

quality resulting in playback stalls. This problem happens

whenever a chunk is needed as soon as possible to avoid a

playback stall. For example, consider the first chunk of the

video. It takes 3 times longer to download the first chunk and

start the video when using parallel connections to download

different chunks (i.e., existing works) compared to download-

ing the same chunk (i.e., our work). In wireless networks,

when the available bandwidth fluctuates significantly over

time, this situation (i.e., needing chunks quickly to avoid stalls)

would be even more likely to happen compared to wired

networks.

The work presented in this paper has two parts. In the

first part, we focus on using multiple connections for video

streaming as described above. We design and evaluate Par-

allel Streaming (ParS) that employs parallel HTTP for video

streaming in low bandwidth and high loss networks. In the

second part, we turn our attention to determining the rela-

tionship between the aggregate throughput and the number of

parallel TCP connections. As discussed later, a critical problem

in all systems that use parallel TCP connections (including the

above mentioned works) is to decide how many connections

are needed to achieve the best video playback quality. We show

that as the number of connections increases, the aggregate

throughput also increases up to a certain point. Beyond this

point, increasing the number of connections actually results

in lower throughput due to increased competition among

the connections and increased processing and computation

overhead.

Our contributions in this paper can be summarized as

follows:

• We develop a protocol to use parallel TCP connections

to download each chunk of a video file from the server

using HTTP range requests.

• We develop a prototype system based on our protocol

called Parallel Streaming (ParS) and deploy it on a

testbed.

• We then conduct measurement experiments to analyze the

impact of RTT, packet loss, bandwidth and chunk size on

the throughput performance of our protocol.

C. Related Work

There is a vast amount of literature on video streaming

(please refer to [11] for a recent survey). The following works

are more specific to our work which is on the use of parallel

HTTP for enhancing the quality of video streaming.

1) Parallel TCP for File Transfer: One of the main ap-

plication areas of parallel TCP connections is in file transfer.

GridFTP [9] uses parallel TCP to improve the performance

of File Transfer Protocol (FTP). Many download manager

softwares such as Internet Download Manager (IDM) [12] and

Download Accelerator Plus (DAP) [13] use this concept for

increasing download speed.

2) Parallel TCP for Video Streaming: In the area of HTTP

streaming, the authors in [10] used parallel HTTP connections

and suggested to gradually increase the number of connections

based on the available bandwidth and network conditions.

Their approach is based on initiating a separate connection

for each video chunk. The work in [14] uses content centric

networking (CCN) and multiple network interfaces typically

available on a mobile device to implement parallel streaming.

It uses multiple connections to download the same video

content. However, at any point in time, it uses the connection

which delivers data at the highest rate. The work in [7]

uses multiple connections to reduce throughput fluctuations

in networks with high packet loss and RTT. It uses 10 parallel

connections to overcome the poor performance of TCP in such

networks, though the main focus is to maintain fairness among

connections with favorable and poor network conditions in

terms of packet loss and RTT. The authors in [15] use multiple

TCP connections to enable users to play different parts of the

video without having to wait for buffering of the entire video.

Finally, [16] uses multiple connections to download different

layers of the video with scalable video coding.

D. Paper Organization

The rest of the paper is organized as follows. Section II

is dedicated to presenting our approach and includes mea-

surement results obtained from experiments on our testbed.

A summary of our measurement results is presented in Sec-

tion III. Section IV concludes the paper.
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Fig. 2: Network topology used for measurements and simula-

tions.

II. PARS: PARALLEL STREAMING

A. overview

The problem with existing work is that, multiple connec-

tions are used to download distinct segments of the video file

in parallel. This approach will improve the overall download

time and throughput specially when the bottleneck link is in

the core of the network. To see this, consider the network

topology depicted in Fig. 2, where the link between the router

and server is assumed to be the bottleneck link. Assume the

bottleneck link has capacity C. If the current number of TCP

flows through the link is M and the client starts N parallel

TCP connections, then the aggregate throughput denoted by

XN is approximately given by:

XN =
N

N +M
C, (1)

which is due to fairness property of TCP. Clearly, we are

assuming a homogeneous case where all flows have similar

characteristics (e.g., same round trip time). Notice that, in

this case, XN is an increasing function of N . However, as

N increases, the increase in XN becomes negligible. Assume

measurements for X1 and X2 are available. It is obtained that,

X1 =
1

1 +M
C, X2 =

2

2 +M
C, (2)

which can be used to obtain the following estimates for M
and C,

C =
X1X2

2X1 −X2

, M =
2(X2 −X1)

2X1 −X2

. (3)

Two observations are made about the behavior of XN :

• If N ≫ M then, XN ≈ C.

• If N ≪ M then, XN ≈ NX1.

Fig. 3 shows the throughput achieved with different number

of background and parallel TCP flows, when the capacity of

the bottleneck Internet link is set to 10 Mbps, 50 ms RTT and

0.1% packet loss. As can be seen, by increasing the number

of parallel connections, the aggregate throughput increases.

Now, let us consider the per-connection throughput. From (1)

we have,
XN

N
=

C

N +M
, (4)

which indicates that as the number of parallel connections

N increases, the per-connection throughput decreases. As

mentioned earlier, there are two competing effects in play:

1) Aggregate throughput: Aggregate throughput can be

increased by using parallel connections. This is specially

true when the bottleneck link is shared by other back-

ground traffic (e.g., the link is at the core of the network).

In this case, increasing the number of parallel connec-

tions effectively steals bandwidth from the background

traffic. If the link is not shared with other users (i.e., no

background traffic) then using multiple connections helps

improve the link utilization.

2) Per-connection throughput: Per-connection throughput

decreases as the number of parallel connections increases.

If the bandwidth of the bottleneck link is sufficiently high

then the share of each connection of the bandwidth could

still be high enough to support smooth video streaming

at high quality. However, if the capacity of the bottleneck

link is low, when each connection is downloading a

distinct video chunk, this approach may lead to playback

stalls depending on the level of synchronization among

the connections (more on this later in the paper).

When streaming video on mobile devices, the low band-

width wireless access link is usually the bottleneck. In this

case, using multiple connections to download separate video

chunks increases the download time of some video chunks. As

discussed in the Introduction section, these are the chunks that

need to be downloaded as fast as possible to avoid stalls. Our

solution to this problem is to have multiple TCP connections

downloading one video chunk at a time. This way, the main

focus of our approach is to download the next chunk as

soon as possible. This decreases the chance of stalls in video

playback and speed ups the playback startup. Fig. 4 depicts

the difference between existing approaches and our proposed

approach (ParS) when using two parallel connections.

B. System Design

With ParS, to fetch a chunk, the client first obtains infor-

mation about the size of the chunk by sending an HTTP-

HEAD request to the streaming server2. Then it divides the

chunk size by the number of parallel connections to find the

range of each request. The client then sends multiple HTTP-

GET requests each requesting a different byte-range (using

Range attribute in HTTP request header) of the chunk, where

each request is sent over a separate TCP connection. Then the

client waits for the streaming server to send the chunk parts

in HTTP responses. As the chunk parts arrive at the client,

it reconstructs the original chunk. Algorithm 1 illustrates the

steps for downloading a video chunk in ParS. This algorithm

is repeated for each chunk sequentially.

C. Testbed Specification

To study the effectiveness of our approach, we built a

simple testbed consisting of a client and server running Ubuntu

14.04 LTS (with 8 GB RAM and Dual core 2.4 GHz CPU)

connected via a D-link switch with 1 Gbps Ethernet cables.

All TCP related parameters (e.g., socket buffer size) are the

default values in the Linux kernel. We use wired links in

2This step could be eliminated by embedding the size information in the
MPD file when using DASH.
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(b) M = 4 background flows.

Fig. 3: Aggregate TCP throughput with increasing number of parallel connections obtained from the measurements and model.

The Internet bottleneck link has 10 Mbps bandwidth.

(a) ParS approach. (b) Existing approach.

Fig. 4: Video streaming using two parallel connections.

Algorithm 1 Parallel Streaming (ParS)

1: n← number of parallel TCP connections

2: Send HTTP-HEAD request for the chunk

3: chunksize← chunk size from HTTP-HEAD response

4: range← chunksize/n
5: for i = 0 to n− 1 do

6: start← i× range
7: end← (i+ 1)× range
8: Send HTTP-GET with Range set to [start, end]
9: end for

10: for i = 0 to n− 1 do

11: Receive HTTP response

12: Store partial chunk in buffer

13: end for

14: Restore the chunk

order to have the ability to accurately control RTT, packet

loss and bandwidth without any random fluctuations due to

wireless interference or collisions. However, various network

parameters in our experiments (such as bandwidth, packet loss,

and RTT) are set so that we create a network behavior that is

close to what would be observed in wireless networks.

To achieve this, we used tc and netem applications for

simulating packet loss, RTT, and controlling transmission

rate. Traffic control (tc) is part of the Linux kernel which

allows the user to access networking features. It has three

main features: monitoring the system, traffic classification, and

traffic manipulation. The utility netem is an extension of tc,

which emulates packet loss and delay on a Linux system. The

server runs the Apache web server and hosts video chunk files.

Chunks are stored in multiple directories based on their bitrates

according to the MDP file3.

In the following subsections, the default parameters of our

network are as follows. The bandwidth between the client and

server is set to 10 Mbps, packet loss is set to 1%, and RTT is

set to 50 ms. Note that the size of each chunk depends on the

throughput obtained when downloading the preceding chunk.

If the measured throughput is high, then the client requests a

chunk with higher bitrate which also has a larger size. This

form of rate adaption is at the core of adaptive video streaming

such as in DASH.

The throughput estimation is obtained by computing the

average throughput of each chunk during transmission of the

entire video file from the server to client. The video file is

divided into 40 chunks each of which contains 15 seconds of

the actual video. The throughput estimate is then obtained by

calculating the average of 40 throughputs computed for the

chunks.

III. MEASUREMENT RESULTS AND DISCUSSION

A. Effect of Packet Loss

Fig. 5 shows the effect of loss probability on the aggregate

throughput when using parallel connections. As discussed

earlier, the use of multiple connections alleviates the negative

effect of packet loss on TCP throughput. It is observed that as

the number of parallel connections increases, the aggregate

throughput converges to a value close to the link capacity

regardless of the actual loss probability. In particular, when

the loss probability is high (as in wireless networks), the use

of parallel connections is more effective.

3The video file and dataset is obtained from http://www-itec.uni-
klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny/
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Fig. 5: Effect of packet loss on aggregate throughput.
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Fig. 6: Effect of RTT on aggregate throughput.
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B. Effect of Round Trip Time

It is well-known that as RTT increases the TCP throughput

decreases. Fig. 6 shows the effect of RTT on the aggregate

throughput when using parallel connection. Again, as the num-

ber of connections increases so does the aggregate throughput

though the amount of improvement somewhat depends on the

value of RTT. In particular, in scenarios when the RTT is large

(e.g., in high-latency networks) more connections are required

to achieve high utilization of the link. The reason is that TCP

performs so poorly in such scenarios that there is a lot of room

for improvement by adding more connections.

C. Effect of Bandwidth

The effect of the available bandwidth between the client and

server on the aggregate throughput is depicted in Fig. 7. It is

observed that using parallel connections helps utilize most of

the available bandwidth as opposed to a single connection,

which is oblivious to the link bandwidth in this scenario. It

is also observed that as the available bandwidth increases,

the number of parallel connections required to utilize the

bandwidth increases as well. As the link bandwidth increases,

TCP throughput becomes bounded by the loss probability and

RTT. Thus, a single connection is not able to achieve higher

throughput even if the link bandwidth increases beyond a limit.

In this scenario, parallel connections are necessary to utilize

the full bandwidth.

D. Effect of Chunk Size

Fig. 8 depicts the average time to download a chunk for

different chunk sizes. As expected, increasing the number of

parallel connections results in lower download time. However,

as can be seen, only a few connections (e.g., two) are enough

to achieve most of the benefits of parallel connections. An

important observation is that as the chunk size increases using

parallel connections becomes more effective. Note that when

streaming video at high quality, each chunk has a larger

size. Thus, using parallel connections is particularly useful

when streaming high quality video. A lower download time

means less buffering delay for video playback, which directly

translates to a better quality of experience.

E. Transmit Queue Occupancy

The transmit queue of the router plays a critical role in

determining the utilization of the bottleneck link. A higher

occupancy for the queue indicates a higher link utilization

in general. To show the effect of multiple flows on the

transmit queue occupancy, we run a simulation experiment

with transmit queue size set to 100 packets.

Transmit queue traces over a period of 20 seconds are

presented in Fig. 9. It can be seen that, while the queue oc-

cupancy fluctuates over time, having multiple flows generally

results in higher occupancy rates. In Table I, we show the

average number of packets in the queue (i.e., the average
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Fig. 9: Transmit queue occupancy with different number of

flows. The size of the queue is set to 100 packets.

queue occupancy) for different number of flows along with

the achieved aggregate throughput. As expected, increasing

the number of parallel flows results in increased average queue

occupancy. Consequently, as the queue occupancy increases so

does the aggregate throughput.

TABLE I: Average queue occupancy from simulations.

No. flows Tput (Mbps) Avg. packets in queue

1 8.839 22.62
2 9.623 64.49
4 9.785 74.64
8 9.837 76.45

F. Time To Start Playback

Time to start playback of a video is one of the main QoE

factors in video streaming. It is defined as the time spent since

a client requests a video to play, till the playback of the video

by the player application begins on the client side. Having

parallel connections in HTTP video streaming as discussed

earlier, can be implemented in such a way that each parallel

connection requests and downloads a separate chunk. We refer

to this approach as Parallel. We compare Parallel with our

method, ParS, which uses multiple connections to download

different portions of the same chunk.

Fig. 10 depicts the measured time to start playback for these

two methods. It is observed that as the number of parallel

connections increases, time to start playback for Parallel

increases as well. The longer time to start playback has a

negative impact on QoE specially in low bandwidth networks

(e.g., wireless networks). Interestingly, with Pars, the time

to start playback remains fairly constant and less than 500
milliseconds. Moreover, increasing the number of connections

actually results in shorter time to start playback for ParS.

IV. CONCLUSION

In this work, we introduced ParS, a video streaming system

that uses parallel TCP connections in conjunction with HTTP

range requests to speedup downloading video chunks from the

server. We implemented a prototype of the system on a testbed

and conducted various measurement experiments to study its
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Fig. 10: Comparison of playback start time between parallel

connections for the same chunk (ParS) and parallel connec-

tions for separate chunks (Parallel). Bandwidth=10 Mbps,

RTT=50 ms, Loss=1 %.

performance. In future, we plan to extend our implementation

to mobile devices and conduct live measurements on WiFi and

LTE networks.
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