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Abstract—As network virtualization becomes ubiquitous,
legacy hardware-based traffic monitoring systems are no longer
viable for dynamic traffic inspection at arbitrary locations in
virtual networks. In this paper, we present the design and
evaluation of Open Virtual Tap (OVT), a software-defined solution
to replace hardware taps for traffic monitoring in OpenFlow
virtual networks by utilizing mirroring capabilities of OpenFlow
switches. The key idea behind OVT is the joint configuration
of all switches in the substrate physical network in order to
efficiently mirror flows from all virtual networks. We show
that such a design avoids inefficiencies that result from existing
software-based traffic mirroring solutions in which each virtual
network configures its own switches independently of other vir-
tual networks. We evaluate OVT using model-driven simulations
as well as Mininet experiments with realistic applications for
intrusion detection and video telephony analysis. Specifically,
in our experiments, we observe that OVT can achieve up to
20% improvement in flow coverage compared to existing traffic
mirroring approaches.

Index Terms—Network monitoring, Traffic mirroring, Virtual
networks, Software-defined networks.

I. INTRODUCTION

Motivation. Network virtualization has emerged as a core
technology in modern networks, specially in multi-tenant
datacenter networks. In its general form, network virtual-
ization enables multiple virtual networks (VNs) to coexist
on the same substrate physical network through abstraction
and isolation mechanisms. While network virtualization brings
about substantial benefits such as greater operational efficiency
and improved network security, it also creates a new set of
challenges for managing VNs. Network management functions
that rely on direct access to physical network devices (e.g.,
switches) do not work properly when deployed in VNs. In
particular, to detect network events ranging from performance
impairments to security breaches, network operators require
continuous, real-time network traffic monitoring at the gran-
ularity of packets [1], [2]. Traditionally, monitoring network
traffic at packet-level is accomplished using hardware tap de-
vices [3]. However, such hardware middleboxes are less useful
in VNs. Once hardware taps are installed, which require access
to physical network devices, they cannot be dynamically
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deployed to another location. Without the ability to capture
and analyze traffic at arbitrary points in the network, many
management tasks such as fault diagnosis, root cause analysis
and malware detection can not be effectively executed. The
necessity of packet-level traffic monitoring in VNs motivates
adopting software-based solutions. Software-based taps can
be dynamically deployed to different locations in a network,
making them particularly well-suited for environments where
VNs are created and deleted on the fly.

A few recent works [4]–[6] design software-defined packet-
level traffic monitoring systems. These works utilize ei-
ther port mirroring feature available on most commodity
switches [7] or flow mirroring feature available on pro-
grammable OpenFlow switches [8]. In port mirroring, a switch
duplicates the passing traffic to a designated mirroring port.
While simple and widely supported on even legacy switches,
port mirroring leads to inefficient network traffic monitoring
as the traffic mirroring is at the port-level granularity. In
flow mirroring, on the other hand, the traffic mirroring is
at the flow-level granularity. While flow mirroring provides
a more efficient traffic monitoring solution, it is only sup-
ported on programmable switches, e.g., OpenFlow switches.
Alternative works on softwarized network monitoring based
on Open vSwitch [9] can be found in [10]–[12]. All the
aforementioned works, however, are designed with a single
network in mind. Although they are software-based solutions
and can be deployed in VNs, they do not work efficiently as
they do not explicitly account for having multiple VNs running
on the same substrate network.

As a motivating example, consider the network environment
depicted in Fig. 1, which depicts two VNs running on the
same substrate network. Each VN has two virtual switches
and four flows that pass through both switches. Flows have
the same normalized traffic rate of 1. The substrate network
has three physical switches such that two virtual switches,
one from each VN, are mapped to a single physical switch,
a common scenario in network virtualization. In OpenFlow
networks, switch virtualization can be achieved by slicing the
available flow table space on the physical switch among the
virtual switch instances using an OpenFlow network hypervi-
sor such as OpenVirtex [13] or FlowVisor [14]. Assume that a
software-defined traffic mirroring system, such as SoftTap [6],
is deployed in each VN. To maximize the number of mirrored
flows and balance the mirroring load among switches, SoftTap
mirrors two flows on each virtual switch in each VN. While
individual mirroring configuration appears optimal from the
perspective of each VN, it leads to a highly unbalanced
mirroring load on physical switches in the substrate network.
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(a) Independent flow mirroring.
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(b) Coordinated flow mirroring.

Fig. 1: Two VNs sharing a physical switch. By jointly configuring flow mirroring of all switches in the network, the maximum mirroring
load on switches can be reduced by 25% compared to configuring switches in each VN independently.

Specifically, the maximum mirroring load on physical switches
in this example will be equal to 4. Clearly, this mirroring
configuration is sub-optimal. If mirroring decisions were made
jointly for all VNs by a central controller, a more efficient
mirroring configuration would be to mirror three flows on the
shared switch and distribute the remaining flows among the
other two switches. In this case, the maximum mirror load on
physical switches would be 3, a 25% improvement compared
to the first scenario. A lower mirroring load means that for
the same mirroring capacity, more flows can be mirrored in
the network (see Section VI). In general, if each VN has
N virtual switches and F flows (where typically F � N ),
and only one switch is shared between the two VNs, then
the maximum mirroring load when each VN mirrors its own
flows independently will be equal to d2F/Ne. On the other
hand, if mirroring decisions are made jointly for both VNs, the
maximum mirroring load on physical switches will be equal
to d2F/(2N − 1)e. This results in a maximum load ratio of
N/(2N − 1), which converges to 50% for large N .

From this example, it is clear that to have an efficient
switch-based traffic mirroring system, the mirroring config-
urations of all physical switches must be adjusted jointly
across all VNs. Such adjustment requires global network
information as well as the ability to dynamically change
mirroring configurations of physical switches as VNs and their
traffic change.

Our Approach. Our approach is based on global optimization
of switch mirroring configurations with respect to traffic and
routing layouts in all VNs sharing a substrate network. To this
end, we present the design and evaluation of Open Virtual Tap
(OVT), a software-defined tap for traffic mirroring in OpenFlow
VNs. By employing physical switches for traffic mirroring,
OVT is able to provide pervasive visibility covering as many
flows as possible in the network, while scaling out as the
network expands. OVT does not require any switch modifica-
tions and can be implemented on top of any OpenFlow-based
network virtualization technology.

The key idea behing OVT is to transparently proxy flow
mirroring requests from VNs to a substrate-level orchestra-

tor that has global visibility of physical switches via the
OpenFlow network hypervisor. Specifically, OVT has a local
agent that is deployed as an OpenFlow application in each
VN. From the perspective of VNs, the local agent receives
flow mirroring queries within the VN and proxies them to a
central orchestrator that runs on the network hypervisor. The
orchestrator, then, pools all flow mirroring queries together
and invokes the OVT optimizer to compute globally optimal
mirroring configurations using either port or flow mirroring
strategy. The OVT optimizer is a crucial component of OVT,
which has to be scalable, efficient and near-realtime. Thus, a
major portion of this work is dedicated to designing efficient
algorithms for the OVT optimizer. Depending on the mirroring
strategy utilized in the network, i.e., port or flow mirroring, the
optimizer has to consider a different set of constraints when
computing mirroring configurations. In particular, with flow
mirroring, a portion of the flow table space on each switch
has to be reserved for OVT rules. Recall that on OpenFlow
switches, forwarding rules are implemented using TCAM
(Ternary Content-Addressable Memory). As such, it is critical
to keep the reserved space to a minimum as TCAM capacity
on OpenFlow switches is quite limited [15], [16]. Additionally,
TCAM is an expensive and power hungry resource.

Contributions. We address the problem of packet-level traffic
monitoring in OpenFlow VNs using switch-based mirroring.
Previous software-based solutions for packet-level monitoring
do not explicitly account for having multiple VNs running on
the same substrate network, possibly resulting in increased
monitoring overhead. We propose OVT, a monitoring system
in OpenFlow VNs, that transparently proxy flow mirroring
requests from VNs to a substrate-level orchestrator. The or-
chestrator maintains global substrate-level switch visibility and
computes network-wide switch mirroring configurations such
that the aggregate switch mirroring load generated by all VNs
is minimized. Consequently, reducing the maximum switch
mirroring load, improves flow visibility, i.e., the percentage of
flows that are fully mirrored. To the best of our knowledge
the idea of coordinated flow mirroring across multiple VNs to
improve flow visibility is novel.
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The main contributions of this paper are summarized below:
• We present the design and evaluation of OVT, a scal-

able software-defined tap for flow mirroring in OpenFlow
VNs based on traffic mirroring capabilities of OpenFlow
switches.

• We formulate the problem of determining the global mir-
roring switch configurations under port and flow mirroring
strategies, while accounting for switch mirroring constraints
such as limited mirroring and TCAM capacities.

• We design polynomial-time approximation algorithms with
provable approximations ratios for computing globally op-
timal switch configurations, which is an NP-hard problem
in its exact form.

• We present simulation results to study the performance and
scalability of OVT in large networks with realistic traffic
patterns and compare that with existing approaches. We
also present Mininet experiments to show the utility of OVT
when used with practical applications in a realistic network
environment.

Organization. Section II reviews the related work on traffic
monitoring. In Section III we discuss the design of OVT.
Sections IV and Section V are dedicated to algorithm design
for OVT Optimizer under port and flow mirroring strategies,
respectively. Performance evaluation results are presented in
Section VI, while Section VII concludes the paper.

II. RELATED WORKS

In this section, we review existing works on network traffic
monitoring in SDNs. For each monitoring method, we first
study the virtualization-unaware approaches. We, then, have
a closer look at the software-based monitoring systems that
consider the existence of VNs in their design.
Statistics-based Methods. Various studies utilize the built-
in OpenFlow statistics collection mechanisms for statistics
collection in physical SDNs. Examples of such works are
presented in [17] and [18], both of which minimize per-
switch TCAM usage when installing OpenFlow statistics col-
lection rules. Both approaches incur long delays and overhead
since they require the SDN controller to periodically poll the
switches. With respect to the above problems, the work [19]
minimizes the latency of statistics collection, and the work [20]
minimizes the collection overhead. However, none of the
indicated approaches address specific challenges of statistics
collection in the presence of multiple VNs, e.g., non-isolated
statistics between VNs.

Some recent works propose statistics-based monitoring
frameworks for VNs. Examples of such frameworks are pre-
sented in [21]–[23]. In particular, Lattice [21] proposes a
statistical-based monitoring system for resource and service
monitoring by deploying multiple management systems on
top of the physical network infrastructure. The work [22]
applies Lattice for monitoring datacenter slices and investi-
gates Lattice’s applicability for dynamic monitoring of sliced
end-to-end infrastructures. Similarly, the work [23] utilizes the
mapping between virtual and physical networks to collect per-
VN statistics. Specifically, the proposed system minimizes the
statistics collection delay of each VN, by periodically feeding

the VN controllers with relevant statistics. The works in this
category are limited to flow statistics collection. There are,
however, applications that require the actual packets’ metadata
or payload information, e.g., deep packet inspection.

Sampling Methods. Traffic sampling is the traditional ap-
proach for low-overhead fine-grained packet-level information
collection. OpenFlow specification, however, does not support
traffic sampling. Consequently, the works [24]–[26] study
adding standard sampling modules, similar to Netflow [27]
and sFlow [28], to OpenFlow switches. Alternatively, the
works [29] and [30] propose sketch-based sampling frame-
works for software switches. All of the above mentioned works
use probabilistic sampling and are biased towards long flows.
To lessen the bias and account for short flows, the works [31]
and [32] propose time-based and flow-based sampling in
SDNs, respectively. Although these solutions are deployable in
softwarized switches such as Open vSwitch, their sub-optimal
sampling configuration in the presence of multiple VNs cause
severe sampling load-imbalance across physical switches.

Virtualization-aware traffic sampling has been discussed
in [33] and [34]. Particularly, a sFlow-based monitoring system
for multi-tenant SDNs is implemented in [33]. The authors,
however, do not take into account the traffic layout of each VN,
which makes their approach susceptible to load imbalance. To
address this issue, authors in [34] employ the knowledge of
traffic layout by estimating the traffic matrix from sampled
link measurement data.

Packet-level Methods. Packet-level monitoring provides a
thorough picture of the network that is not achievable through
statistics-based and traffic sampling approaches. Planck [4]
is a solution that employs the port mirroring technique to
extract global network information, from physical switches,
on a millisecond time scale. Since Planck does not address
the optimization problem of selecting the mirrored ports, it
suffers from low flow coverage and high mirroring redundancy.
Alternatively, the per-flow mirroring technique is used to verify
the routing compliance and detect faults in datacenters in [35]
and [36], respectively. Both of these works are compatible with
the capabilities of existing commodity switches. Further work
on softwarized packet-level monitoring has been proposed
in [11], [12] and [6]. In particular, the authors in [11] use
the extended Berkeley packet filter (eBPF) to implement a
software-based monitoring system. Their solution is limited to
systems with communicating co-located VMs, since it relies
on the host OS to duplicate the packets. At the same time,
the work [12] proposes a software-based tap to duplicate
the traffic between OpenStack-based VMs, using the group
table feature. This work restricts flow duplication to the
edge switches and lacks the required flexibility to balance
the mirroring load, leading to performance degradation and
monitoring loss. Authors in [6] design a system named SoftTap
to address the problem of balancing the mirroring load across
switches in SDNs. The work addresses calculating mirroring
configurations using port and flow mirroring strategies. None
of these works, however, consider the effect of having multiple
VNs on the same substrate network and can make inefficient
localized mirroring decisions that reduce the flow coverage
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and increase the load imbalance. In contrast, OVT is based on
global optimization of mirroring configurations with respect
to traffic layout in all VNs. It is worth mentioning that, there
exist high-performance commercial products for processing
captured network traffic at high rate. For example, Arista
provides a monitoring system, called DANZ Monitoring Fabric
(DMF) [37], to process high-rate traffic collected through
physical taps and mirroring ports. DMF, however, does not
address the problem of specifying the mirroring configurations
for target flows, which results in inefficient traffic collection
and lower flow visibility.

Orthogonal to our work, the work [38] provides a packet
anonymizer, which allows obfuscating sensitive information
and can be used to address privacy concerns of packet-level
traffic monitoring schemes such as OVT.

Compiled Queries in the Programmable Data Plane. With
the emergence of programmable switches, some works have
sought to offload all or partial monitoring tasks to be executed
on the switches. Examples of such works are [39]–[42]. In
particular, UnivMon [39] and Marple [40] specify a set of
fixed operations that can be executed on a programmable
switch. However, the current programmable switches limited
computational and memory resources cannot meet the require-
ments posed by general applications, requiring more complex
operations. Sonata [41] reduces the memory requirements of
the queries by introducing a method to refine each query
and ensure that available resources focus only on traffic that
satisfies the query. However, as shown in [43], still, not all
queries can fit within the limited resources of the switches.
To address this problem, *Flow [42] exports telemetry data
from packet traces and offloads the rest of the processing to
the application software. This approach, however, does not
address the question of efficient network-wide collection of
the required flow information.

In-band Network Telemetry (INT). In-Band Network
Telemetry (INT) is a framework for collecting telemetry items
and switches internal state information from the data plane. In
INT, the switches read the instructions and add the required
data to the packet headers as the packets traverse the network.
Existing INT implementations have high overheads due to per-
packet operation. To address this problem, the authors in [44]
employ a probabilistic packet processing scheme. Similarly,
the work [45] reduces the overhead by keeping the packet
length constant. The main limitation of these works is that they
rely on specialized data planes that are not yet widely available
in production environments. While OVT can be implemented
using such switches to allow finer-grained monitoring, e.g.,
mirroring just the packet headers, it is not bound to these
switches.

Host-based Monitoring. An alternative approach to the
above-mentioned network monitoring works is to offload net-
work monitoring to end-hosts. In these works, users define
monitoring events, which are then installed as triggers on
each end-host. Incoming packets may trigger a notification
to the controller when an event is detected. Following that,
the controller polls all end-hosts to aggregate all traffic for
detecting network-wide events. Examples of such works are

presented in [46]–[48]. In particular, PathDump [46] presents a
monitoring framework for a limited number of applications us-
ing statistics at the flow granularity, while Trumpet [47] defines
a limited number of events at packet granularity. Confluo [48]
improves Trumpet by introducing a new data structure that
allows for a broader range of telemetry applications. These
works, however, require sending information to a central
controller for network-wide event detection. This aggregation
may be challenging due to limited network resources at each
end-host server. For example, the number of network interface
cards in hosts is usually limited and using one of them only
for the monitoring purpose is not ideal. On the other hand,
switches have more available ports, and on many occasions,
some of these ports are un-used [49]. These un-used ports can
then be configured for mirroring in OVT.

III. SYSTEM DESIGN

The high-level design of OVT is depicted in Fig. 2. As
shown in the figure, OVT has four components, namely Agent,
Collector, Optimizer and Orchestrator. Each VN has a local
agent, which implements the functionality of a virtual tap for
the VN. Analyzer applications that require traffic capture send
their queries to their local agent. Agents, in turn, communicate
with the orchestrator, which collects all mirroring queries.
The orchestrator then communicates with the optimizer, which
computes a global mirroring configuration. Following that the
orchestrator installs appropriate forwarding rules on OpenFlow
switches in the substrate network using the network hypervisor
southbound interface. All mirrored traffic is then stored on
the collector before retrieved by analyzer applications. A
more detailed description of each component of the design
is provided below.

Network Virtualization. In our design, network virtualization
is implemented on top of an OpenFlow-based hypervisor such
as OpenVirtex [13]. Specifically, each VN is controlled by
its own OpenFlow controller and has its own address space
and topology. From the VN’s perspective, each OpenFlow
controller is directly in charge of configuring its data plane
elements. However, in reality, all such communications are
intercepted by the network hypervisor, which is in charge of
mapping VNs (i.e., virtual switches and virtual address spaces)
to the physical substrate network.

Control Flow. The execution sequence of OVT is as follows.
Within each VN, an analyzer application sends traffic monitor-
ing queries, i.e., set of flows to be mirrored, to the OVT agent.
The agent then forwards the received monitoring queries to
the OVT orchestrator module. The orchestrator communicates
with the hypervisor to find the mapping between VN flows
to the substrate network flows as well as the current usage of
mirroring resources on physical switches, e.g., the total port
rates and TCAM usage. Following that, the orchestrator passes
the collected information, including the substrate network
topology, set of flows to be mirrored and physical switches re-
source usage, to the OVT optimizer module. Subsequently, the
optimizer computes an optimal global mirroring configuration
for all physical switches and sends it back to the orchestrator
for deployment. Finally, according to the computed mirroring
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Fig. 2: High-level architecture of Open Virtual Tap (OVT). The red
arrows show the data plane, while black arrows show the control
plane.

configuration, the orchestrator installs forwarding rules on
physical switches. This is achieved through the use of the
southbound OpenFlow interface of the hypervisor.

OVT Agent. The agent is implemented as an OpenFlow
application on each VN’s controller and receives mirroring
queries from traffic analyzer applications. A mirroring query
specifies either a particular set of flows to be mirrored or a
wildcard request to mirror all flows in the VN. For example,
the former could be a set of flows of interest, specified by
a light-weight statistics-based IDS application [50], running
on the analyzer server. Alternatively, the first few packets of
an arriving flow can be forwarded to a light-weight analyzer
application to decide whether a flow is of interest for further
analysis [51]. In the latter case, the agent communicates with
the local OpenFlow controller to determine all active flows in
the VN. It is important to note that multiple traffic analyzer
applications in the network may send mirroring queries to
the agent. The agent forwards all received queries to the
orchestrator. The orchestrator assigns a unique ID to each
query and returns the set of assigned query IDs to the agent,
which, in turn, returns the query IDs to corresponding analyzer
applications. As explained later, the query IDs are used by
analyzer applications to retrieve mirrored data from OVT col-
lector. While in the current OVT design, it suffices to perform
query aggregation at the orchestrator level, the OVT agent
can also aggregate mirroring queries received from different
analyzer applications by eliminating repetitive flows. To this
extent, the agent would keep a mapping table, mapping the
aggregated query to the corresponding analyzer applications.
Using the mapping table, the agent would forward the obtained
(from the orchestrator) query ID to all corresponding analyzer
applications. We note that analyzer applications that rely on
specific events to trigger traffic monitoring are well-suited for
OVT. Furthermore, our design can be extended to prioritize
specific analyzer applications (e.g., by attaching a suitable
utility function to each application [52]). In such cases, the
agent assigns priorities to queries, indicating the monitoring
value of the query (see Section V-B).

OVT Collector. The OVT collector consists of a load balancer
and multiple storage servers. The number and capacity of

storage servers depend on the size of the network and the
type of filtering/pre-processing required from the collector.
The load balancer distributes packet traces across the servers
based on the available capacity and the performance of the
storage servers [53]–[55]. Additionally, the load balancer
ensures that the traced packets of the same flow are sent
to the same server (e.g., using the hash value of the packet
headers). Alternatively, there are commercial systems such as
Arista’s DANZ Monitoring Fabric (DMF) [37] for analyzing
and processing the mirrored traffic, which can be integrated
into OVT.

When configuring mirroring on switches, the orchestrator
installs flow rules that specify the collector (i.e., the address
of the load balancer in front of the storage servers) as the
destination of the mirrored traffic. The orchestrator also sends
the list of mirroring queries, query IDs and virtual-to-physical
flow mappings to the collector. When an analyzer application
attempts to retrieve mirrored traffic from the collector, it
specifies a query ID, which the collector will use to identify the
relevant traffic data to forward to the analyzer as well as any
address translation that is required to convert from physical to
virtual flows (e.g., NAT functionality). The storage servers in
the collector can be connected to switches by direct links or
over the same substrate network, albeit the latter comes at the
cost of increased load on the network.

OVT Orchestrator. The orchestrator receives mirroring
queries from the agents. It performs query aggregation by
storing all flows specified by all monitoring queries in the set
F , and thus, omitting the duplicated flows. The orchestrator
then communicates with the hypervisor to obtain the mapping
between VNs and the substrate network. For instance, a flow
in a VN may be specified by its source and destination IP
addresses in the VN’s address space. To determine which
physical switches are on the path of the virtual flow, the
orchestrator needs to map the virtual source and destina-
tion addresses to their corresponding physical addresses. In
addition to computing the mappings, the orchestrator also
obtains usage information about the mirroring resources on
physical switches, e.g., the total port rate and the TCAM
usage. Depending on how virtual switches are mapped to
physical switches, the orchestrator attempts to aggregate mir-
roring requests from multiple agents. This aggregation results
in fewer flow entries on physical switches since physical
network resources can be mapped to one or more VNs. Since
the destination of all mirrored traffic is the collector, which
has precise knowledge of queries, aggregated queries do not
violate VN segregation.

OVT Optimizer. The optimizer receives information about
the set of flows to be mirrored on the substrate network
switches. Considering the mirroring resource constraints on
switches, it then solves a constrained optimization problem to
compute a global mirroring configuration. This configuration,
depending on physical switches mirroring capabilities, can be
computed at port or flow granularity. To show the critical
role of the optimizer in the performance of OVT, we have
simulated a datacenter network and implemented an optimizer
algorithm based on port mirroring as in Planck [4], where
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Fig. 3: Simulation on a 12-pod FatTree topology showing that
redundant flow monitoring results in substantial overhead. For each
number of flows, plots show the total rate of mirrored traffic as well
as the percentage of the mirrored traffic that is redundant.

every switch mirrors all its ports to its mirroring port. The
datacenter topology is a FatTree consisting of 12 pods. Two
real-world traffic workloads, namely web and cache server [56]
are used to simulate traffic flows in the datacenter. We change
the number of flows in the network and compute the amount
of mirroring overhead (i.e., unnecessarily duplicated traffic)
under each traffic workload. The results are presented in Fig. 3.
As can be seen from the figure, the amount of overhead is
substantial, reaching up to 97% of the total mirrored traffic
volume.

From this example, it is clear that in a useful switch-
based traffic mirroring system, the optimizer must compute
a global mirroring configuration accounting for the network’s
routing layout and traffic distribution. The global mirroring
configuration results in minimizing the mirroring overhead
and consequently maximizing the flow coverage. Designing
efficient algorithms for the optimizer is the main focus of
the next two sections. We define two different optimization
problems, namely port-based traffic mirroring (PortTM) and
flow-based traffic mirroring (FlowTM), for the port and flow
mirroring strategies, respectively. It is crucial to keep these
problems as simple as possible, as they have to be repeatedly
solved at runtime by the optimizer. Given that both problems
are NP-hard, we design approximation algorithms to solve
each problem efficiently. The formal definition of PortTM
and FlowTM, and the designed approximation algorithms are
discussed in detail in Sections IV and V, respectively.

Notation. The following notational conventions are used in
the rest of the paper: Sets are typeset in calligraphic font,
e.g., set Z . The cardinality of set Z is denoted by Z (i.e.,
typeset in regular font). Given variable Φz for z ∈ Z , we
define Φz = maxz∈Z Φz .

IV. PORT-BASED TRAFFIC MIRRORING

In this section, we formally define the port-based traffic
mirroring (PortTM) problem, also studied in [6], and show that
it is NP-hard. We then focus on designing a polynomial-time
approximation algorithm to solve the problem.

Definitions. To characterize the inputs of the PortTM opti-
mization program, we use F and W to represent the set
of flows that have to be mirrored and the set of physical
network switches, respectively. We define Pw to be the set
of ports of switch w ∈ W . For simpler reference, we define

TABLE I: Summary of notations used in the PortTM problem.

Input Definition

F Set of all flows
W Set of all switches
P Set of all ports in the network
Pw Set of ports of switch w
Pf Set of ports that flow f meets
rp Traffic rate of port p

Variable Definition

xp Decision variable of mirroring port p

P = ∪w∈WPw to be the set of all switch ports in the network.
We say that f meets p if flow f traverses switch w ∈ W via
port p ∈ Pw. We define Pf to be the set of ports that flow
f ∈ F meets on its path. The path of a flow can be obtained
using different path detection methods, e.g., [57]. Based on the
obtained paths, we can then specify the set of flows f ∈ F
that meet port p ∈ P and denote them by Fp. The traffic
rate of an outgoing port p ∈ P is represented by rp. We can
estimate the traffic rate of the outgoing ports by deploying a
load estimation mechanism such as the one presented in [58].
Table I summarizes the notations used in the PortTM problem.

A. Problem Formulation

To formulate PortTM, we define binary decision variable xp
to show whether port p ∈ P is mirrored or not. Specifically,
port p ∈ P is mirrored if xp = 1, otherwise xp = 0. Also,
we define continuous decision variable λ as PortTM’s objective,
representing the maximum mirroring load of any switch1 in the
network. The value of λ is computed based on the values of
xp. Problem 1 presents the Integer Linear Programming (ILP)
formulation of PortTM. Constraint (1b) ensures that flow f ∈ F
is mirrored on at least one port it meets on its path, i.e., Pf .
Constraint (1c) shows λ’s calculation, i.e., the maximum mir-
roring load on network switches. By introducing λ, we have
essentially linearized the objective min maxw∈W λw, where
λw denotes the mirroring load on switch w. Although PortTM
resembles the well-known set cover problem, the definition of
its objective makes it considerably different. Nevertheless, the
following theorem demonstrates that set cover problem can be
reduced to PortTM, proving the NP-hardness of PortTM.

Theorem 1. PortTM problem is NP-hard.

Proof. Please refer to Appendix A for the proof.

Furthermore, despite the formulation similarity between
PortTM and min-congestion flow routing (MCFR) problem,
they are fundamentally different. Consider ports and switches
to be equivalent to paths and links in MCFR, respectively.
Each flow has to select a path to minimize congestion on
links. However, unlike MCFR, in PortTM the mirroring load
of each flow depends on the mirroring configuration of other
flows. In particular, if two flows use the same mirroring port,
the congestion of the corresponding switch is identical to that
when only one of them selects that port.

1Physical or software switches.
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Problem 1: Port-Based Traffic Mirroring (PortTM)

PortTM: min λ (1a)
s.t.

∑
p∈Pf

xp ≥ 1, ∀f ∈ F (1b)∑
p∈Pw xprp ≤ λ, ∀w ∈ W (1c)

xp ∈ {0, 1}. ∀p ∈ P (1d)

B. Algorithm Design

To efficiently solve the PortTM problem, we apply the
randomized rounding technique. To this end, we ignore the
integrality constraints of decision variables xp and allow them
to take fractional values in the interval [0, 1]. This procedure,
known as relaxation, converts the PortTM problem to a Linear
Program (LP) that can be efficiently solved in polynomial-time
using techniques such as the interior point method. However,
the obtained fractional values of decision variables can not be
used directly, as partial port mirroring is not possible with the
port mirroring strategy. Consequently, a port should either be
fully mirrored or not mirrored at all.

The standard approach is to round the obtained fractional
values to integer values. An important factor is to preserve the
feasibility of constraints and ensure that the objective does not
substantially deteriorate. We can then use the results of the
rounding as the mirroring configurations. To produce a high-
quality solution, the rounding procedure should exploit infor-
mation in the values of relaxed variables. As such, we interpret
the fractional values of decision variables as probabilities to
design a randomized rounding procedure. Moreover, since the
randomized solution does not guarantee mirroring of all flows,
we repeat the rounding procedure multiple times. We will
use a parameter Kε that determines the number of rounding
iterations needed to ensure that all flows are mirrored with the
probability of at least 1− ε for any ε > 0 (see equation (3)).
Algorithm. Our proposed algorithm based on randomized LP
rounding, named ε-LPR, is outlined in Algorithm 1. In ε-LPR,
we use x̃p and x̂p to show the fractional and the rounded
values of the decision variable xp, respectively. ε-LPR obtains
the fractional values of the decision variables by solving the
relaxed version of the problem in line 1. The algorithm, then,
repeatedly executes the rounding procedure for Kε times. The
number of mirrored flows, the obtained objective value, and
the switch configurations from the i-th rounding iteration are
stored in θ̂i, λ̂i, and set {x̂p}i, respectively (see lines 11
and 12). In each iteration, the rounding procedure starts by
initializing all x̂p’s to zero (see line 3). Then, for each
port p ∈ P a random number is drawn from the uniform
distribution over the interval [0, 1], by calling the uniform
random number generator rand(). The generated random
number is compared with x̃p. If the random number is less
than or equal to x̃p, the value of x̂p is set to one, otherwise it
is set to zero. In lines 7-10, the number of mirrored flows is
computed. In line 13, the index of the configuration with the
highest number of mirrored flows is determined and stored
in set B. Among the configurations specified by B, the one
with the lowest mirroring load is determined in line 14 and
its associated configuration is returned in line 15 as the final
solution.

Alg. 1: Randomized LP Rounding (ε-LPR)
procedure ε-LPR(F , W , Kε)

1 {x̃p} ← SolveLP(F ,W) /* External LP solver */
2 for i← 1 to Kε do
3 {x̂p} ← {0}
4 foreach p ∈ P do
5 if rand() ≤ x̃p then
6 x̂p ← 1

7 θ̂i ← 0 /* Number of mirrored flows in iteration i*/
8 for f ∈ F do
9 if

∑
p∈Pf

xp ≥ 1 then
10 θ̂i ← θ̂i + 1

11 λ̂i ← maxw∈W
∑
p∈Pw x̂prp

12 {x̂p}i ← {x̂p}
13 B ← argmax1≤i≤Kε θ̂i
14 i∗ ← argmini∈B λ̂i
15 return {x̂p}i∗

Coverage Analysis. We show that to cover all flows with
probability of at least 1 − ε, it is sufficient to set Kε to
d ln ε
ln(1−(1− 1

e )
F )
e = O(2−F log(1/ε)). First, we compute the

coverage probability after one round of randomized rounding,
i.e., calling ε-LPR with Kε = 1. In this case, we show that ε-LPR
mirrors all flows with probability (1− 1

e )F . Let Ep denote the
event that flow f is mirrored by port p, i.e., port p is mirrored
and p ∈ Pf . The probability that flow f is mirrored by any
port on its path is given by P

{
∪p∈PfEp

}
, which is expressed

as,
P
{
∪p∈PfEp

}
= 1−

∏
p∈Pf (1− x̃p)

≥ 1− (1− 1

Pf
)Pf ≥ 1− 1

e
.

(2)

The first inequality follows from the fact that the product of
a set of variables with fixed sum is maximized when all of
them are equal, and noting that

∑
p∈Pf x̃p = 1. The second

inequality follows from the inequality (1 − 1
x )x ≤ 1

e , which
is valid for x ≥ 1. Consequently, the probability of mirroring
all flows in one round of the algorithm is at least equal to
(1 − 1

e )F . Next, consider invoking randomized rounding Kε

times. In this case, the mirroring probability of ε-LPR is at
least equal to 1− (1− (1− 1

e )F )Kε . Thus, to ensure that the
mirroring probability is greater than 1− ε, it suffices to have,

Kε =
⌈

ln ε
ln(1−(1− 1

e )
F )

⌉
= O(2−F log(1/ε)) . (3)

Theorem 2. ε-LPR runs in polynomial time.

Proof. The complexity of solving a linear program with N
variables using the interior point method is O(N3.5) [59]. The
two nested loops in the algorithm take O(KεP ) additional
time.

Theorem 3. ε-LPR attains the approximation ratio γδ =
3 log (W/δ)
log log (W/δ) with probability (1− δ).

Proof. To analyze the approximation ratio, we first present the
following form of the Chernoff bound in lemma 1 that we use
in the proof.

Lemma 1. (Chernoff bound [60]) Let X1, ..., Xk be inde-
pendent random variables over the interval [0, 1] such that
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TABLE II: Summary of notations used in the FlowTM problem.

Input Definition

F Set of all flows
W Set of all switches
Fw Set of flows that pass through switch w
Wf Set of all switches on the path of flow f

rf Traffic rate of flow f

Mw Mirroring capacity (bandwidth) of switch w
Tw Number of available flow entries in switch w for mirroring
Iw The set of mirrored flows on switch w

Variable Definition

xf,w Decision of mirroring flow f on switch w

E
[∑

1≤i≤kXi

]
≤ 1. For any N > 2 and b ≥ 3 logN

log logN , the
following inequality holds,

P
{∑

1≤i≤kXi ≥ b
}
< 1/N . (4)

We need to show P{λ̂ ≥ γδλ} ≤ δ. To this end, define
random variable Ωp for each port p as,

Ωp =

{
rp

λ̃
, if port p is mirrored

0, otherwise .
The expectation of the sum of random variables Ωp over all
ports of a given switch w is given by,

E
[∑

p∈w Ωp

]
=
∑
p∈w E [Ωp] =

∑
p∈w

rp

λ̃
x̃p

=
1

λ̃

∑
p∈w rpx̃p ≤ 1 .

(5)

Using lemma 1, and given that Ωp ∈ [0, 1], we set N to be
W/δ > 2. As such, we obtain that,

P
{∑

p∈w Ωp ≥ γδ
}
< δ/W . (6)

Recall that x̂p denotes the integral solution obtained by
rounding x̃p. Therefore, we have,∑

p∈w Ωp =
∑
p∈w

rp

λ̃
x̂p . (7)

By substituting (7) in (6), the following relation is obtained,

P
{∑

p∈w rpx̂p ≥ λ̃γδ
}
< δ/W . (8)

Since λ̃ ≤ λ, it follows that
P
{∑

p∈w rpx̂p≥λγδ
}
≤ P

{∑
p∈w rpx̂p≥λ̃γδ

}
< δ/W . (9)

Based on the definition of the PortTM problem, we have the
relation λ̂ = maxw∈W

∑
p∈w rpx̂p, which yields,

P
{
λ̂ ≥ γδλ

}
= P

{
maxw∈W

∑
p∈w rpx̂p ≥ γδλ

}
≤
∑
w∈W P

{∑
p∈w rpx̂p ≥ γδλ

}
≤ δ,

(10)

where, the inequality follows from the union bound.

V. FLOW-BASED TRAFFIC MIRRORING

In this section, we formally define the flow-based traffic
mirroring (FlowTM) problem and show that the problem is NP-
hard. An instance of this problem without port and TCAM
capacity constraints is studied in [6]. To efficiently solve the
problem, we focus on designing a polynomial-time approx-
imation algorithm. We emphasize that, compared to PortTM,
FlowTM is a fundamentally different problem. For example,
PortTM is not concerned with the available TCAM capacity, i.e.,

Problem 2: Flow-Based Traffic Mirroring (FlowTM)

FlowTM : max
∑
w

∑
f

xf,w (11a)

s.t.
∑
f∈Fw xf,wrf ≤Mw, ∀w ∈ W (11b)∑
f∈Fw xf,w ≤ Tw, ∀w ∈ W (11c)∑
w∈Wf

xf,w ≤ 1, ∀f ∈ F (11d)

xf,w ∈ {0, 1} ∀f ∈ F , w ∈ W (11e)

number of available TCAM entries for installing flow rules,
in switches while for FlowTM this is an essential constraint.

Definitions. The set of flows to be mirrored is denoted by
F . A flow is defined using any combination of packet header
fields consistent with OpenFlow rules. The set of switches
that are used for mirroring is denoted by W . Each switch
w ∈ W has a mirroring port capacity Mw and an available
TCAM capacity Tw. We define Wf to be the set of switches
on the path of flow f . Similarly, we define Fw to be the set
of flows that pass through switch w. Additionally, the traffic
rate of flow f is denoted by rf . The value of rf can be
estimated using various methods from the past flow obser-
vations. For example, the works [61]–[65] employ statistical
models, such as autoregressive moving average, to estimate
the traffic rates. Other works, e.g., [66]–[68], employ machine
learning techniques to estimate flow rates using flow-level
features, for example, byte and packet counters, protocol, IP
addresses, port numbers, and flow durations. The orchestrator
can periodically poll the OpenFlow switches, e.g., through
OpenFlow OFPFlowStatsRequest [8], to extract flow-
level features. To account for estimation errors, one approach
is to allocate a headroom in each mirroring port to absorb the
prediction errors. Table II summarizes the notations used in
the FlowTM problem.

A. Problem Definition

Let xf,w denote a binary decision variable that indicates
whether flow f is mirrored on switch w or not. The objective
is to maximize the number of mirrored flows in the network.
Problem 2 presents the formulation of FlowTM as an ILP.
Constraint (11b) ensures that, on each switch, the mirroring
load is less than the mirroring port capacity. Knowing that
for each mirror, a flow rule needs to be installed on the
switch, constraint (11c) ensures that the number of mirroring
rules does not exceed the TCAM capacity on the switch.
Constraint (11d) ensures that each flow is not mirrored on
more than one switch along its path.

Theorem 4. FlowTM problem is NP-hard.

Proof. Please refer to Appendix B for the proof.

B. Algorithm Design

This section presents the design of an efficient approxima-
tion algorithm for solving the FlowTM problem. We also present
an extension of this algorithm to account for flow priorities in
a mirroring query. The extended algorithm provides a mech-
anism to prioritize mirroring the flows with a high priority
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Alg. 2: Max Mirrored Flows (MMF)
procedure MMF(F , W)

1 S ← sort-desc(F , {rf |f ∈ F})
2 Iw ← ∅ /* Set of mirrored flows on w */
3 λw ← 0 /* Total rate of all mirrored flows on w */
4 {x̂f,w} ← {0}
5 foreach w ∈ W do
6 if S 6= ∅ then
7 for f ∈ S ∩ Fw do
8 if rf + λw ≤Mw and Iw < Tw then
9 Iw ← Iw ∪ {f}

10 xf,w ← 1
11 λw ← λw + rf
12 S ← S − Iw
13 else
14 break
15 return {xf,w}

coefficient. The objective of the base FlowTM is to maximize
the number of mirrored flows. As such, flows that have lower
rates are more likely to be selected for mirroring. This may
lead to an undesired behaviour where high-rate flows are not
mirrored by OVT. The inclusion of flow priorities into the
problem alleviates this situation.
Algorithm. The proposed algorithm, named max mirrored
flows (MMF), is presented in Algorithm 2. The algorithm
starts by sorting the flows inversely proportional to their
transmission rates in descending order. In line 1, the sorted
flows are stored in set S. Then, the set of mirrored flows in
the switches is determined iteratively. We define Iw and λw
to be the set of mirrored flows and the mirroring load on
switch w, respectively (see lines 2-3). For each switch, the
set of mirrored flows is examined in the order of the flow’s
appearance in S. Flow f ∈ Fw is selected to be mirrored
on switch w ∈ W , if the capacity of the mirroring port is
respected and there is available TCAM capacity on the switch
(see line 8). If a flow satisfies these two criteria, it is removed
from the set S and is added to the set Iw. Also, the current
mirroring load of the switch and the corresponding decision
variable xf,w are updated accordingly (see lines 9-12).

Theorem 5. MMF runs in O(WFw + F ln(F )).

Proof. The algorithm starts by sorting the flows, which takes
O(F lnF ). MMF then iterates through all switches, and for
each switch creates the set of not-yet-mirrored flows from
the set of flows that traverse a switch. The set of flows that
traverses each switch can be found in O(1). In the worst
case, for any switch, all flows traversing the switch can be
mirrored on it. As such, the inner loop (line 7) is executed for
at most Fw times. All updates (line 9-line 12) can be run in
O(1). Therefore, the cost of selecting the mirrored flows for
all switches is O(WFw + F ln(F )).

Theorem 6. MMF attains the approximation ratio of 2.

Proof. Let Iw be the set of flows that are mirrored on switch
w using the MMF algorithm. Let Î?w denote the set of flows that
are mirrored on switch w by the optimal algorithm, but are not
mirrored by the MMF algorithm at all (i.e., Î?w ∩

⋃
w∈W Iw =

∅). Recall that Î?w and Iw show the set cardinalities of Î?w and
Iw, respectively. Note that the flows in Î?w were available to
MMF at the time of specifying the mirrored flows on switch w

but were not selected. Lemma 2 shows that MMF is optimal for
the single-switch sub-problem. As such, we can conclude that
Iw ≥ Î?w. Consequently, it is possible to obtain the following
lower-bound for the total number of mirrored flows in the
network using the MMF algorithm:∑

w∈W
Iw ≥

∑
w∈W

Î?w. (12)

Let OPT be the optimal objective value of the FlowTM problem
obtained by the optimal algorithm. We have:

∑
w∈W Î?w ≤

OPT. Now, observe that if
∑
w∈W Î?w ≥ OPT/2, then MMF

attains the approximation ratio of 2. On the other hand, if∑
w∈W Î?w < OPT/2, by the definition of Î?w’s, MMF has

left out less than half of the flows that are mirrored by the
optimal algorithm and thus it attains the approximation ratio
of 2. The combination of these two possibilities proves the
approximation ratio of 2.

Lemma 2. MMF is optimal for the single-switch sub-problem.

Proof. Let f1, . . . , fm with rf1 ≤ · · · ≤ rfm represent the
flows mirrored by the MMF algorithm on a single switch.
Similarly, let f ′1, . . . , f

′
n with rf ′1 ≤ · · · ≤ rf ′n represent the

flows mirrored by the optimal algorithm. If m = n (i.e.,
the MMF and the optimal algorihm mirror the same number
of flows) the theorem is proved. We show that m < n is
impossible. For the sake of contradiction assume that m < n.
Since MMF selects flows in the order of increasing rates, we
have:

m∑
i=1

rfi ≤
m∑
i=1

rf ′i . (13)

Consider flow f ′m+1 which is not selected for mirroring by the
MMF algorithm. Based on the constraints in the problem (2),
we know that MMF stops mirroring flows either because of
the available number of flow rule entries or the mirroring port
capacity violation. If the procedure is terminated because of
the available number of flow rule entries, the algorithm has
already found the optimal solution (i.e., recall that all flows
regardless of their rate require a single flow rule). Therefore,
we can conclude that the reason for not selecting f ′m+1 is the
mirroring port capacity constraint, i.e.,:

rf ′m+1
+

m∑
i=1

rfi > Mw. (14)

Consequently,
n∑
i=1

rf ′i =
n∑

i=m+1

rf ′i +
m∑
i=1

rf ′i (15)

≥ rf ′m+1
+

m∑
i=1

rfi > Mw, (16)

which contradicts the fact that f ′1, . . . , f
′
n are the feasible

optimal solution of the problem.

Extension of FlowTM with flow priorities. FlowTM assumes all
flows have the same priority in a mirroring query. However,
there may be scenarios where flows in a mirroring query have
different priorities. To this extent, OVT can be extended to
prioritize flows to ensure that the limited mirroring capacity
of switches is better utilized. Flow priorities can be assigned
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at different levels and based on various factors: 1) The
orchestrator prioritizes the flows based on the source and
destination VN subscription model. 2) The agent prioritizes
the flows based on the significance of the analyzer application.
For example, the set of flows specified by a security analyzer
may be more critical than that of a performance analyzer.
3) Each analyzer can prioritize different flows in its requested
monitoring queries based on the impact each flow would have
on the application’s performance and accuracy. For example,
a security analyzer prioritizes flows that target critical systems
in the network, e.g., accounting databases. Consequently, it is
possible to obtain a task-dependent priority assignment scheme
to maximize the utility of analyzer applications. To account
for flow priorities, when deciding on the flow mirroring
configurations, the FlowTM problem, used in the optimizer
module, should also be extended. To this end, for each flow
f , we add a coefficient αf ∈ [0, 1], representing the flow’s
priority in a mirroring query. In this case, since the objective
is not maximizing the number of mirrored flows anymore,
using all TCAM capacity, i.e., available TCAM entries, does
not imply the solution’s optimality. Additionally, we cannot
simply mirror the flows by sorting them in descending order
of αfrf (i.e., priority by rate ratio). To illustrate this, consider the
following example of a single-switch sub-problem. Assume a
switch with 3 Mbps mirroring port capacity, 2 available TCAM
entries and two traversing flows, i.e., f1 (rf1 = 1 Mbps and
αf1 = 2) and f2 (rf2 = 3 Mbps and αf2 = 3). When choosing
the flows based on the decreasing order of the ratio of priority
to rate, f1 is chosen to be mirrored on the switch. However,
the optimal solution is to mirror f2. The example shows that
by simply using the priority to rate ratio, we do not efficiently
utilize the mirroring capacity of the switch.

To account for different flow priorities while efficiently
utilizing the mirroring capacity, we modify the MMF algorithm
as follows. Similar to the base MMF, the mirrored flow set
on the switches is iteratively determined. In each iteration,
we consider each switch as a 2-dimensional knapsack, i.e., a
knapsack with 2 constraints, one representing the mirroring
port capacity and the other representing the TCAM capacity.
We then use the approach presented in [69] to select the
set of mirrored flows on the switch, such that the value of
the mirrored flows is maximized and the constraints (11b)
and (11c) are satisfied. Following this, the current mirroring
load of the switch and the corresponding decision variable are
updated accordingly. Additionally, the set of mirrored flows on
the switch is removed from the set of not-yet-mirrored flows.
This procedure continues until all flows are mirrored or all
switches are assigned a set of mirrored flows based on their
mirroring capacity.

Theorem 7. Extended MMF attains the approx. ratio of 6.

Proof. The approach presented in [69] for the single-switch
sub-problem attains a 3-approximation ratio. This results in∑
f∈Iw αf ≥

∑
f∈Î?w

αf/3. The equation (12) then is modi-
fied as follows:∑

w∈W

∑
f∈Iw

αf ≥
∑
w∈W

∑
f∈Î?w

αf

3
. (17)

Then the theorem is established following the arguments
presented in the proof of Theorem 6.

Discussion. Although it is possible to solve the base FlowTM
problem using the approach presented in [69], the MMF algo-
rithm attains a better approximation ratio (i.e., 2 compared to
6) and has a lower computational complexity as it does not
rely on solving an LP. These are important considerations that
substantially affect the performance of OVT Optimizer.

The current design of OVT assumes that a flow can be
mirrored on any switch along its path. However, there could be
scenarios where a flow is required to be mirrored in a specific
zone in the network. For example, a flow is only required to
be mirrored after the firewall. In such scenarios, as opposed
to the original PortTM and FlowTM problems, only a subset of
ports/switches along the flow’s path, belonging to the flow’s
monitoring zone, can be used for mirroring. To this extent,
constraints (1b) and (11d) can be modified to account for the
monitoring zone of flow f in the PortTM and FlowTM problems,
respectively. Note that both ε-LPR and MMF algorithms and
their analyses apply to this case.

VI. EVALUATIONS

In this section we evaluate the performance of OVT using
simulations and Mininet experiments. In particular, we sim-
ulate our system and analyze it through the lens of system
performance and micro benchmarks. Furthermore, we use
Mininet to study the applicability of our system on real-worl
applications through application performance.
Methodology. To study the performance of OVT, we present
three sets of evaluation results:
1) System Performance: Using simulations, we present the

benefits of VN awareness in OVT compared to independent
VN traffic mirroring approaches in subsection VI-A.

2) Micro Benchmarks: We perform an extensive number of
simulation-based micro benchmarks to assess the perfor-
mance and scalability of the algorithms used in OVT opti-
mizer, i.e., ε-LPR and MMF. Particularly, in subsection VI-B,
we present the comparison results with alternative mir-
roring algorithms such as those proposed in [6]. The
comparisons are done in terms of performance metrics such
as mirroring flow coverage, switch load and utilization on
varying network sizes.

3) Application Performance: We demonstrate the real-world
applicability of OVT by implementing it in the Mininet
environment in subsection VI-C. We show the advantages
of OVT when used in conjunction with two practical appli-
cations, namely an intrusion detection system (IDS) and a
video telephony analyzer (VTA). We investigate the effects
of utilizing port and flow mirroring algorithms on the
performance of these applications.

A. System Performance

Setup. System performance analysis is conducted using simu-
lations, implemented in Python 3.6. As our substrate physical
network, we use the USA topology (24 switches and 43 links)
from the topology Zoo dataset [70]. We set the mirroring port
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capacity of all switches to 1 Gbps. Even though 10 Gbps
network links are common, a lower value is selected to
reduce the experiments’ run time. Additionally, the TCAM
capacity of each switch is set to 136 rules [71]. While newer
OpenFlow switches have higher TCAM capacity, the chosen
value is sufficient for the purpose of this study. Furthermore,
we consider running two and three VNs on top of the substrate
network. VNs share all physical switches, i.e., each VN has 24
virtual switches simulating the USA topology. On each VN,
we choose uniformly at random the source and destination of
each flow. The flow rates are generated based on the results
presented in [72]. In particular, 10% of the generated flows
transmit at less than 4 Mbps. 60% of the flows transmit
at a rate in [4, 9] Mbps and the remaining 30% transmit at
higher than 9 Mbps. The size of the mirroring queries is the
same for all VNs. Finally, all computations are carried out
on a computer with an Intel® CoreTM i5-7360U processor at
2.3 GHz and 8 GB of RAM. The reported results are averaged
over 10 runs.

Baseline. In these experiments, OVT is compared with a
baseline mirroring system, in which each VN computes its
mirroring configuration independently from other VNs. We re-
fer to the baseline mirroring system as IND. In the experiments,
both OVT and IND use the same mirroring algorithms, namely
ε-LPR (Kε = 10) and MMF. Thus, any differences between their
performances are solely due to joint optimization of mirroring
configurations in OVT.

Performance Metric. These experiments are focused on Flow
Coverage metric defined as the percentage of flows that are
fully mirrored by at least one switch in the network. A higher
flow coverage means that more flows are mirrored and as a
result the mirroring capacity is better utilized.

Results. Fig. 4 and Fig. 5 compare the flow coverage of
OVT and IND, when using port and flow mirroring algorithms,
respectively. From Fig. 4 we can observe that OVT has higher
flow coverage compared to IND. Specifically, as the query size
grows, the flow coverage of OVT decreases with a lower slope
compared to that of IND. For example, for the query size of
5000 flows, OVT achieves 10% higher coverage compared to
IND with 2 VNs. Interestingly, IND with 2 and 3 VNs achieve
a similar flow coverage for all query sizes. The reason is that
when VNs decide on the port configurations independently,
most ports are mirrored to cover the flows. This results in
similar behaviour of IND with 2 and 3 VNs. From Fig. 5
we can observe the following points. First, OVT achieves a
higher flow coverage compared to IND. Specifically, using
flow mirroring, for a query size of 3000 flows OVT achieves
more than 20% higher flow coverage compared to IND. Note
that the lower difference between OVT’s and the IND’s flow
coverage, when using port mirroring as opposed to flow
mirroring algorithms, is due to the latter’s finer granularity
and control scheme. Second, we can see that flow coverage
for IND with 2 and 3 VNs diverges for larger query sizes. This
behaviour is expected since, as the number of VNs sharing the
same physical switches increases, independent mirroring of the
flows results in more inefficient use of mirroring resources on
switches.
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Fig. 4: Performance of OVT and IND when using port mirroring.
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Fig. 5: Performance of OVT and IND when using flow mirroring.

B. Micro Benchmarks

Setup. Micro benchmarks are conducted using simulations,
implemented in Python 3.6. Similar to the system perfor-
mance experiments, in the ε-LPR algorithm, we set Kε = 10.
All computations are carried out on a computer with an
Intel® CoreTM i5-7360U processor at 2.3 GHz and 8 GB
of RAM. The reported results are averaged over 10 runs.

In this set of experiments we use the following network
topologies:
1) Small-scale ISP (USA) topology chosen from the topology

Zoo dataset [70] with 24 switches, 24 hosts and 43 links.
Note that for the rest of the paper, we refer to this topology
as the USA topology.

2) Large-scale ISP topology, presented in [73] and accessible
through [74], with 315 switches, 315 hosts and 1944 links.
Note that for the rest of the paper, we refer to this topology
as ISP topology.

3) 12-pod FatTree topology with 36 core switches, 72 aggre-
gate switches, 72 edge switches and 72 servers. Note that a
FatTree topology of this size is larger or equal to the ones
commonly used in the literature [75], [76].

The setup of bandwidth and TCAM capacity is similar to
the system performance experiments, presented in subsec-
tion VI-A.
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Implemented Algorithms. To compare ε-LPR and MMF with
existing mirroring algorithms, we have also implemented the
following algorithms:
• OPT: The optimal solution of ILPs obtained by the Gurobi

optimizer [77]. Note, we can calculate the optimal solution
only for small instances of the problems, e.g., small net-
works with a few switches.

• PMA: An alternative algorithm to ε-LPR proposed in [6]. PMA
determines port mirroring configuration of switches based
on their contributions to the objective, i.e., the maximum
switch load.

• FMA: An alternative algorithm to MMF proposed in [6].
FMA determines the flow mirroring configuration of switches
without considering the mirroring port capacity or available
TCAM capacity.

• Planck: An alternative algorithm for solving the PortTM
problem, presented in [4]. Planck mirrors all ports on all
switches to a mirroring port.

• Stroboscope: An alternative algorithm to MMF presented
in [35]. Stroboscope mirrors a flow on a minimum number
of switches along its path to confirm the flow’s path com-
pliance.

Traffic Generation. To generate a flow, we at random choose
a source and a destination and, between them, establish
constant-rate traffic. The traffic rate depends on the network
topology under the experiment. Specifically, we classify the
USA and ISP topologies as ISP environments and use the
results of [72] to generate flow rates. In particular, 10% of
the generated flows transmit at less than 4 Mbps, 60% of
the flows transmit at a rate in [4, 9] Mbps and the remaining
30% transmit at higher than 9 Mbps. We classify the FatTree
topology as a datacenter environment and employ two widely
used datacenter workloads to generate flow rates. The first
workload is based on web server traffic [56], [78], [79] and
the second workload is based on a cache server [56], [78].
Performance Metrics. We compute and report the following
performance metrics:
• Flow Coverage: The percentage of flows that are fully

mirrored by at least one switch in the network. A higher
flow coverage means that more flows are fully mirrored in
the network and as a results the mirroring capacity of the
network is utilized more efficiently.

• Maximum Switch Load: The mirroring load on a switch with
the highest mirroring load in the network. The lower the
maximum switch load, the more balanced the mirroring load
distribution in the network.

• Mirroring Cost: The total mirroring load in the network
divided by the number of fully mirrored flows. A higher
mirroring cost means that more flows are being mirrored per
fully covered flow. As such, a higher mirroring cost suggests
either lower flow coverage or higher redundant mirroring.

• Mirroring Utilization: The mirroring load of the unique
mirrored flows divided by the total mirroring capacity of
the network. Higher mirroring utilization means that more
unique flows are being mirrored in the network.

• Runtime: The amount of time the algorithm takes to compute
the mirroring configuration of all switches in the network.

100 200 300 400 500
Query Size

0

100

200

300

400

500

600

700

800

M
a
x
im

u
m

S
w

it
ch

L
o
a
d

(M
b

p
s)

OPT ε-LPR PMA Planck

Fig. 6: Comparison of the port mirroring algorithms with the optimal
solution on the USA topology.

The performance metrics are reported for different query sizes.
The query size refers to the number of flows that are submitted
by all OVT Agents to the orchestrator for mirroring.

Comparison with Optimal. We compare the performance of
port and flow mirroring algorithms with optimal solutions,
in Fig. 6 and Fig. 7, respectively. The optimal solutions
are obtained by solving the corresponding ILPs. Specifically,
Fig. 6 demonstrates the comparison between different port
mirroring algorithms and the optimal solution, in terms of
the maximum switch load, on the USA topology. Note that
the lower the maximum switch load is, the more evenly the
mirroring load is distributed among the switches, and, as such
more flows can be mirrored in the network. We can see that the
maximum switch load achieved under ε-LPR is, on average, 9%
higher than the optimal’s. This close performance between the
ε-LPR and the optimal algorithms suggests that the real-world
approximation ratio of ε-LPR is substantially better than the one
derived in our analysis. We can also see that ε-LPR achieves
15% and 27% lower mirroring load on the most loaded switch
compared to PMA and Planck, respectively.

Different from the PortTM problem, the objective of the
FlowTM problem is defined as maximizing flow coverage in the
network. As such, Fig. 7 shows the performance of different
flow mirroring algorithms on the USA topology. The following
observations are in order. First, MMF on average has 2.6%
less flow coverage than the optimal, which is better than the
calculated theoretical ratio (i.e., approximation ratio of 2).
Second, even for small query sizes, MMF has a better flow
coverage compared to both FMA and Stroboscope. Particularly,
for the query size of 3000 flows, the maximum flow cov-
erage difference between the ε-LPR and the FMA algorithms
is 11.4% (i.e., 340 flows). Finally, Stroboscope has the worst
performance, missing more than half of the flows for query
sizes over 3000 flows.

Coverage Analysis. Fig. 8(a) demonstrates the differences
between port and flow mirroring algorithms on the USA
topology. Specifically, Fig. 8(a) illustrates the flow coverage
differences, while Fig. 8(b) shows the mirroring cost differ-
ences, between different port and flow mirroring algorithms.
From Fig. 8(a) we can observe the following points. First,
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Fig. 7: Comparison of the flow mirroring algorithms with the optimal
solution on the USA topology.

for all query sizes, MMF by at least 7.7% outperforms all
other mirroring algorithms. When comparing MMF with FMA,
MMF achieves a higher flow coverage since it calculates the
mirroring configurations accounting for mirroring port and
TCAM capacities. Additionally, on average, MMF obtains 20%
higher flow coverage compared to ε-LPR and PMA. Such results
are expected since ε-LPR and PMA mirror flows at the port gran-
ularity, resulting in mirroring redundancy. Second, ε-LPR and
PMA present a similar trend. The reason is that both algorithms,
for query sizes of 6000 flows, mirror most of the ports on most
of the switches in the network. Additionally, the mirroring
capacity of the switches is limited, and since the network is
saturated, both algorithms will have similar mirroring losses
and show similar behaviour. Finally, although Stroboscope is
a flow mirroring algorithm, it has worse coverage compared
to port mirroring algorithms, i.e., ε-LPR and PMA. This low
coverage is due to Stroboscope mirroring the same flow on
multiple switches on its path.

Fig. 8(b) shows the mirroring cost distribution of different
algorithms on the USA topology for query sizes of 6000 to
10000 flows. The following observations are in order. First,
we can see that MMF, compared to PMA, achieves a lower
mirroring cost. The reason is that, in addition to higher flow
coverage, MMF also tends to mirror smaller flows. Second, FMA
has a tighter mirroring cost distribution compared to MMF.
This suggests that for varying query sizes, FMA compared
to MMF has more consistent mirroring configurations. Similar
to the flow coverage analysis, we observe a similar trend
between ε-LPR and PMA. Finally, Stroboscope achieves the worst
mirroring cost while having the lowest coverage.

ε-LPR and PMA behave similarly on the small-scale USA
topology. However, this does not necessarily hold for other
topologies. To further investigate, we have compared the
performance of port mirroring algorithms on larger topologies.
Fig. 9(a) shows the comparison on a large-scale ISP topology,
while Fig. 9(b) and Fig. 9(c) show the comparison on the Fat-
Tree topology under web and cache workloads, respectively.
Note that Planck is omitted from Fig. 9(b) and Fig. 9(c), since
it has 0% flow coverage (i.e., it achieves only partial flow
coverage). We use larger query sizes for the ISP topology. The
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Fig. 8: Coverage analysis of different mirroring algorithms on the
USA topology.

reason is that the ISP topology has more switches compared
to the FatTree topology, and as such, smaller query sizes can
be fully mirrored by all algorithms. From the figures, we
can observe that, for all scenarios, ε-LPR outperforms PMA.
The difference between the two, however, depends on both
the topology and the traffic type. In particular, on average,
ε-LPR achieves 5.3% higher flow coverage compared to PMA
on the ISP topology, while having a 3.5% and 6.3% higher
flow coverage on the FatTree topology under web and cache
application traffic, respectively. As expected, regardless of the
topology, increasing the query size results in the flow coverage
decrease. The reason is that for large query sizes, most
switches are already utilizing their full mirroring capacity. As
such, an increase in the query sizes results in mirroring loss.

Mirroring Utilization Analysis. Fig. 10 shows the mirroring
utilization comparison between ε-LPR and PMA. Specifically,
Fig. 10(a) shows the mirroring utilization, for query sizes
of 10K to 50K flows, on the ISP topology. Fig. 10(b) and
Fig. 10(c), on the other hand, show the mirroring utilization
on the FatTree topology for query sizes of 5000 to 9000
flows under web and cache server traffic, respectively. Note
that, compared to the ISP topology, the query sizes on the
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5000 6000 7000 8000 9000
Query Size

15

20

25

30

35

40

C
o
v
e
ra

g
e

P
e
rc

e
n
ta

g
e

(%
)

ε-LPR PMA

(c) FatTree topology (cache server traffic).

Fig. 9: Coverage analysis of port mirroring algorithms on large-scale topologies.
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(b) Fattree topology (web server traffic).
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Fig. 10: Mirroring utilization analysis of port mirroring algorithms on large-scale topologies.

FatTree topology are smaller. The reason is that FatTree
topology has fewer switches compared to the ISP topology
and as such, larger query sizes result in very low coverage.
We can observe that both algorithms have similar mirroring
utilization on the ISP topology. However, on the FatTree
topology, ε-LPR better utilizes the mirroring capacity of the
network. This suggests that ε-LPR, compared to PMA, mirrors
more unique flows or equivalently mirrors less redundant flows
in the network. Specifically, ε-LPR achieves a minimum of
0.8 mirroring utilization under both loads. Additionally, the
mirroring utilization of PMA varies in a wider range of values,
resulting in a lower minimum utilization as compared to ε-LPR.
For example, PMA’s minimum mirroring utilization is 0.5 for
the web server traffic, while ε-LPR has a minimum mirroring
utilization of 0.8.

Maximum Switch Load Analysis. We minimize mirroring
losses in ε-LPR by balancing the mirroring load among dif-
ferent switches. As such, we compare the maximum switch
load of different port mirroring algorithms. Fig. 11 shows this
comparison between ε-LPR, PMA and Planck on the ISP and
FatTree topologies. We can observe that in all scenarios, ε-LPR
outperforms PMA and Planck. Additionally, ε-LPR’s behaviour
shows less dependency on the topology compared to PMA.
One can observe this behaviour by comparing the maximum
switch load of ε-LPR and PMA with Planck’s across different
topologies. In particular, on the ISP topology, the difference

between ε-LPR and Planck, in terms of the maximum switch
load, is on average 53%. On the FatTree topology (web server
traffic) this difference is 48% (i.e., only a 5% difference with
the ISP topology results). On the other hand, the maximum
switch load difference between PMA and Planck is 20% and
39% on the ISP and FatTree topologies, respectively.

Runtime Analysis. Table III shows the runtime comparison of
different mirroring algorithms on the USA topology. We can
observe that port mirroring algorithms are faster than flow
mirroring algorithms. This is expected since the number of
decision variables in the PortTM problem is lower than the
number of variables in the FlowTM problem. In particular MMF
is an order of magnitude slower than PMA. However, observe
that MMF is on average 2 orders of magnitude quicker than
FMA, providing a runtime improvement. The reason is that MMF
does not rely on solving the LP, speeding up the algorithm.
The runtime complexity of both ε-LPR and MMF grow with the
query size (see Theorem 2 and Theorem 5). In fact, the results
presented in Table III further confirm this dependency. Please
note that increasing the network’s size does not necessarily
increase the runtimes of the algorithms, as their runtimes de-
pend on the set of flows to be mirrored and their corresponding
path, i.e., the number of ports/switches the flows traverse. For
example, the work [80] reports that the average path length for
four different datacenter network topologies (i.e., Multi-tiered,
FatTree, BCube, Flattened Butterfly), consisting of thousands
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(b) Fattree topology (web server traffic).
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(c) Fattree topology (cache server traffic).

Fig. 11: Maximum switch load analysis of port mirroring algorithms on large-scale topologies.

TABLE III: Runtime (in sec) on the USA topology.

Mirroring
Algorithm

Query Size
6000 7000 8000 9000 10000

Flow
Mirroring

MMF 3.4 3.4 3.5 3.5 4.3
FMA 321.9 321.9 341.8 411.7 411.7

Port
Mirroring

ε-LPR 0.54 0.54 0.55 0.59 0.61
PMA 0.33 0.32 0.32 0.33 0.36

of servers, is less than 6.

C. Application Performance

To study OVT performance in realistic network settings, we
built an IDS and a VTA application on top of OVT and studied
their performance in Mininet. The IDS uses OVT to monitor
network traffic for detecting the “Zorro” malware [41]. To this
end, IDS performs deep packet inspection (DPI) to analyze
the packet payloads and classifies them as contaminated by
Zorro malware (i.e., containing “Zorro” string) or benign.
VTA monitors the Zoom traffic [81] to infer the quality of
experience and adjust the streaming parameters based on that.

Mininet Setup. We use a 2-pod FatTree topology, consisting
of 8 hosts and 10 OpenFlow 1.3 switches. To decrease the
runtime of the experiments, we configure the capacity of all
mirroring ports to be 10 Mbps. Additionally, we set the size
of the forwarding tables on switches, using the default size of
Open vSwitch forwarding tables (i.e., 100 rules). We connect
all switches to a host to collect mirrored flows and configure
ONOS [82] as our SDN controller.

ONOS uses OpenFlow protocol to communicate with Open-
Flow switches and maintains a state graph of the switches
using the OpenFlow Discovery Protocol (OFDP). Furthermore,
it exposes a northbound API to the OpenFlow applications, in
this case, OVT Agent. We use ONOS proactive forwarding to
install routing flow rules. The reason is that, as packets are
transmitted, ONOS reactive forwarding module installs rules
on demand, which may result in varying routes for the same
flow in between different runs [83].

To compute mirroring configurations, we have implemented
ε-LPR and MMF algorithms in Python 3.6. Moreover, for the
sake of comparison, we have also implemented PMA and FMA
algorithms presented in [6]. Once mirroring configurations are
computed using one of the above algorithms, we configure

each switch, accordingly, by installing OpenFlow rules. Note,
at the high level, an OpenFlow rule is composed of match
and action sets. The former identifies a set of flows, and the
latter defines the actions to be applied to the set members, in
our case, output ports of the flows. In our experiments, we
increase query sizes from 35 to 55 with a step of 5. Finally,
the reported results are the average of 5 runs.
IDS Setup. In this experiment, we generate Telnet traffic, on
port 23, with traces of the “Zorro” attack. We generate the
traffic with flow rates from a datacenter web server traffic dis-
tribution, available in [56]. However, the reported distribution
is based on measurements in a datacenter with link capacities
of 10 Gbps. For the sake of Mininet experiments runtime, we
scale down the rates by a factor of 1000. We use 1500 byte
packet sizes since it is the maximum transmission unit (MTU)
for the Ethernet. We contaminate [4 − 5]% of the packets
with the “Zorro” string to represent malicious behaviour. This
percentage is slightly higher than what is assumed in the
literature (i.e., 3% of the internet traffic [84]), to increase the
probability of observing losses of the Zorro packets. We report
the following application performance metrics:
• Detection Recall: Number of mirrored Zorro packets divided

by the total number of transmitted Zorro packets. A higher
detection recalls means that more contaminated packets are
detected by the IDS application.

• Trace Utility: Number of mirrored Zorro packets divided by
the total number of mirrored packets. A higher trace utility
means that the mirroring capacity of switches are better
utilized and more of the packets of interest are collected.

IDS Results. Fig. 12(a) presents the detection recall of the
IDS application when using different mirroring algorithms.
The following observations are in order. First, increasing the
query sizes results in lower detection recall. This is due to
increased mirroring loss when introducing more flows into
the network. Second, we can observe that flow mirroring
algorithms have higher detection recall compared to port
mirroring algorithms. This behaviour is expected since port
mirroring algorithms mirror more redundant packets, thus,
losing the packets of interest, i.e., Zorro packets. Third, MMF
has the highest detection recall compared to other algorithms,
including FMA, also a flow mirroring algorithm. Specifically,
MMF compared to FMA, achieves an average of 32% higher
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Fig. 12: IDS application.

35 40 45 50 55
Query Size

5

10

15

20

25

30

35

40

M
ir

ro
ri

n
g

C
o
v
e
ra

g
e

(%
)

MMF FMA ε-LPR PMA

(a) Mirroring coverage.

Fig. 13: VTA application.

detection recall. Interestingly, we can see that FMA behaves
similar to ε-LPR. The reason is that both algorithms depend
on solving the LP. Although these two algorithms solve the
problem at different granularities, they behave similarly when
the set of flows given to FMA includes most flows traversing a
port. This can be observed on topologies with limited number
of paths and distinct source-destination pairs. Finally, we can
see that ε-LPR compared to PMA, shows an 18% detection recall
improvement.

Fig. 12(b) shows the trace utility of different mirroring
algorithms. Note that since Zorro packets are only included
in [4 − 5]% of the packets, trace utility is limited to at most
5%. We can see that both flow mirroring algorithms, i.e., MMF
and FMA, achieve higher and more stable utility compared to
port mirroring algorithms. This behaviour is expected since
both MMF and FMA do not mirror redundant packets, resulting
in a more stable relation between the total number of mirrored
packets and the number of lost Zorro packets, i.e., the number
of Zorro packets that are not mirrored. We can also observe
that FMA achieves a slightly higher utility than MMF, which is
explainable through FMA’s lower detection recall and mirroring
coverage. In particular, since the number of Zorro packets is
substantially lower than that of benign packets, losing one
contaminated flow has a higher impact on the total number of
mirrored packets compared to the number of mirrored Zorro
packets. Additionally, for query sizes below 50 the trace utility
has an increasing slope for both port mirroring algorithms. The
reason is that only a tiny portion of the total traffic contains
the string “Zorro”. Therefore, as the query sizes grow, the
mirroring losses increase with most of the losses occurring for
non-Zorro packets. This increase in trace utility is observable
to a certain point (e.g., query size of 50 flows), after which,
as can be seen at query size of 55 flows, more losses occur
for Zorro packets.

VTA Setup. To represent the video telephony traffic in
Mininet, we generate flows based on traffic characteristics of
Zoom application. Specifically, we generate UDP traffic on
port 8801 and use Zoom bandwidth requirements available
at [81] to decide on flow rates. In particular, we assume that
flows belong to either a one-to-one or a group video call of
720p or 1080p HD video quality. Using the specified parame-

ters, a flow rate for a Zoom call is between [1.2− 1.8] Mbps
or [2 − 3] Mbps, respectively. To decide on the packet sizes,
we capture and analyze packets of a 1 minute Zoom call
using Wireshark [85]. We find that Zoom calls on average
generate UDP packets of 1000 bytes. We report the following
application performance metric:
• Mirroring coverage: The percentage of the uniquely mir-

rored packets divided by the total number of transmitted
packets. A higher mirroring coverage means that the mir-
roring resources of the switches are better utilized.

VTA Results. Fig. 13 shows the measurement results of the
VTA application. We can observe a decreasing trend in the
mirroring coverage. The reason is that as more flows are intro-
duced into the network most mirroring ports become saturated,
increasing the mirroring losses. We can also observe that MMF
compared to FMA achieves an average of 43% higher mirroring
coverage. This higher coverage is due to MMF accounting for
mirroring port capacity of switches. Interestingly, we can see
that FMA and ε-LPR follow a similar trend. As explained earlier,
this is due to both algorithms relying on solving the LPs.
Although they solve the problem at different granularities, for
large query sizes, FMA needs to cover most flows on a port
which makes it behave similar to ε-LPR. Specifically, when
the network is saturated FMA will end up covering most of the
flows traversing a port, similar to the ε-LPR.

VII. CONCLUSION

In this paper, we presented OVT, a flow mirroring system
for virtual networks that utilizes mirroring capabilities of
commodity OpenFlow switches to create a software-defined
network tap. We showed that by carefully computing switch
mirroring configurations, OVT is able to provide flow coverage
functionality similar to hardware taps. To achieve this, we for-
mulated two optimization problems for computing switch mir-
roring configurations and designed fast and efficient algorithms
to solve each problem. In addition to the theoretical results, we
also conducted experiments using model-driven simulations as
well as realistic Mininet emulations in a variety of networks
and application scenarios. The results are compared with
existing network traffic mirroring approaches. Extending OVT
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to mirror flows on multiple switches along their path can
facilitate the debugging of network functions that modify/drop
packets. Additionally, incorporating programmable switches
in OVT results in a more flexible design. In particular, with
the advent of programmable switches, OVT can reduce the
mirroring load by partially mirroring the traffic destined to
analyzer applications that do not require the whole packet,
e.g., DDoS detection. The mirroring load can be further
reduced using probabilistic methods, a worthwhile extension
on switches with constrained resources. Finally, in this work,
we used a randomized strategy to round the fractional solutions
of the relaxed integer program. Investigating other frame-
works, e.g., pipage rounding, for solving extensions of our
formulations is a promising avenue for designing monitoring
solutions with improved worst-case performance.
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APPENDIX A
PROOF OF THEOREM 1

Proof. We describe a polynomial time reduction from an
instance of the Set Cover problem [86] to an instance of PortTM
with a single switch. In the Set Cover problem, we are given
a ground set U = {u1, . . . , un} and a collection of subsets
S = {S1, . . . ,SK} such that their union is U . Selecting subset
Sk incurs cost ck. A cover is a subset C ⊆ S of sets Sk whose
union is U . The objective of the Set Cover problem is to find a
cover whose cost is minimum. To reduce Set Cover to PortTM,
map each element ui ∈ U to a flow and each subset Sk to a
port pk in the PortTM problem, where all ports are connected
to a single switch. Set rpk = ck. Then, λ is the cost of the
minimum set cover that covers all elements ui.

APPENDIX B
PROOF OF THEOREM 4

Proof. The problem is NP-hard via reduction from Partition
problem [86]. In Partition problem, we have a set of numbers
A = {a1, . . . , an} such that

∑
ai∈A ai = 2C. The goal is to

decide if there is a subset B ⊂ A such that
∑
ai∈B ai = C.

For each number ai, we assume there is a flow fi with traffic
rate ri = ai in FlowTM. All flows traverse two switches that
their mirroring and TCAM capacities are equal to C and n,
respectively. If there is a partition B that sums to C, then all
flows can be mirrored in FlowTM (i.e., the optimal value of
FlowTM is equal to n).
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