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Abstract

This paper considers the problem of finding minimum-energy cooperative routes in a wireless

network with variable wireless channels. We assume that each node in the network is equipped with a

single omnidirectional antenna and, motivated by the large body of physical layer research indicating

its potential utility, that multiple nodes are able to coordinate their transmissions at the physical layer

in order to take advantage of spatial diversity. Such coordination, however, is intrinsically intertwined

with routing decisions, thus motivating the work. We first formulate the energy cost of forming a

cooperative link between two nodes based on a two-stage transmission strategy assuming that only

statistical knowledge about channels is available. Utilizing the link cost formulation, we show that

optimal static routes in a network can be computed by running Dijkstra’s algorithm over an extended

network graph created by cooperative links. However, due to the variability of wireless channels, we

argue that a many-to-one cooperation model in static routing is suboptimal. Hence, we develop an

opportunistic routing algorithm based on many-to-many cooperation, and show that optimal routes in

a network can be computed by a stochastic version of the Bellman-Ford algorithm. We use static and

opportunistic optimal algorithms as baselines to develop heuristic link selection algorithms that are

energy efficient while being computationally simpler than the optimal algorithms. We simulate our

algorithms and show that while optimal cooperation and link selection can reduce energy consumption

by almost an order of magnitude compared to non-cooperative approaches, our simple heuristics achieve

similar energy savings while being computationally efficient as well.
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I. INTRODUCTION

Energy efficient communication is a fundamental problem in wireless networks. First, in a

wireless network, excessive transmission energy leads to increased interference in the network

resulting in decreased network throughput. Second, in wireless ad hoc and sensor networks,

which are typically battery powered, inefficient use of energy causes rapid depletion of batteries

resulting in a disconnected network.

Over the past several years, this problem has been studied extensively at different layers

of the protocol stack, notably at the network (e.g., [1]) and physical layer (e.g., [2]). At the

physical layer, in particular, it has been shown that using multiple antennas at the transmitter

or receiver achieves considerable transmission energy savings compared to a single antenna

thanks to the spatial diversity inherent in wireless networks [3]. But, in some cases, the use

of multiple antennas on a transmitter or receiver may be impractical (e.g., due to small size

of sensors) or too costly (e.g., due to costly analog circuitry). In such situations, it has been

recently shown that, by allowing cooperation among spatially distributed single-antenna nodes,

the so-called cooperative communication [4] can achieve significant energy gains comparable to

those achieved by multi-antenna systems [5].

However, although there has been extensive work at the physical layer demonstrating the

utility of cooperative communications under metrics such as bit error probability or outage

probability, there have been very few works that consider how to incorporate such links into

practical networks [6]–[12]. This is a critical shortcoming, since cooperative communication

inherently disrupts the normal separation of routing from the physical layer specification. In this

work, we formulate energy optimal cooperative routing as a joint optimization of cooperative

link formation at the physical layer and route selection at the network layer. Our objective is to

characterize the energy gain of cooperative communication in a network with variable wireless

channels. This obviously has direct application in practical wireless networks, but also provides

a perspective for the research field on the utility of cooperative communication when measured

with network-level metrics.

Wireless channels are inherently variable and fluctuate over time due to noise, shadowing,

fading, etc. In cooperative communication, a critical issue is the availability of channel state

information at the transmitters. If instantaneous channel information including channel phase
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is available, then transmitters can cooperatively beamform to a receiver to minimize transmis-

sion energy [13]. Using such channel information, optimal link formation and selection can

be formulated deterministically to compute minimum-energy routes in a network as studied

in [7], [9]–[12]. Whereas there have been recent examples of cooperative beamforming [14],

the synchronization requirements for such are onerous in a mobile ad hoc network. Moreover,

collecting instantaneous channel information at every transmission epoch is challenging when

channels fluctuate rapidly, for example due to mobility. Hence, some recent work has instead

explored cooperative communication assuming that no channel information is available [6]. When

no channel information is available, cooperative links are formed by allocating equal transmission

power to cooperative transmitters, effectively reducing the cooperative routing problem to finding

the shortest path in a network. While being simpler from the implementation perspective, the

cooperative routes computed using this approach are less energy efficient compared to the routes

computed by optimal link formation when channel information is available.

Although instantaneous channel information is difficult to obtain in practice, some partial

information (e.g., probability distribution of the channel fading process) is usually available. Thus,

in this work, rather than taking one of the above extreme approaches (i.e., instantaneous channel

information or nothing), we assume that the distribution of the channel variations is known.

Throughout, we will assume that the channel variation is due to multipath fading, although this

is not necessary for the algorithm specification. Given the distribution of the channel variation,

optimal cooperative link formation is essentially a stochastic optimization problem, the objective

being minimization of the transmission power with respect to the known fading distribution. We

solve this optimization problem for the case of Rayleigh fading (which is widely used in the

literature [15] and serves as the worst-case over a broad class of fading distributions), although

our analysis can be generalized to other classes of fading models as well.

In our previous work [8], we studied diversity-based cooperative routing with a quite different

approach. In particular, in [8], the transmitting set is continuously grown (i.e. nodes are added

but never removed) until the receiver is able to obtain the message. However, such a cooperation

model is considerably restrictive in multiflow scenarios, because, as the routing progresses, almost

the entire network will cooperate to transmit the same message to the same destination [16].

In the present work, we consider a general two-stage cooperation model (see Section II) that

does not suffer from this problem while being more amenable to implementation. As we show,
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however, the analysis of the optimal cooperative link formation and selection is significantly

more challenging in this model.

We first develop an optimal static routing algorithm by applying Dijkstra’s algorithm to an

extended graph of the network formed by cooperative links. However, due to the variability

of wireless channels, we argue that the unicast-based many-to-one cooperation model in static

routing is suboptimal. To address this issue, we then develop an opportunistic routing algorithm

based on anycast many-to-many cooperation, and show that optimal routes in a network can

be computed using a stochastic version of the Bellman-Ford algorithm. The optimal routing

algorithms we develop are centralized and computationally expensive. Nevertheless, they provide

useful upper bounds in characterizing the energy gain that can be obtained from cooperation

in fading environments. Moreover, we use optimal algorithms as a baseline to evaluate the

performance of (computationally simpler) heuristic algorithms developed in this work and else-

where [6].

Our main contributions in this paper can be summarized as follows:

1) We formulate the energy cost of forming a cooperative link between two nodes in a fading

environment subject to a constraint on link reliability.

2) Utilizing our link cost formulation, we develop static as well as opportunistic routing

algorithms to find minimum-energy routes in a network.

3) We develop several heuristic routing algorithms in order to mitigate the complexity of the

optimal algorithms, and evaluate their performance using simulations.

The rest of this paper is organized as follows. In Section II, we describe our system model.

Section III presents our optimal power allocation and routing formulation. Opportunistic co-

operative routing is presented in Section IV. Section V presents several heuristic algorithms.

Simulation results are presented in Section VI, and Section VII concludes the paper.

II. SYSTEM MODEL

We consider a wireless network consisting of a set of nodes distributed randomly in an

area, where each node has a single omnidirectional antenna. We assume that each node can

adjust its transmission power and that multiple nodes can coordinate their transmissions at the

physical layer to form a cooperative link. As no beamforming is performed, only rough packet
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synchronization is required [17]. We denote the set of the nodes in the network by N , and

assume that there are N = |N | nodes in the network.

A. Channel Model

Consider a transmitting node ti, and a receiving node rj . Let xi and yj denote the transmitted

and received signals at nodes ti and rj , respectively. Without loss of generality, we assume that

xi has unit power and that transmitter ti is able to control its power pi, in arbitrarily small steps,

up to some limit Pmax. Let ηj denote the noise and other interferences received at rj , where ηj

is assumed to be a zero mean complex Gaussian random variable with power second moment

Pη. Suppressing the time index, the received signal at receiver rj is then expressed as follows

yj =

√
pi
dαij
hij xi + ηj, (1)

where dij is the distance between the transmitting and the receiving nodes ti and rj , α is the path-

loss exponent, hij is the complex channel gain between ti and rj modeled as hij = |hij|eθij ,
where |hij| is the channel gain magnitude and θij is the phase. We assume a non line-of-

sight (LOS) environment, implying that |hij| has a Rayleigh distribution with unit power, i.e.,

E [|hij|2] = 1.

Let γij denote the signal-to-noise-ratio (SNR) at receiver rj due to transmitter ti transmitting

with power pi; then

γij =
1

Pη

pi
dαij
|hij|2 . (2)

Since |hij| is Rayleigh distributed with unit variance, |hij|2 is exponentially distributed with

mean 1. Consequently, γij is exponentially distributed with decay rate µij = Pη
dαij
pi

.

B. Cooperation Model

Before we describe the cooperation model considered in this paper, we discuss some of

the implementation challenges of cooperative communication in a realistic network. Exploiting

the diversity gain of cooperative communication incurs some overhead at different layers of

the protocol stack. The formation of the cooperative transmitting sets from individual nodes

requires coordination among the nodes at the physical layer. Once the cooperating relays are

identified and the coordination is established, the nodes need to be roughly synchronized in
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time so that the receiver is able to decode the signal received from multiple transmitters. Also, a

mechanism is required to acknowledge the transmitter once the message is received successfully.

The traditional RTS-CTS mechanism can be modified and enhanced to address some of these

challenges [6]. Addressing these issues complicates the design of cooperative protocols. For a

comprehensive discussion about the implementation challenges of cooperative communication

and potential solutions we refer the reader to [18] and [19] and the references therein.

In this work, we consider a two-stage cooperation model to send a message from a transmitter

tk to a receiver rk as follows:

• Stage 1: tk broadcasts the message to its neighborhood with some transmission power Pb.

• Stage 2: Every node ti (i 6= k) that has successfully decoded the message will join tk to

form a cooperative transmitting set Tk = {t1, . . . , tm}. Transmitting set Tk cooperatively

transmits the message to rk using some power allocation vector p = (p1, . . . , pm).

We use the notation 〈Tk, rk〉 to denote the cooperative link between transmitting set Tk and

receiver rk. Using the channel model (1), the total received power at rk is then given by∑
ti∈Tk

( |hij |2
dαij

)
pi, where pi is the transmission power of transmitter ti ∈ Tk.

Let γsum
k denote the total SNR at receiver rk due to m cooperative transmitters in Tk. We

have γsum
k =

∑m
i=1 γik, which is the summation of m independent and exponentially distributed

random variables γik (as derived in (2)). Let Fγsumk
(y) denote the cumulative distribution function

of γsum
k . The summation of independent and exponentially distributed random variables has a

Hypoexponential distribution. Therefore, Fγsumk
(y) can be expressed as

Fγsumk
(y) = 1−ΛeyΘk1, (3)

where,

Θk =



−µ1k µ1k 0 . . . 0 0

0 −µ2k µ2k
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 . . . 0 −µ(m−1)k µ(m−1)k

0 0 . . . 0 0 −µmk


,

and Λ = [1, 0, . . . , 0]. Also, 1 is a column vector of ones of size m, and eA denotes the matrix

exponential of matrix A.

Let β denote the minimum SNR required at receiver rk. Assuming optimal coding on a

Gaussian channel between the transmitter and receiver, the transmission rate and the signal-to-
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noise-ratio are related through the Gaussian channel capacity formula as λ = log(1 + β) or

β = 2λ − 1.

Due to fading, the cooperative link 〈Tk, rk〉 may not be able to sustain the rate λ, resulting

in outage. Let S(Tk,p, rk) denote the probability that link 〈Tk, rk〉 is not in outage for power

allocation vector p, i.e., the transmission is successful. We obtain that:

S(Tk,p, rk) = P {γsum
k ≥ β} = ΛeβΘk1 . (4)

C. Routing Model

A K-hop cooperative route ` is a sequence of K links {`1, . . . , `K}, where each link `k =

〈tk, rk〉1 is formed between a transmitting node tk and a receiving node rk, using the two-stage

cooperative transmission at the physical layer. The sequence of links `k connects a source ‘s’ to

a destination ‘d’ in a loop-free path. Our objective is to find a path that minimizes end-to-end

transmission power to reach the destination.

Definition 1 (Link Cost). The cost of link `k = 〈tk, rk〉 denoted by C(tk, rk) is defined as the

minimum expected transmission power to deliver a message from tk to rk using the two-stage

cooperative transmission subject to rate λ and outage probability pε.

Then, the problem of energy efficient routing can be formulated as follows

min
`∈L

∑
`k∈`

C(tk, rk), (5)

where L denotes the set of all possible paths in the network (any loop-free sequence of nodes

from the source to the destination is a potential path in this model).

III. OPTIMAL COOPERATIVE ROUTING

A. Link Cost Formulation

1) Unconstrained Link Cost: Consider link 〈tk, rk〉 formed between nodes tk and rk using

the two-stage cooperative transmission. Let Tk denote the set of cooperative nodes in Stage 2

of the transmission strategy. Let p denote the power allocation vector to form the cooperative

1Notations 〈Tk, rk〉 and 〈tk, rk〉 are used interchangeably to refer to a cooperative link formed between nodes tk and rk using

the transmitting set Tk.
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link 〈Tk, rk〉. The unconstrained link cost (i.e., arbitrary pε in Definition 1) of cooperative link

〈Tk, rk〉 denoted by C(Tk, rk) is given by the following optimization problem:

C(Tk, rk) = min
p∈P

∑
ti∈Tk pi

S(Tk,p, rk)
, (6)

where P denotes the set of all feasible power allocation vectors p, where pi ≤ Pmax is the power

allocated to transmitter ti ∈ Tk.
2) Link Cost under Outage Constraint: The main benefit of cooperative communication is

in fading environments where diversity can be used to combat fading. The applications that

benefit from cooperative communication typically have a stringent requirement in terms of link

reliability (i.e., outage). The link cost formulation in (6), however, does not provide any specific

target outage probability, and hence no limit on the number of retransmissions and consequently

the link delay. To address this issue, we modify optimization problem (6) to include a constraint

on target outage probability as follows. Let pε denote the target per-link outage probability that

can be tolerated. Then, as defined in Definition 1, the link cost C(Tk, rk) under the outage

constraint pε is the solution to the following constrained optimization problem:

C(Tk, rk) = min
p∈P

∑
ti∈Tk

pi

s.t. S(Tk,p, rk) ≥ 1− pε .
(7)

To this end, the total transmission cost to form link 〈tk, rk〉 is the summation of transmission

powers in Stage 1 and 2. That is

Total power in the two stages to form 〈tk, rk〉 = Pb + C(Tk, rk),

where Tk is the cooperative transmitting set formed in Stage 1.

Two comments are due regarding the above expression:

1) The total required power is highly dependent on the broadcasting power Pb used in Stage

1. By increasing Pb, a larger cooperative set Tk is formed. It can be shown that as the

cooperative set gets larger, the transmission power required to form a cooperative link (i.e.,

C(Tk, rk)) decreases [8]. Our goal is to find the optimal value of Pb that minimizes the

total expected transmission power.

2) If instantaneous fading coefficients are available (e.g., a non-fading environment) then for

any given Pb the cooperative set Tk can be deterministically specified (i.e., with probability
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1, it can be decided whether a node has received the message or not). Consequently, the

minimum link cost corresponding to optimal Pb can be computed as presented in [10].

However, in a fading environment, where nodes might be in outage, a more complicated

formulation is required to enumerate over all possible memberships for Tk.

Let T denote an arbitrary subset of N − {tk}. Let B(tk, Pb, T ) denote the probability that

every node ti ∈ T successfully receives a message broadcast by tk with broadcasting power Pb,

and that every other node in the network (except tk) is in outage. We obtain that

B(tk, Pb, T ) =
∏
ti∈T

S(tk, Pb, ti)
∏
tj 6∈T

(1− S(tk, Pb, tj)) . (8)

where, for notational simplicity, S(tk, Pb, ti) is used to denote S({tk}, [Pb], ti). Using this ex-

pression, the link cost C(tk, rk) is given by the following optimization problem:

C(tk, rk) = min
Pb≤Pmax

{
Pb +

(
1− S(tk, Pb, rk)

)
×

∑
T⊆N−{tk}

B(tk, Pb, T ) · C(T ∪ {tk}, rk)
}
, (9)

where C(T ∪ {tk}, rk) is calculated by (6) or (7).

Note that cooperative transmission is necessary only if receiver rk fails to receive the message

in Stage 1. This is reflected by the term
(
1− S(tk, Pb, rk)

)
in (9).

B. Minimum Cost Route Selection

We can now model our network as a weighted graph G = (N , E , C), where N is the set

of nodes in the network, E is the set of all possible edges between the nodes, i.e., E =

{(tk, rk) | tk, rk ∈ N}, and C = {C(tk, rk) | (tk, rk) ∈ E} is the set of link costs defined over

the edges. The problem of energy efficient routing can now be formulated as the shortest path

problem on graph G. Using Dijkstra’s algorithm, the minimum energy path between a source and

a destination can be computed in O(N logN) if the link costs C are known. Although the link

costs C are computed once (and can be computed off-line), computing the cost of a link involves

enumerating exponential number of cooperative sets T (see (9)). To mitigate this problem, one

approach is to reduce the search space for T as discussed in the next subsection.

C. Restricted Cooperation

Nodes that are far away from the transmitter have little chance to receive the message

successfully. Hence, practically, they can be ignored when searching for the cooperative set
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T as their inclusion only marginally improves the link cost. Specifically, for a given broadcast

power Pb, we restrict the search space to those nodes for which the probability of successfully

receiving the message is at least 1− pε. Let Ñ denote the set of such nodes. That is

Ñ = {nj ∈ N |S(tk, Pb, nj) ≥ 1− pε},

which essentially defines a disk around the transmitter tk with the radius d(Pb) given by

d(Pb) =
(
− β

Pb
ln (1− pε)

)1/α
.

Although this restriction does not change the asymptotic order of the routing complexity, it is

highly effective in finite networks that are of interest in this paper.

IV. OPPORTUNISTIC COOPERATIVE ROUTING

The analysis presented in Section III assumes that a static routing algorithm is employed in the

network. That is, a route (which is essentially a set of intermediate relays) is computed a priori

and all messages will be transmitted over the same route. At each intermediate relay, a unicast

cooperative link is constructed between a set of transmitters and a specific receiver in a many-to-

one manner. When channels are variable (which is typically the case in wireless networks), it has

been shown that static routing may not be efficient as it unicasts a message to a pre-determined

relay that may currently have a bad channel. To mitigate this problem, the broadcast nature of

wireless channels can be explored to determine the best intermediate relay opportunistically after

broadcasting a message. To implement this strategy, an opportunistic routing algorithm anycasts

messages at intermediate nodes (in a many-to-many manner) and selects the next relay from

the set of nodes that have received the message successfully. Similar to [20], our algorithm is

essentially a stochastic version of the Bellman-Ford routing algorithm.

In our opportunistic routing, cooperative transmitters anycast a message to a set of potential

receivers. Any node in this set that receives successfully may be used as the next relay. We refer

to this set as the candidate relay set. Let R(tk) or simply Rk denote the candidate relay set for

transmitter tk.

Definition 2 (Opportunistic Route). Because of anycasting, messages reach the destination

through potentially different routes. An opportunistic route is the union of all possible routes

between a source and a destination created by a choice of candidate relays at each intermediate

node.
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A. Anycast Link Cost

Consider a transmitter tk and its corresponding candidate relay set Rk (to be specified later).

In Stage 1, tk broadcasts a message with some power Pb. Nodes that successfully receive the

message join tk to form a cooperative transmitting set Tk. In Stage 2, Tk cooperatively anycast

the message to the candidate relay set Rk.

Definition 3 (Anycast Link Cost). The anycast cost of link `k = 〈tk, Rk〉 denoted by C(tk, Rk)

is defined as the minimum expected transmission power to deliver a message from tk to any node

in Rk using the two-stage cooperative transmission subject to rate λ and outage probability pε.

Let C(Tk, Rk) denote the minimum power required for cooperative anycast from Tk to Rk.

Then, C(Tk, Rk) is given by the following optimization problem:

C(Tk, Rk) = min
p∈P

∑
ti∈Tk

pi

s.t. A(Tk,p, Rk) ≥ 1− pε,
(10)

where A(Tk,p, Rk) denotes the probability that at least one node in set Rk successfully receives

the message and is expressed as

A(Tk,p, Rk) = 1−
∏
rj∈Rk

(1− S(Tk,p, rj)) . (11)

Using (10), the anycast link cost C(tk, Rk) is given by the following optimization problem over

broadcasting power Pb:

C(tk, Rk) = min
Pb≤Pmax

{
Pb+

(
1−A(tk, Pb, Rk)

)
×

∑
T⊆N−{tk}

B(tk, Pb, T ) · C(T ∪ {tk}, Rk)
}
, (12)

where S(tk, Pb, T ) is given by (8), and A(tk, Pb, Rk) can be computed from (11) by substituting

Tk = {tk}.

B. Cost of a Trajectory

A trajectory ` in an opportunistic route Υ is a possible path that a message can traverse

to reach the destination. Hence, a trajectory is a sequence of nodes ` = (s, t1, t2, . . . , tK , d)

connecting a source node s to the destination d. Each of the nodes in the sequence anycasts to

its candidate relay set defined in the opportunistic route Υ. Consequently, the cost of trajectory
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` in the opportunistic route Υ denoted by C(`|Υ) is the sum of the anycast link costs of the

nodes in `, which is expressed as follows

C(`|Υ) = C(s, Rs) + C(t1, R1) + · · ·+ C(tK , RK) . (13)

Assuming each trajectory ` in Υ is used with probability P {`}, the expected cost for the

opportunistic route Υ is given by

C(Υ) =
∑
`∈Υ

P {`} C(` |Υ) . (14)

C. Optimal Candidate Relay Set

In opportunistic routing, the candidate relay set that minimizes the expected cost to the

destination is chosen as the anycast destination. Thus, we need to compute the expected cost of

delivering a message to the destination from a given relay set in order to find the best relay set.

Definition 4 (Remaining Path Cost). The remaining path cost R(tk, Rk) with respect to

opportunistic route Υ is the expected remaining cost to reach the destination if the candidate

relay set Rk is chosen by tk.

R(tk, Rk) is calculated as the weighted sum of costs from each node in Rk = {r1, . . . , rn}
to the destination. Let Dj denote the cost to reach the destination from node rj in Rk. In case

Dj = D for every rj ∈ Rk, then the remaining cost is simply R(tk, Rk) = D. Next, consider the

case where Dj’s are not all equal. Without loss of generality, assume that D1 < D2 < · · · < Dn.

Assuming a cooperative transmitting set Tk, the expected remaining path cost for candidate relay

set Rk denoted by R(Tk, Rk) is expressed as

R(Tk, Rk) =
1

A(Tk,p, Rk)

(
S1D1 +

n∑
j=2

SjDj

j−1∏
i=1

(1− Si)
)
,

where, Sj = S(Tk,p, rj), and p is obtained by solving the optimization problem in (10). To

find the expected remaining cost, we average over all possible cooperative sets Tk that can be

formed by transmitter tk. Hence, the expected remaining cost from the candidate set Rk is given

by

R(tk, Rk) =
∑

T⊆N−{tk}

B(tk, Pb, T ) · R(T ∪ {tk}, Rk), (15)
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where Pb is obtained by solving the optimization problem in (12). Consequently, the cost of the

opportunistic routing from node tk to the destination denoted by Dk is expressed as

Dk = min
R⊆N

[C(tk, R) +R(tk, R)], (16)

and, the candidate relaying set that solves the above optimization problem is the optimal candidate

relay set for the transmitter tk.

The above equation gives an iterative representation of the minimum expected cost from a

node to the destination similar to the familiar Bellman-Ford algorithm. At the h-th iteration,

each node tk updates Dh
k , its cost estimate to the destination. An estimate of the remaining path

cost Rh(tk, R) is also computed using (15). In the next iteration the estimated cost is updated

for each node (except the destination d) as follows

Dh+1
k = min

R⊆N
[C(tk, R) +Rh(tk, R)], for tk 6= d . (17)

The initial conditions for the iterative algorithm are D0
k =∞ for all tk 6= d, and Dh

d = 0 for all

h. The algorithm terminates when Dh
k = Dh−1

k for all tk.

In this section, we analyzed opportunistic cooperative routing algorithm to minimize the

expected path cost by exploiting the broadcast nature of the wireless channel. To compute

an opportunistic route between a source and a destination, as well as compute the optimal

broadcasting power for the cooperative links, we need to find the optimal candidate relaying set

for every transmitter. Moreover, since it is possible that more than one node in the candidate

relaying set will receive successfully, it is important to have a metric for choosing a transmitting

node to initiate the next cooperative link. While optimal candidate relaying sets are computed

by solving the optimization problem in (16), the values of Dk’s are used to determine the next

transmitter by selecting the one with minimum Dk.

V. HEURISTIC COOPERATIVE ROUTING

As discussed earlier, the optimal routing algorithms developed in Sections III and IV are

centralized and have exponential computational complexity. In this section, we use those optimal

algorithms as a baseline and modify them using several heuristics in order to develop static

routing algorithms that are computationally simpler yet achieve considerable energy efficiency

(as shown in our simulations).
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A. Probabilistic Cooperation (PC)

Consider a two-stage transmission from the transmitting node tk to a receiving node rk. When

computing the optimal broadcasting power Pb, O(2N) potential cooperative transmitting sets are

enumerated resulting in an exponential computational complexity. In probabilistic cooperation,

instead of computing the optimal Pb, an approximate value is computed in polynomial time.

Let w(ti) denote the probability that node ti successfully decodes the broadcast message in

Stage 1 of the cooperation. For broadcasting power Pb, w(ti) is expressed as

w(ti) = e
− d

α
ki
Pb
β
, for all ti ∈ N and ti 6= tk, rk . (18)

To approximate Pb, PC assumes that node ti will participate in Stage 2 of the cooperative

transmission with probability w(ti). This results in a probabilistic transmitting set that includes

all nodes in the network, each with a certain grade of membership, where w(ti) denotes the

grade of membership of node ti. In practice, node participation in the cooperative transmission

is deterministic, each node either transmits or does not. In this sense, w(ti) can be considered

as the average probability that node ti participates in the transmitting set over a long time. Note

that, in our model, the transmitting node tk always participates in the cooperative transmission.

Therefore, we have w(tk) = 1. On the other hand, the cooperative transmission is performed

only if the intended receiver fails to decode the broadcast message, implying that w(rk) = 0.

In the Stage 2 of the cooperative transmission, the signal transmitted by node ti is scaled by

the membership grade of ti, yielding the following expression for the received signal at rk

yk =
∑
ti∈Tk

wi

√
pi
dαik

hik xi + ηk, (19)

where wi = w(ti). Thus, γik, the SNR at the receiver due to transmitter ti, is given by

γik =
1

Pη

w2
i

pi
dαik
|hik|2 . (20)

Similarly, the total SNR at rk is expressed as γsum
k =

∑
ti∈T γik, which is the summation of N−1

independent and exponentially distributed random variables with parameters λik = 1/E [γik].

The success probability and expected cost of the cooperative transmission denoted by S(Tk,p, rk)

and C(Tk, rk), respectively, can now be calculated using (4) and (7). This leads to the following

expression for the link cost between tk and rk

C(tk, rk) = min
Pb≤Pmax

{
Pb +

(
1− S(tk, Pb, rk)

)
C(Tk, rk)

}
. (21)

Clearly, this heuristic algorithm has polynomial computational complexity in the network size.
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B. Equal Power Allocation (EP)

In our model, to form a cooperative link, optimal power allocation is performed as expressed

in (7). A simpler, albeit suboptimal, approach is to allocate equal power to every node in the

cooperative set [6]. In this subsection, we modify our model to incorporate equal power allocation

in our routing algorithm.

1) Computing Success Probability: Consider a cooperative link between nodes tk and rk.

We assume that the cooperative transmitting set T consists of M nodes that are almost equally

distant from the receiving node rk. To estimate the distance of the nodes in T from the receiver,

we compute the average distance of the nodes to the receiver with respect to the membership

grades wi’s. This results in the following relation

dTk =
1∑

ti∈T wi

∑
ti∈T

widik . (22)

Following the discussion in Section II, the total SNR at receiver rk due to all nodes in the

cooperative transmitting set is now expressed as

γsum
k =

1

Pη

p

dαTk

∑
ti∈T

|hik|2, (23)

which is the summation of M independent and exponentially distributed random variables with

parameter µsum
k = (Pηd

α
Tk)/p. Hence, γsum

k follows an Erlang distribution with parameters M

and µsum
k . Consequently, we obtain the following expression for the success probability of the

cooperative transmission under equal power allocation vector p = (p, . . . , p):

S(T,p, rk) = e−µ
sum
k β

M−1∑
n=0

(µsum
k β)n/n! . (24)

2) Cooperative Link Cost: Assuming that nodes are uniformly distributed over the plane with

density σ, the number of cooperative nodes M can be approximated as follows.

M ≈ 1 + 2πσ

∫ ∞
0

re
− r

α

Pb
β
dr, (25)

where one is added because the broadcasting node also takes part in the cooperative transmission.

For the special case of α = 2, we obtain that

M ≈ 1 +
σπ

β
Pb . (26)
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Next, the minimum expected cost for cooperative transmission between T and rk is obtained as

follows

C(T, rk) = min
p≤Pmax

Mp

s.t. S(T,p, rk) ≥ 1− pε,
(27)

which results in the following optimization problem for the link cost between tk and rk:

C(tk, rk) = min
Pb≤Pmax

{Pb + C(T, rk)} . (28)

3) Cooperative Power Allocation: Using (28), a suitable broadcasting power Pb can be com-

puted. Then, node tk broadcasts its message using the computed Pb. After the broadcast, the

cooperative set T is formed and equal power p is allocated to nodes in T for cooperative

transmission. We consider two approaches for allocating power to cooperative transmitters.

• EP-H1: Once T is known, the optimal power p can be computed using a technique similar

to that of Section III. Note that in this case, the power allocation vector is of the form

p = (p, . . . , p).

• EP-H2: Alternatively, we can simply use the value of p that is pre-computed in the

optimization problem (28). In this case, a completely distributed routing algorithm can be

designed assuming a certain spacial distribution for node locations (e.g., uniform distribution

over the plane).

Discussion: Recall that γsum
k is an Erlang random variable with parameters µsum

k and M . For

simplicity of notation, we drop the index k in the following derivation. We are interested in

approximating the success probability (24) in order to derive approximate closed-form expres-

sions for Pb and p for the equal power allocation heuristic. Our derivation is based on Chernoff

bounds for a non-negative random variable expressed as follows

P {X < a} ≤ inf
θ<0

e−θaMX(θ), (29)

where, MX(θ) = E
[
eθX
]

denotes the moment generating fuction of the random variable X .

Applying the Chernoff bound for Erlang random variables [21], we obtain that

P {γ < β} ≤ e−(βµ−M)
(βµ
M

)M
≈
(βµ
M

)M
. (30)

To meet the outage probability pε, the following condition must be satisfied

P {γ < β} ≈
(βµ
M

)M
≤ pε, (31)
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which yields the following result for optimal transmission power p:

p ≥ Pηβd
α

M M
√
pε
≥ Pηβd

α

M
, (32)

where we have simply used the distance between tk and rk denoted by d to approximate dTk.

As can be seen, p is inversely proportional to the number of cooperative transmitters. That is,

as the set of cooperative transmitters become larger, p becomes smaller. Next, for the case of

α = 2, we obtain that

p ≈
(Pηβ

2d2

πσ

)
P−1
b , (33)

which indicates that the optimal value of p decreases by increasing Pb. By substituting the above

expression in (28), we obtain that

Pb = min
{√Pη

πσ
βd,Pmax

}
. (34)

Using the above expressions for p and Pb, the broadcasting and relaying power of the transmit-

ters and cooperative nodes can be determined a priori using the knowledge about network nodes

location distribution, channel fading process and other network parameters. These transmission

powers can be computed either by every node individually or by some designated node and then

broadcast to the entire network. Once p and Pb are known in the network, the routing algorithm

can be implemented in a fully distributed fashion as every node in the network knows exactly

at what power it has to transmit.

Computing the link cost in the EP scheme is independent of the number of nodes in the

network, and hence has time complexity O(1) for any network size. Computing the link cost

in the PC scheme, on the other hand, has polynomial time complexity in the network size. We

will see in the next section that this lower complexity comes with higher energy cost compared

to the probabilistic scheme.

VI. PERFORMANCE EVALUATION

In the following subsections, we present our simulation results and compare the performance

of different algorithms in terms of energy consumption.

In addition to cooperative routing algorithms, we simulate the optimal non-cooperative routing

(ONCR) algorithm as a benchmark to measure energy savings achieved by cooperative routing.

ONCR is basically the least-cost non-cooperative route computed using Dijkstra’s algorithm.
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In simulating the routing algorithms, if the cooperative transmission in Stage 2 fails to deliver

the message (due to outage), we implement retransmissions until the message is successfully

delivered to the next hop.

A. Simulation Parameters

We simulate a wireless network, in which nodes are deployed uniformly at random in an square

area. We choose two nodes s and d located at the lower left and the upper right corners of the

network, respectively, and find cooperative and non-cooperative routes from s to d. We then

compute the total amount of energy consumed on each route using different routing algorithms.

For simulation purposes, we take path-loss exponent α = 2, noise power Pη = 1 and SNR

threshold β = 0.65, unless otherwise specified. The numbers reported are obtained by averaging

over multiple simulation runs with different seeds. The max node power Pmax is set in such

a way that the network is connected without cooperation (the absolute value of Pmax does not

affect the results).

B. Effect of Broadcast Power on Link Cost

In general, the link cost is a non-monotonic function of Pb. To demonstrate this in our

simulations and find the optimal value of Pb, we choose a pair of transmitting and receiving

nodes that are far apart in a randomly generated network and compute link cost between them

for various broadcasting powers. The network is a 10× 10 square, node density is set to σ = 2

(total of 200 nodes in the network), and pε = 0.2 in this experiment.

To show the full extend of the trade-off between Pb and link cost, in this experiment, we

do not consider any limit on the transmission power (i.e., Pmax = ∞), hence nodes are able

to use arbitrary power levels. Fig. 1 illustrates the total transmission power (i.e., link cost) for

different values of the broadcasting power. Clearly, there is an optimal Pb that minimizes the total

transmission power. This optimal value can be computed by solving optimization problem (9).

C. Performance of Optimal and Heuristic Algorithms

In this subsection, we investigate the performance of our optimal and heuristic routing al-

gorithms in terms of energy savings achieved compared to the optimal non-cooperative routing

algorithm (ONCR) in a network with 50 nodes uniformly distributed on a square of size 5× 5.
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In the implementation of the routing algorithms, we consider two cases. In the first case, we

assume that there is a requirement on link reliability (corresponding to some link delay) given in

terms of the success probability. In this case, we use our constrained optimization relations (e.g.,

(7)) to calculate the link cost. In the second case, we assume that there is no hard requirement on

link reliability (hence, no delay target) and use our unconstrained optimization relations (e.g., (6))

to compute the link cost. The link cost computed by constrained optimization relations is subject

to a given outage probability pε. If a transmission fails then retransmissions are required. Thus,

the average cost of successfully delivering a message over link 〈tk, rk〉 denoted by Cs(tk, rk) is

given by Cs(tk, rk) = C(tk, rk)/(1− pε), with the corresponding delay of (1− pε)−1.

The simulation results for the case of unconstrained routing (i.e., no target link reliability)

are summarized in Table I. The table shows the minimum achieved energy costs along with

corresponding success probabilities that resulted in the minimum energy cost for different routing

algorithms. As can be seen, without any constraint on link reliability, the optimal success

probability that results in minimum energy cost might be considerably low. Hence, delivering

a message may require multiple rounds of transmissions causing extensive end-to-end delay.

Furthermore, the energy savings in this regime compared to ONCR are negligible (and even

negative in case of heuristics). Recall that this was expected as cooperative diversity is most

effective in networks where retransmissions are not effective (e.g., due to tight delay constraints

and/or low mobility, where the fading does not change appreciably between transmissions).

Thus, in the remainder of this section, we ignore unconstrained routing and focus instead on

constrained routing algorithms.

1) Performance of Optimal Routing Algorithms: Due to the computational complexity of the

optimal algorithms, it is challenging to simulate these algorithms in large networks. Instead,

in this experiment, we simulated a fairly small network with 12 nodes distributed randomly

on a square area of dimension 2 × 2. Energy cost of the two optimal algorithms is shown in

Fig. 2. Interestingly, even on such a small network, the static cooperative algorithm performs

about 30% better than the non-cooperative algorithm for larger values of success probability.

The improvements in energy saving are even more significant with the opportunistic algorithm,

consuming about 65% less transmission energy compared to the non-cooperative algorithm. As

we show in Subsection VI-D, the energy savings will dramatically increase for higher success

probabilities.
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2) Performance of Heuristic Routing Algorithms: Fig. 3 illustrates the energy cost of the

heuristic algorithms described in Section V. In this experiment, the network size is 5 × 5 and

node density is set to σ = 2. As shown in the figure, the heuristic routing cooperative algorithms

achieves considerable energy savings for higher values of success probability. In particular, PC

achieves energy savings of about 10% and 300% for low and high success probabilities. Similarly,

equal power allocation heuristics, namely EP-H1 and EP-H2, perform considerably better than

the non-cooperative algorithm for higher success probabilities, which is the appropriate region

of operation for cooperative communication.

Figure 4 compares the performance of the optimal and heuristic algorithms over the same

network used for Figure 2.

To see the performance of the algorithms under distribution other than uniform, we have used

the 2-D Gaussian distribution as an example, and the results of the energy costs of the heuristic

algorithms are shown in Figure 5. We observe that a similar performance is seen as the uniform

distribution.

D. Effect of Network Parameters

Here, we study the effect of various network parameters on the performance of the heuristic

routing algorithms. In these experiments, 50 nodes are uniformly distributed on a square of size

5× 5. For the basic case, we set path-loss exponent as α = 2, and let SNR threshold and node

density equal β = 0.65 and σ = 2, respectively. In each of the following subsections we change

the value of the related parameter accordingly.

1) Effect of Path-Loss: The effect of path-loss exponent (α) on energy cost of the heuristic

algorithms is presented in Fig. 6. As is expected, the energy cost is increased as the path-loss

exponent is increased. Also, the energy gain of the cooperative schemes is observed to be higher

for larger path-loss exponents.

2) Effect of SNR Threshold: We run the simulations with different values of β, corresponding

to different link throughputs. Results from the simulations are shown in Fig. 7. We observe that

the energy cost increases linearly with target SNR, but the cooperative schemes increase with a

lower rate compared to the non-cooperative scheme.

3) Effect of Node Density: Fig. 8 shows the impact of node density on the performance of

the routing algorithms. The energy cost in the all schemes decreases as the node density is
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increased, and the energy gain of the cooperative algorithms is also decreasing as the node

density is increased.

E. Effect of Cooperation on Path Length

In this experiment, we consider a large network with 200 nodes uniformly distributed on a

square of size 10× 10, and set pε = 0.2 . Fig. 9 compares the number of hops required to reach

the destination from the source (which are located in opposite corners) using different routing

algorithms. As shown in figure, not only our proposed algorithms achieve considerable energy

savings compared to non-cooperative routing, but also they form longer-range links resulting in

fewer hops to reach the destination. We note that the reduced hop count of cooperative routing

algorithms has positive implications for the network throughput.

F. Effect of Cooperation on Network Throughput

In this experiment, we simulate multiple concurrent flows in a network and measure the

network throughput achieved with and without cooperation. The network configuration in this

experiment is the same as in the previous experiment in Subsection VI-E. For each flow, the

source and destination nodes are chosen randomly among the 200 nodes in the network.

At each time-slot, the largest set of non-conflicting cooperative links is scheduled for trans-

mission. A transmission is considered successful only if the Signal-to-Interference-plus-Noise

Ratio (SINR) at the receiving node exceeds the threshold β. Since a fixed SINR is considered

at every receiver, the rate at which a node receives data over an active link is fixed. We define

the throughput of the network as the ratio between the average number of scheduled links per

time-slot and the average path length (in terms of the number of hops). That is:

Throughput =
Average Number of Scheduled Links

Average Path Length
. (35)

Based on the experiments in Subsection VI-E, cooperation reduces path length which should

improve the network throughput. However, as shown in Fig. 10, cooperation also reduces the

average number of scheduled links per time-slot which negatively affects the throughput. To

see the combined effect of path length and concurrently scheduled links on the throughput, in

Fig. 11, we have plotted the average network throughput computed based on (35) for optimal

non-cooperative (ONCR) and probabilistic cooperative (PC) routing algorithms. To compute the
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throughput achieved under cooperative routing, it has been taken into consideration that each

successful transmission requires two time-slots due to the two-stage cooperative transmission. It

can be seen that the network throughput decreases as the number of concurrent flows increases

in the network.

VII. CONCLUSION

Cooperation among single-antenna nodes in wireless networks has been widely studied as a

promising method to improve physical layer metrics. Such cooperation obviates the standard

model on which routing algorithms are built, yet there has been little attention paid to un-

derstanding how to perform routing when cooperation is employed, particularly in the most

pertinent case where partial channel information is available to the network. Here we have

formulated the minimum energy cooperative routing problem with partial channel information,

and provided both optimal and heuristic algorithms. We have also simulated our algorithms

in random wireless networks and studied their performance with respect to various network

parameters. Our simulations show that while optimal cooperation and link selection can reduce

energy consumption by almost an order of magnitude compared to non-cooperative approaches,

our simple heuristics perform reasonably well achieving similar energy savings while being

computationally efficient as well.
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Fig. 1. Link cost as a function of broadcasting power Pb.
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Fig. 9. Path length (i.e., hop count) of different routing algorithms.
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TABLES 34

TABLE I
ENERGY EFFICIENCY OF UNCONSTRAINED ROUTING.

Algorithm Min Cost Success Prob.
ONCR 2.83 0.38
Static 2.74 0.43

Opportunistic 2.15 0.54
EP-H1 3.05 0.53
EP-H2 4.32 0.51

PC 2.75 0.48


