
1

Deadline-Aware SFC Orchestration
under Demand Uncertainty

Minh Nguyen, Mahdi Dolati and Majid Ghaderi

Abstract—In network function virtualization, a service func-
tion chain (SFC) specifies a sequence of virtual network functions
that user traffic has to traverse to realize a network service. The
problem of SFC orchestration has been extensively studied in the
literature. However, most existing works assume deterministic
demands and resort to costly runtime resource reprovisioning
to deal with dynamic demands. In this work, we formulate the
deadline-aware co-located and geo-distributed SFC orchestration
with demand uncertainty as robust optimization problems and
develop exact and approximate algorithms to solve them. A key
feature of our formulation is the consideration of end-to-end
delay in service chains by carefully modeling load-independent
propagation delay as well as load-dependent queueing and
processing delays. To avoid frequent resource reprovisioning,
our algorithms utilize uncertain demand knowledge to compute
proactive SFC orchestrations that can withstand fluctuations in
dynamic service demands. Extensive simulations are conducted
to evaluate the performance of our algorithms in terms of
ability to cope with demand fluctuations, scalability, and relative
performance against other recent algorithms.

Index Terms—Service function chain, Service orchestration,
Demand uncertainty, End-to-end delay.

I. INTRODUCTION

Background. Network function virtualization (NFV) refers
to softwarization of network functions traditionally performed
by specialized hardware appliances [1]. Typically, these
software-based network functions, commonly referred to
as virtual network functions (VNFs), are installed and run
on virtual machines (VMs) hosted in a cloud-based NFV
infrastructure (NFVI). To realize the benefits of NFV, several
technical challenges need to be addressed. One important
challenge is the orchestration of service function chains
(SFCs) [2]. Each SFC specifies an ordered sequence of VNFs
that user traffic has to traverse to realize a particular network
service. SFC orchestration refers to the joint problem of
deciding how many VNF instances to use, where in the NFVI
to deploy these instances, and how to route traffic between
them to meet certain objectives. A desirable objective is to
minimize the cost of orchestrating the SFCs in the NFVI by
provisioning just enough resources to satisfy service demands
according to pre-specified service level agreements (SLAs).

Optimal provisioning of NFVI resources, nevertheless, is
not trivial. The amount of resources a network service requires
is determined based on the type of VNFs involved and the
level of demand (e.g., rate of traffic) for that service, which is
only known at runtime. In particular, a key challenge in SFC
orchestration is that service demands are dynamic and fluctuate

This work was supported by Alberta Innovates and Natural Sciences and
Engineering Research Council of Canada.

over time. Thus, an orchestration algorithm has to either
dynamically react to changes in demand by reprovisioning
resources, or proactively provision the right amount of
resources in advance to avoid the need for reprovisioning
resources on the spot. While reactive algorithms are generally
simpler to design, they result in unpredictable and often
significant delays (see, e.g., [3]) as they need to reprovision
resources on-demand, e.g., migrate virtual machines or
activate new servers. Most VNF operations are strictly delay-
sensitive and run under stringent delay requirements. Any
disruption to VNF operations results in poor performance and
quality of service and has to be avoided. This paper focuses
on developing SFC orchestration algorithms that utilize
uncertain demand information to compute proactive SFC
orchestration schemes that can cope with demand fluctuations,
thereby avoiding frequent resource reprovisioning.

Our Work. We consider the SFC orchestration problem with
the objective of minimizing the deployment cost of VNFs.
Specifically, given a list of SFCs representing the requested
services and the NFVI resource information, our objective is
to find the optimal deployment of VNFs required for these
services that minimizes the total cost while respecting the
service deadlines. Depending on the service type, VNFs
deployed for a service can be either co-located within a
single datacenter or geo-distributed over a dispersed cloud
infrastructure [4], [5]. We formulate the co-located and geo-
distributed service orchestration as constrained optimization
problems, with each formulation being customized to capture
the key considerations unique to each deployment scheme. Key
considerations captured by our co-located SFC orchestration
formulation include the dependence of the service delay on
the traffic load and the sharing of a VNF instance between
multiple service flows. For geo-distributed SFC orchestration,
our formulation considers the dominance of propagation
delays for communications between VNFs and the multi-
domain nature of geo-distributed cloud infrastructures.

We develop exact and approximate algorithms to solve the
SFC orchestration problem considering the two deployment
schemes. To account for the demand fluctuations, our algo-
rithms assume partial knowledge about future traffic demands,
such as the nominal demands and the maximal demand devi-
ations, which can often be obtained as part of SLAs or from
past observations. This information is used by our algorithms
to model fluctuations in the demand parameters as cardinality-
constrained uncertainty sets [6]. By adjusting the cardinality
of the uncertainty sets, the proposed algorithms can achieve
any desired trade-off between deployment cost and proactivity

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

(to demand fluctuations) of the computed orchestration.
Our main contributions in this paper are summarized below:
• We define and formulate the co-located and geo-

distributed SFC orchestration with the objective of mini-
mizing deployment cost as integer optimization problems.
To further account for the demand uncertainty, we use
cardinality-constrained uncertainty sets to model the
demand fluctuations and transform the original problem
formulations to equivalent robust optimization programs.

• To deal with the non-linearity of the co-located SFC
orchestration formulation, we apply various optimization
techniques to transform the original formulation into
a linear mixed-integer second-order cone program
(MISOCP), which is tractable for small problem
instances. For large problem instances, we develop
an iterative algorithm that computes an approximate
solution to the problem in polynomial time.

• For geo-distributed SFC orchestration, we design a multi-
stage approximate algorithm that solves the placement
and routing stages of the problem separately, while still
accounting for the dependency between the two stages.

• We present extensive model-driven simulation results to
study the behavior of our algorithms in small and large
problem instances and demonstrate their ability to achieve
any desired proactivity-cost trade-off. We further compare
the performance of our algorithms against a baseline and
two recent algorithms, namely FFCA [7] and MaxZ [8].

Paper Organization. The system models for co-located and
geo-located problems are discussed in Section II. The problem
formulations are presented in Sections III and IV, while our ex-
act and approximation algorithms are described in Sections V
and VI. Section VII is dedicated to performance evaluation
of the algorithms. Finally, Section VIII reviews the relevant
literature and Section IX concludes the paper.

II. SYSTEM MODEL

This section details different components of our system
models for co-located and geo-distributed SFC orchestration.

A. General Model

NFVI Model. The network infrastructure is modeled as a
directed graph ~G(N,E), where N and E, respectively, are
the sets of substrate nodes and links (see Fig. 3(b) for a
datacenter-based NFVI). Each substrate node n ∈ N has a
certain number of processing units Mn available for hosting
VNFs, with each unit provides a raw processing capacity of
cn. We assume that all physical links in the substrate network
are full-duplex and model each as two equal-capacity directed
links in opposite directions. Let rbwde denote the aggregate
rate of traffic on link e ∈ E, which should not be greater
than the link capacity cbwde . Further, let F denote the set of all
VNFs that could potentially be deployed to the NFVI. Each
VNF f ∈ F has a processing coefficient σf , ranging between
0 and 1, that indicates its processing complexity (see [9] for
experimental approaches for characterizing this value). Simple
VNFs such as NAT, which do not require much processing,

have their σf close to 1. On the other hand, processing-
intensive VNFs such as DPI have smaller values of σf .

SFC Model. Let U denote the set of SFCs to be orchestrated in
the NFVI. Each SFC S ∈ U is modeled as a virtual network
represented by a directed graph ~G = (SV , SJ), where SV and
SJ are, respectively, the sets of virtual nodes and links. Notice
that this definition is the same as the one in RFC 7665 [10].
The virtual links’ orientation describes the direction of the
flow, while the virtual nodes represent the ingress/egress
locations as well as the VNFs expected to process that flow
(see Fig. 3(a) for examples of VNFs and SFCs). We use lower
case letters j ∈ SJ to denote an arbitrary virtual link and
v ∈ SV to represent an arbitrary virtual node. The source and
destination of each virtual link j are referred to as j.source
and j.dest, respectively. For each virtual node v, we define the
set of all substrate nodes where v can be mapped to as Nv⊆N .
The binary variable av,n is used to indicate whether virtual
node v is mapped to substrate node n. Also, let the variable
lj,e denote if substrate link e is responsible for routing the
traffic of virtual link j. Each virtual link j has a traffic demand
rbwdj . We assume single-path routing, where each virtual link
is mapped to a set of substrate links that together compose a
path. For a list of typical virtual network function types and
their corresponding applications, please refer to [9], [11].

B. Co-located SFC Orchestration

Deployment Scheme. In co-located SFC orchestration, the
VNFs are all deployed within a single network infrastructure
(e.g., a datacenter). The substrate network in this case is a
local area network with each substrate node being either a
switch or a server. We have N = Nswitch∪Nserver, in which
Nswitch and Nserver denote the sets of switches and servers,
respectively. We assume that only server nodes are capable of
hosting VNFs (i.e.,∀S ∈ U ,∀v ∈ SV , Nv = Nserver).

Given full control of the network operator over the infras-
tructure in this context, we assume that a VNF scheduling
mechanism can be adopted (e.g., [12]) to allow a VNF instance
to be shared between multiple service flows. The optimal
number of VNF instances to deploy is determined as part of
the optimization. Let the binary variable if,n indicate if server
n hosts an instance of VNF f . Here, each processing unit at a
server node corresponds to one CPU core. Given the process-
ing rate requirement rprocf,n for VNF instance f on server n, we
allocate mf,n cores to the VM that runs the function f . Unlike
previous works which assume that the processing rate require-
ment is fixed and solely dependent on the type of VNF (e.g.,
[7], [13–17]), the processing rate requirement in our model is
a function of the incoming traffic rate. Multiple instances of
VNF f can be deployed on different servers to speed up the
processing, but at most, Kf servers can each host an instance
of f at a time. The value of Kf is determined by the number
of licenses that the network operator has acquired for VNF f .

Delay and Cost Models. The end-to-end delay for each
SFC is computed as the sum of processing, queueing, and
propagation delays over all of servers and links allocated to
it. The processing delay of each VNF instance is approximated

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

by the response time of an M/G/1 processor sharing queue,
as suggested by [18]. The processing delay dprocf,n of VNF f
on server n is determined by the allocated processing capacity
cprocf,n and its processing rate requirement rprocf,n . The processing
capacity is dependent on the number of CPU cores allocated to
the VM that runs the VNF instance, while the processing rate
requirement is dependent on the incoming traffic rate. Each
substrate link e is associated with a propagation delay dprpe

and a queueing delay dbwde . The propagation delay is always
fixed. The queueing delay, on the other hand, is a function of
the traffic load on the link. We estimate the queueing delay by
the response time of an M/M/1 queue, as in [7], [8] and [19].

As a significant portion of the NFVI expense is due to
the energy consumed for running the services (about 30-50%
of the budget [20]), we consider the energy consumption as
our cost metric to minimize. The energy consumption of both
servers and switches is modeled by a linear function of their
utilization [21]. While the switches are always active, we
assume that the servers can be switched off if they do not host
any VNF. The on/off status of server n is indicated by the bi-
nary variable on. We denote by P actvn the power consumption
of active device n in idle state (a.k.a. idle power). When there
is some load, the power consumption of device n, denoted by
Pn, scales proportionally with its resource utilization. We let
Pmaxn denote the maximum power consumption of device n
at full utilization. By considering future demand fluctuations,
our model provisions sufficient amount of resources in one
shot to avoid turning on and off physical machines at runtime.

C. Geo-distributed SFC Orchestration
Deployment Scheme. To deal with limited resources and
geo-dispersed nature of users, some network services such as
those in mobile cellular networks [4] are typically distributed
over multiple datacenters, potentially managed by different
infrastructure providers. The substrate network here is a wide
area inter-datacenter network that spans a large geographical
area. We assume each datacenter in this network offers Mn

units of resources to host VNFs, with each unit providing
a processing capacity of cn. The total processing demand
mn (in terms of processing units) over all VNFs hosted by
datacenter n should be at most Mn.

While in the co-located scheme, NFVI resources are
controlled by a single operator, resources in the geo-distributed
scheme are co-managed by different operators, e.g., in a
multi-tier architecture. For instance, an operator can provide
VNF-as-a-service to several higher-tier operators without
giving them any control over the VNF implementation or the
underlying infrastructure [22]. Moreover, rather than hosting
all VNFs locally, a service provider may outsource some to
third-party VNF service providers who host their services in
their datacenters. As such, not all VNFs are supported at each
datacenter. We set Nv in a manner that restricts the mapping of
each virtual node to only the datacenters where the correspond-
ing VNF is supported. Further considering the fact that third-
party VNF service providers generally do not support VNF
sharing citing the security risks due to the multi-domain nature
and management overhead cost [5], we do not allow a VNF
instance to be shared between different services in this model.

Delay and Cost Models. As opposed to co-located NFVI,
where the queueing and processing are primary sources of
delay, the end-to-end delays in geo-distributed NFVI are
dominated by the propagation delays [23]. We let dprpe denote
the propagation delay on each link e. The end-to-end service
delay is interpreted as the sum over propagation delays of all
selected links to route the service flows, assuming single-path
routing. Deploying a VNF instance at a datacenter will incur
a cost proportional to the amount of resources being used.
We assume there is an associated cost of Pn for each unit of
resources being allocated at datacenter n. The primary goal
of this deployment scheme, therefore, is to minimize the total
cost of allocated resources across all datacenters.

III. DETERMINISTIC PROBLEM FORMULATION

In this section, we formulate the co-located and geo-
distributed SFC orchestration problems. Then, in the next
section, we extend our formulations to cope with demand
uncertainty.

A. Co-located SFC Orchestration

The objective is to compute the optimal service deployment
scheme (including VNF placement – av,n, CPU allocation –
mf,n and routing – lj,e decisions) that minimizes the energy
consumption of the NFVI, given the service demand informa-
tion from the SLAs, the network configurations along with the
network resource information (i.e., link and node capacities).
The problem can be defined formally as a mixed-integer
non-linear program (MINLP) as shown in Formulation 1.

Equation (A1) expresses the objective function of minimiz-
ing the total energy cost of the NFVI. More specifically, the
energy consumption of servers and switches are expressed as
a linear function of their capacity utilization as follows:

Pn=


onP

actv
n +

∑
f∈F mf,n

Mn

(Pmaxn −Pactvn), ∀n∈Nserver,

Pactvn +

∑
e.dest=n r

bwd
e

cbwdn

(Pmaxn −Pactvn), ∀n∈Nswitch.

Please note that the the generality of the model and decision
variables allows us to consider other important objectives such
as delay minimization. Constraint (A2) computes the load of
each VNF instance as a function of placement variables av,n.
Constraint (A3) computes the processing capacity cprocf,n of
VNF f on server n based on the number of allocated CPU
cores mf,n, the raw processing capacity of each core cf,n, and
the processing complexity of VNF f . Constraint (A4) ensures
that the load of each VNF is not greater than its processing
capacity. However, the total number of allocated cores at
a server must be at most the number of available cores,
as enforced by constraint (A5). Constraints (A6) and (A7)
compute the processing delay associated with each deployed
VNF instance and the queueing delay associated with each
link. Constraint (A8) helps to set the variable we, which
indicates if there is any traffic that is routed through link e.
Specifically, constraint (A9) imposes a deadline θS on each
service’s end-to-end delay, which is calculated by summing up
the queueing, processing and propagation delays. Constraint
(A10) enforces that the number of deployed instances for a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Formulation 1 Co-located SFC Orchestration

Minimize
∑
n

Pn (A1)

r
proc
f,n =

∑
S∈U

∑
j∈SJ

t(j.dest)=f

r
bwd
j · aj.dest,n, ∀f ∈ F, ∀n ∈ Nserver, (A2)

c
proc
f,n = σf ·mf,n · cn, ∀f ∈ F, ∀n ∈ Nserver, (A3)

r
proc
f,n ≤ c

proc
f,n , ∀f ∈ F, ∀n ∈ Nserver, (A4)∑

f∈F

mf,n ≤Mn, ∀n ∈ Nserver, (A5)

d
bwd
e =

we

cbwde − rbwde

, ∀e ∈ E, (A6)

d
proc
f,n =

if,n

cprocf,n − r
proc
f,n

, ∀n ∈ Nserver, (A7)

we ≥ lj,e, ∀S ∈ U, ∀j ∈ SJ , ∀e ∈ E, (A8)∑
j∈SJ

∑
e∈E

lj,e(d
bwd
e + d

prp
e) +∑

v∈Sv

∑
n∈Nserver

∑
f∈F
t(v)=f

av,nd
proc
f,n ≤ θS , ∀S ∈ U,

(A9)

∑
n∈Nserver

if,n ≤ Kf , ∀f ∈ F, (A10)

av,n ≤ if,n, ∀S ∈ U, ∀v ∈ SV , ∀n ∈ Nserver, ∀f ∈ F : t(v) = f, (A11)∑
n∈Nv

av,n = 1, ∀S ∈ U, ∀v ∈ SV , (A12)

av,n = 0, ∀S ∈ U, ∀v ∈ SV , ∀n ∈ N : n /∈ Nv, (A13)

r
bwd
e =

∑
S∈U

∑
j∈SJ

r
bwd
j lj,e, ∀e ∈ E, (A14)

r
bwd
e ≤ cbwde , ∀e ∈ E, (A15)∑
e:e.dest=n

lj,e −
∑

e:e.source=n

lj,e = aj.dest,n − aj.source,n,

∀n ∈ N, ∀S ∈ U, ∀j ∈ SJ ,
(A16)

on ≥ if,n, ∀n ∈ Nserver, ∀f ∈ F, (A17)

Pn, c
proc
f,n , r

proc
f,n , r

bwd
e , d

bwd
e , d

proc
f,n ∈ R+

,

lj,e, av,n, on, if,n, we ∈ {0, 1},mf,n ∈ N,
∀S ∈ U, ∀S ∈ U, ∀j ∈ SJ , ∀v ∈ SV , ∀e ∈ E., ∀f ∈ F.

VNF should be no more than the number of licenses available
for it. Except for the ingress and egress, each virtual node in
an SFC denotes a VNF required for the service; constraint
(A11) imposes that a virtual node must be mapped to a
substrate node where the corresponding VNF is deployed (as
indicated by the function t(v)). A further restriction is that a
virtual node can only be mapped to a substrate node in its list
of possible locations, as enforced by constraints (A12) and
(A13). Constraint (A14) computes the flow rate of each link
which is forced to respect its capacity in constraint (A15).
Constraint (A16) is the standard equation for multi-commodity
single-path routing. Finally, constraint (A17) identifies the
active servers, those who host at least one VNF instance.

B. Geo-distributed SFC Orchestration

Given the inter-datacenter network topology with detailed
information on the available resources and their costs at the
datacenters along with the service demand information, our
goal is to find the optimal placement and routing scheme
(i.e., finding av,n and lj,e) for the VNFs required to provide
these services such that the total cost is minimized while
guaranteeing the service deadlines. Formulation 2 presents a
non-linear integer program (NLIP) to solve the problem.

Formulation 2 Geo-distributed SFC Orchestration

Minimize
∑
n

Pnmn (B1)∑
n∈Nv

av,n = 1, ∀S ∈ U, ∀v ∈ Sv, (B2)

mn =
∑
S∈U

∑
v∈SV ,v 6=egress

⌈
rbwdj:j.dest=vav,n

cnσt(v)

⌉
, ∀n ∈ N, (B3)

mn ≤Mn, ∀n ∈ N, (B4)

r
bwd
e =

∑
S∈U

∑
j∈SJ

r
bwd
j lj,e, ∀e ∈ E, (B5)

r
bwd
e ≤ cbwde , ∀e ∈ E, (B6)∑
e:e.dest=n

lj,e −
∑

e:e.source=n

lj,e = aj.dest,n − aj.source,n,

∀n ∈ N, ∀S ∈ U, ∀j ∈ SJ ,
(B7)

∑
j∈SJ

∑
e∈E

lj,ed
prp
e ≤ θS , ∀S ∈ U, (B8)

lj,e, av,n∈{0, 1},mn∈N, rbwde ∈R+
, ∀j∈SJ , ∀v∈SV , ∀e∈E, ∀n∈N.

Equation (B1) states the objective function of minimizing
the total cost for allocated resources over all datacenters in
the network. Constraint (B2) enforces that every virtual node
must be mapped to a substrate node (i.e., every VNF request
must be served by a datacenter where it is supported). The
total processing demand, in terms of number of processing
units, at each datacenter is computed by constraint (B3), while
constraint (B4) ensures that this demand does not exceed the
available number of resource units. Note that a flow destined
to an egress node (i.e., j.dest = egress) does not demand
any processing and is thus omitted from demand calculation
in (B3). For each link, constraint (B5) computes the total
bandwidth demand over all service flows routed through it
and constraint (B6) imposes the capacity limitation. Con-
straint (B7) expresses the regular flow conservation for single-
path routing. A service deadline θS is imposed on the end-
to-end propagation delay of each SFC S by constraint (B8).

IV. COPING WITH DEMAND UNCERTAINTY

In this section, we consider modifying our deterministic
formulations to incorporate demand uncertainty.

Demand Uncertainty Model. Each future traffic demand rbwdj

is assumed to lie within an interval [r̄bwdj − r̂bwdj , r̄bwdj + r̂bwdj],
where r̄bwdj and r̂bwdj denote the nominal value of rbwdj and
its maximum deviation, respectively. We assume that in the
worst-case at most Γ demands can simultaneously deviate
maximally from their nominal values, i.e.,

∑
j

∣∣∣∣ rbwdj − r̄bwdj

r̂bwdj

∣∣∣∣ ≤ Γ. (R1)

Γ is a parameter that controls how proactive the model is
to demand fluctuations. In practice, the accuracy of demand
estimates affects the efficiency of the solutions produced by
our algorithms. A small Γ results in a less proactive solution
that may lead to frequent resource reprovisioning at runtime.
By setting a large value for Γ, relative to the number of traffic
demands, runtime reprovisioning can be completely avoided
at the expense of a more costly solution. In this sense, Γ can
be thought of as an uncertainty budget that expresses how

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

much additional resources the network operator is willing to
allocate to account for user demand fluctuations.

Theorem 1. To ensure deviation of any Γ demands does
not make the model infeasible, it is necessary and sufficient
that every resource constraint is protected against maximal
deviations of any Γ demands associated with that constraint.

Proof. It is trivial that when each constraint is individually
protected from the worst-case deviation of Γ demands
associated with it, then regardless of which Γ demands
actually deviate, none of the resource constraints can be
violated. On the other hand, it is necessary to protect every
constraint from the worst-case deviation of Γ demands to
ensure the feasibility of the model. Assume by contradiction
that we do not need to consider the worst-case deviation of
Γ demands at each constraint. Then there exists a set of Γ
demands, which provides the worst-case demand deviation at
a resource constraint but is not considered. If the Γ demands
in this set are the only ones that deviate and that they
deviate maximally, then the corresponding constraint could
be violated, which contradicts our assumption.

Robust Optimization. Theorem 1 implies that to account for
the deviations of any Γ demands, we must consider the max-
imal Γ demand deviations associated with each capacity con-
straint. The problem is then reduced to an instance of Γ–robust
optimization [6]. Specifically, we replace the processing and
bandwidth demand computations in the original formulations
(i.e., (A2), (A14), (B3) and (B5)) by their robust counterparts.
The robust counterpart of (A2) is expressed as follows:

r
proc
f,n =

∑
S∈U

∑
j∈SJ

t(j.dest)=f

r̄
bwd
j aj.dest,n+

max
|Qproc
f,n

|≤Γ

∑
j∈Qproc

f,n
t(j.dest)=f

r̂
bwd
j aj.dest,n, ∀n ∈ N, ∀f ∈ F,

(R2)

where Qprocf,n ⊆
⋃
S∈U SJ denotes the uncertainty set of Γ

virtual links selected by the model to take the maximum
deviations. Following the procedure in [6], we take the duality
of the inner maximization problem and reformulate (R2) as
the following pair of linear constraints:

r
proc
f,n = Γαf,n +

∑
S∈U

∑
j∈SJ

t(j.dest)=f

r̄
bwd
j aj.dest,n + βj,f,n,

∀f ∈ F, ∀n ∈ Nserver,

(R3)

αf,n + βj,f,n ≥ r̂bwdj aj.dest,n,

∀f ∈ F, ∀n ∈ Nserver, ∀S ∈ U, ∀j ∈ SJ : t(j.dest) = f.
(R4)

In the same manner, the linear robust counterparts for (A14)
and (B5) can be derived to be:

r
bwd
e = Γγe +

∑
S∈U

∑
j∈SJ

lj,er̄
bwd
j + ζj,e, ∀e ∈ E, (R5)

γe + ζj,e ≥ r̂bwdj lj,e, ∀e ∈ E, ∀S ∈ U,∀j ∈ SJ . (R6)

For (B3), both the uncertain coefficient and placement
decision variable av,n are inside a ceiling function, making
the direct conversion to robust counterpart challenging.
Instead, we move the placement variable av,n out of the

ceiling function and shift the uncertainty from rbwdj:j.dest=v to
drbwdj:j.dest=v/cnσt(v)e = mv,n, the number of processing units
required by virtual node v as if v is serviced at datacenter n.
Constraint (B3) then can be rewritten as follows:

mn =
∑
S∈U

∑
v∈Sv,v 6=egress

mv,nav,n, ∀n ∈ N, (R7)

with it’s linear robust counterpart being:

mn = Γψn +
∑
S∈U

∑
v∈Sv,v 6=egress

m̄v,nav,n + δv,n, ∀n ∈ N, (R8)

ψn + δv,n ≥ m̂v,nav,n, ∀n ∈ N, ∀S ∈ U, ∀v ∈ SV , (R9)

in which dr̄bwdj:j.dest=v/cnσt(v)e = m̄v,n and
dr̂bwdj:j.dest=v/cnσt(v)e = m̂v,n. The optimization variables
αf,n, βj,f,n, ψn, δv,n, γe, and ζj,e are dual variables
introduced when deriving the robust counterparts.

When (R1) does not hold, Theorem 2 presents the upper
bound on the likelihood that a capacity resource constraint is
violated. The proof for Theorem 2 extends the original proof in
[6] considering the specific structure of our problem to derive
a tighter upper bound on the capacity violation probability.

Theorem 2. Let Prvioi denote the probability that the resource
constraint i is violated. Assume that the traffic demands are
symmetrically distributed over their corresponding ranges,
we have:

Pr
vio
i ≤


0 if Γ ≥Mi,

exp

(
−

Γ2

2Mi

)
if 1 ≤ Γ < Mi,

(R10)

where,
Mi =

⌊
capacity of resource i

minimum nominal demand

⌋
≤
∑
S∈U

|SJ | . (R11)

Proof. In the first case, when Γ ≥Mi, as the model guarantees
to provide accommodation for maximum deviations of any
combination of demands that can be possibly mapped to
resource i, the resource constraint will never be violated, thus
Prvioi = 0. For 1 ≤ Γ ≤ Mi, assume x∗j,i is the decision
made by the robust model on whether to map demand j to
resource i, we know the following relation holds from [6]:

Pr
vio
i ≤ exp

 ∑
j∈{

⋃
S∈U SJ}

ρ2κ2
j,i

2
− ρΓi

 , (R12)

where,

κj,i =


1 if j ∈ Q∗i ,
r̂jx
∗
j,i

r̂τ∗x
∗
τ∗,i

if j ∈ Ci\Q∗i ,
(R13)

τ
∗

= argmin
τ∈Q∗

i

{r̂τx∗τ,i}. (R14)

We have ρ is a constant, Ci is the set of uncertain coefficients
associated with resource constraint i while Q∗i ⊆ Ci is the
subset of coefficients that are selected to take their maximum
deviations, and τ∗ indicates the demand with the smallest
deviation magnitude that is selected by the optimization model
to include in Q∗i . In our formulations, x∗j,i corresponds to the
decision variables av,n and lj,e, which denote the mapping of
virtual nodes and links, respectively. Also, the set of uncertain
coefficients associated with each resource constraint is the set

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

of all traffic demands, i.e., ∀i Ci = {
⋃
S∈U SJ}.

Assume 1 ≤ Γ < Mi, we have |Q∗i | ≤ min{Γ,Mi} = Γ.
Also, for every demand j ∈ Q∗i , we know that its
corresponding decision variable xj,i must be set to one,
since otherwise it would not be included in Q∗i . Then,
because at most Mi demands can be mapped to resource i
(i.e.,

∑
x∗j,i ≤ Mi), for those demands j ∈ Ci\Q∗i that are

not selected to take their maximum deviations, no more than
Mi − Γ decision variables xj,i can be set to one. Therefore,∑

j∈Ci\Q∗i

r̂jx
∗
j,i

r̂τ∗x
∗
τ∗,i

≤Mi − Γ (R15)

as r̂j/r̂τ∗ ≤ 1 by the definition of τ∗ in (R14), we obtain that∑
j∈Ci

κj,i ≤Mi. (R16)

Combining (R16) and (R12), it is obtained that

Pr
vio
i ≤ exp

(
Miρ

2

2
− ρΓi

)
= exp

(
−

Γ2
i

2Mi

)
, (R17)

in which the parameter constant ρ is set to Γi/Mi.

V. SCALABLE CO-LOCATED SFC ORCHESTRATION

In this section, we focus on developing algorithms that can
be used to solve large instances of the co-located problem.

A. Reduction to MISOCP

We note that the delay constraints (A6), (A7) and (A8) in
Formulation 1 are non-linear. In the following, we show how
these constraints can be reformulated in order to transform the
model into a MISOCP, which can be solved using standard
optimization solvers such as Gurobi [24].

Let d̃bwde and hbwde , respectively, denote the upper bound
on the queueing delay and the residual capacity of link e.
Then (A6) can be rewritten as follows:

d̃
bwd
e h

bwd
e ≥ we, ∀e ∈ E, (A19)

h
bwd
e = c

bwd
e − rbwde , ∀e ∈ E. (A20)

The product term in (A19) can be expressed as a sum of
squares as follows:

2w
2
e + (d̃

bwd
e)

2
+ (h

bwd
e)

2 ≤ (d̃
bwd
e + h

bwd
e)

2
, ∀e ∈ E. (A21)

Notice that since we is a binary variable, it can be conveniently
replaced by its square, which consequently transforms the
constraint into a second-order conic constraint (SOCP). In
the same way, we can rewrite (A7) as follows:

2i
2
f,n + (d̃

proc
f,n)

2
+ (h

proc
f,n)

2 ≤ (d̃
proc
f,n + h

proc
f,n)

2
,

∀f ∈ F, ∀n ∈ Nserver,
(A22)

h
proc
f,n = c

proc
f,n − r

proc
f,n , ∀f ∈ F, ∀n ∈ Nserver, (A23)

where d̃procf,n and hprocf,n are, respectively, the upper bound on
the processing delay and the unused portion of the allocated
processing capacity of VNF f on server n.

Next, we substitute the individual delay components in
(A8) by their upper bounds:∑

j∈SJ

∑
e∈E

lj,e(d̃
bwd
e + d

prp
e) +∑

v∈Sv

∑
n∈Nserver

∑
f∈F
t(v)=f

av,nd̃
proc
f,n ≤ θS , ∀S ∈ U.

(A24)

We use the big-M approach to linearize the products of binary
and continuous variables in (A24). We define d̃bwdj,e = lj,ed̃

bwd
e

as the upper bound on the queueing delay experienced by
traffic flow j at link e. Assume that d̃bwde is upper bounded
by a constant M1, we then can express d̃bwdj,e = lj,ed̃

bwd
e by

the following set of linear constraints:

d̃
bwd
e ≤ d̃bwdj,e + (1− lj,e)M1, ∀e ∈ E, ∀S ∈ U, ∀j ∈ SJ , (A25)

d̃
bwd
j,e ≤ lj,eM1, ∀e ∈ E, ∀S ∈ U, ∀j ∈ SJ , (A26)

d̃
bwd
j,e ≤ d̃

bwd
e , ∀e ∈ E, ∀S ∈ U, ∀j ∈ SJ . (A27)

Similarly, given a VNF request v of type f (i.e., t(v) = f),
we define d̃procv,n = av,nd̃

proc
f,n as the upper bound on its

processing delay at server n. Under the assumption that d̃procf,n

is upper bounded by a constant M2, we can linearly express
d̃procv,n = av,nd̃

proc
f,n as follows:

d̃
proc
f,n ≤ d̃

proc
v,n + (1− av,n)M2,

∀n∈Nserver, ∀f ∈F, ∀S∈U, ∀v∈SV : t(v)=f,
(A28)

d̃
proc
v,n ≤ av,nM2, ∀n∈Nserver, ∀f ∈F, ∀S∈U, ∀v∈SV , (A29)

d̃
proc
v,n ≤ d̃

proc
f,n , ∀n∈Nserver, ∀f ∈F, ∀S∈U, ∀v∈SV : t(v)=f. (A30)

For this to work, M1 and M2 should be set to sufficiently large
values. Although we rely on the program to compute d̃procv,n

and d̃bwdj,e , we know that these individual delay components
should not be greater than the deadline θS of SFC S to which
v and j belong. Thus, by setting M1 = M2 = maxS θS , we
ensure that M1 and M2 are always greater than any d̃procv,n and
d̃bwdj,e in a feasible solution. The end-to-end delay requirement
now can be expressed as the following linear constraint:∑
j∈SJ

∑
e∈E

d̃
bwd
j,e +lj,ed

prp
e +

∑
v∈Sv

∑
n∈Nserver

∑
f∈F
t(v)=f

d̃
proc
v,n ≤θS , ∀S∈U.

(A31)

The modifications we make deal solely with the delay
computations and do not have any effect on the decisions of
where to deploy the VNFs or which paths to use for routing
the traffic. As such, the optimal solution remains intact.

To further simplify the model, we apply the penalty method
to convert constraint (A31) into a term in the objective, while
still keeping the integrality of the model. Define the auxiliary
variable zs ≥ 0 as follows:∑
j∈SJ

∑
e∈E

d̃
bwd
j,e +lj,ed

prp
e +

∑
v∈Sv

∑
n∈Nserver

∑
f∈F
t(v)=f

d̃
proc
v,n −θS≤zS , ∀S∈U.

(A32)

A new term that captures the delay requirement is then added
to the objective:

Minimize
∑
n∈N

Pn + λ
∑
S∈U

zS , (A33)

where λ is a parameter that models the importance of
fulfilling the hard deadlines. Specifically, by setting λ to a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

sufficiently large value, the model is forced to meet the hard
deadlines (i.e., zS → 0 as λ → ∞). In this case, the total
energy consumption

∑
n Pn returned by the modified model

will be no different from the original. Otherwise, by setting
λ to smaller values, the model has the flexibility to trade-off
some delay performance for reduced provisioning cost.

Our algorithm called Service Orchestration with DeadLine
(SODL) to solve the co-located SFC orchestration problem
(exactly) as a MISOCP is given in Algorithm 1.

Algorithm 1 SODL (Exact Co-located SFC Orchestration)

Minimize
∑
n∈N

Pn + λ
∑
S∈U

zS

s.t. resource cstrs: (A3)–(A5), (R3) and (R4) energy cstrs: (A17)

routing cstrs: (A15), (A16), (R5) and (R6) placement cstrs: (A10)–(A13)

delay cstrs: (A19)–(A32).

B. Approximate Service Orchestration

The presence of integer variables in SODL makes it compu-
tationally intractable for large problem instances. In this sec-
tion, we develop an orchestration algorithm called xSODL (ap-
proXimate SODL) that employs iterative rounding [8] to
compute an approximate solution to the problem. To apply
iterative rounding, we first relax all integer variables in the
MISOCP (i.e., av,n, lj,e, if,n, we, on and mf,n) transforming
it into a SOCP, which is a special class of quadratic program-
ming that can be solved in polynomial time [25]. The relaxed
model is then solved iteratively to obtain fractional solutions.
In each iteration, we selectively round a subset of variables
in a manner that respects all constraints in the model and fix
their values in subsequent iterations. The procedure terminates
when all relaxed integer variables are fixed. The details of
these steps are given in Algorithm 2 and further explained
below. Table I summarizes the notations used in the algorithm.

Fractional Placement. The mapping of virtual nodes to the
substrate nodes is given by the variable av,n. We define the
list V which keeps track of virtual nodes that have not been
mapped. In each iteration of the main loop (lines 10-32),
considering only the mappings (v, n) where v ∈ V and
n ∈ Nv , the algorithm selects the top Υ variables among av,n
variables that have the largest fractional values (line 12) and
fixes them to one by adding an equality constraint to the model
(line 14). For each virtual node being mapped, xSODL keeps
track of where it is mapped (line 15), the list of different
VNFs that have been instantiated on the selected server
(line 17) and the remaining number of licenses (line 18).
This information is later used by RestrictPlacement to
update Nv and the model (line 21). The virtual nodes that have
been mapped are also removed from V (line 22), preventing
them from being re-picked in future iterations. Once all virtual
nodes have been mapped (i.e., V = ∅), the main loop of the
algorithm (lines 10 - 32) terminates. The parameter Υ controls
the number of virtual nodes to be mapped in each iteration.
The more virtual nodes that are mapped in each iteration, the
faster the algorithm will run. Therefore, by increasing Υ, we

TABLE I: Summary of Notations Used in xSODL

Notation Description
Υ ∈ N Number of virtual nodes (VNF requests) that are mapped per iteration
Kf ∈ N Number of unused licenses for VNF f
M The relaxed model
Msol Solutions returned by solving M
V Set of virtual nodes (VNF requests) still need to be mapped
Pn,f Set of VNFs requests that are mapped to VNF instance f at server n
Fn Set of different VNFs (types) at server n
J Set of virtual links (traffic flows between VNFs) still need to be routed
Le Set of flows that are routed through substrate link e

Algorithm 2 xSODL
Input:M, Γ, Υ Return: Msol

1: V ← {v | ∀S ∈ U, ∀v ∈ SV , v 6= ingress ∧ v 6= egress}
2: Pn,f ← {} ∀n ∈ Nserver, ∀f ∈ F
3: Fn ← {} ∀n ∈ Nserver
4: J ← {j | ∀S ∈ U, ∀j ∈ SJ}
5: Le ← {} ∀e ∈ E
6: Kf ← Kf ∀f ∈ F
7: RestrictPlacement(M,P,V,Γ,F,K)
8: RestrictRouting(M,J ,L,Γ)
9: Msol ← Solves the relaxed program . Obtain an initial solution
10: while |V| > 0 do
11: for i ← 1 to min{Υ, |V|} do
12: (v, n) ← argmax(v,n){av,n|∀av,n∈Msol, v /∈V ∧ n∈ Nv}

13: f ← v.type

14: M.addConstr(av,n = 1) . Fix the placement
15: Pn,f .orderInsert(v) . Record where v is mapped

16: if f /∈ Fn then
17: Fn.append(f) . Keep track of the deployed VNF instances
18: Kf ← Kf − 1 . Update the number of remaining licenses

19: end if
20: RestrictPlacement(M,P,V,Γ,F,K)
21: M.updateConstr((A5),

∑
f∈F mf,n≤Mn − |Fn| + 1) . CPU reservation

22: V.remove(v)

23: end for
24: Msol ← Solves the relaxed program
25: for j ∈ SJ , ∀S ∈ U do
26: if aj.source,n1

= 1 ∧ aj.dest,n2
= 1 ∧ j ∈ J then

27: Route(M, n1, n2, j, L) . Route flow j from server n1 to server n2
28: J .remove(j)
29: end if
30: end for
31: RestrictRouting(M,J ,L,Γ)
32: end while
33: Msol ← Solves the relaxed program
34: for mf,n ∈ Msol do

35: M.addConstr(mf,n = dmf,ne) . Fix the CPU allocation

36: end for
37: M.updateConstr((A4),

∑
f∈F mf,n≤Mn) . Restore servers’ capacities

38: Msol ← Solves the relaxed program
39: returnMsol

can make the algorithm scalable to problems involving a large
number of VNF requests. However, as it is later shown in
Section VII, the reduction in runtime achieved by increasing
Υ comes at the expense of higher energy provisioning cost.

Placement Feasibility. Rounding a fractional assignment
to an integral one can make the model infeasible. To
avoid such scenarios, after each successful assignment,
RestrictPlacement iterates through every possible
mapping (v, n) of each virtual node v that has not yet been
considered (i.e., v /∈ V) and eliminates mappings that, if
chosen, will make the model infeasible (i.e., by updating
Nv). There are two cases to consider, as follows:
Case (I). The server does not have enough capacity to support
the full traffic load of the fractionally assigned virtual nodes.
To avoid this case, the algorithm keeps track of all virtual
nodes that have been mapped to each server so far. These vir-
tual nodes are sorted in descending order of their maximum
demand deviations. The top Γ virtual nodes are assigned their
worst-case demands. When checking if it is feasible to assign
virtual node v to server n, assuming that v is already placed
at n, RestrictPlacement sums up the CPU demands

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

VNF1 VNF2
1.0 1.0

0.
4

0.4

0.7

0.6

0.3

0.
3

0
.3

Fig. 1: The path that can carry the largest
fractional amount of flow is the one that is
most likely to cost the least.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Minimum CPU required for the incoming traffic load

Actual CPU allocation decided by the model

Rounded Solution

VNF1 VNF2 VNF3

VNF1 VNF2 VNF3

VNF1 VNF2 VNF3

preserved

Fig. 2: Reserving 2 CPUs on a server with
3 VNF instances ensures that the rounding
does not violate the capacity.

of all VNFs and verifies that it is less than Mn − |Fn|+ 1,
where Mn is the total number of available CPU cores and
|Fn| is the number of different VNFs on server n.

Case (II). The virtual node is fractionally assigned to a
server where no VNF of the same type has been instantiated
while all licenses have been used. To avoid this case, the
algorithm records the number of licenses that have been
issued for each type of VNF. When all licenses of VNF f
have been used, virtual nodes of type f can only be mapped
to servers where an instance of f already exists.

Fractional Routing. The mapping of virtual links (flows) to
substrate links is indicated by the variable lj,e. As the binary
constraint on lj,e is relaxed, a flow can be split into multiple
sub-flows and routed through different paths. When two ends
of a virtual link have been mapped, as a result of solving the
relaxed model on line 24, we obtain an optimal multi-path
routing solution for the corresponding flow. Out of the paths
returned by the relaxed model, Route chooses the path that
carries the largest fractional amount of flow to route the
traffic (line 27). The problem is referred to in the literature as
the Widest Path problem, and can be solved using a variant of
the Dijkstra’s algorithm [26]. To select a path, all fractional
flow assignments on the links that constituted that path are
rounded to one. Fig. 1 shows an example of how a single-path
solution is constructed from the fractional flow assignments.

Routing Feasibility. As with mapping the virtual nodes, the
algorithm keeps track of all virtual links that have not been
mapped yet in J . In each iteration, only the virtual links that
are still in J are considered. RestrictRouting iterates
through every possible mapping of each virtual link in J and
excludes mappings that make the model infeasible. This is
carried out by directly adding constraints to the relaxed model
to prohibit it from routing fractions of flows through links that
do not have enough capacity to accommodate the full flows.

Fractional CPU Allocation. The last variable to fix in the
algorithm is mf,n, which determines the number of CPU
cores allocated to each deployed VNF instance. Unlike
av,n and jj,e, variable mf,n cannot be fixed on-the-go
when a virtual node is mapped since more virtual nodes in
subsequent iterations could be mapped to the same VNF
instance increasing the CPU demand. Recall that the number
of allocated CPU cores to a VNF is a function of the demand
for that VNF. The only option, therefore, is to wait until all
virtual nodes and links have been mapped to perform rounding
on mf,n. Specifically, after all variables av,n and jj,e have
been fixed, the algorithm reruns the relaxed model to obtain

the optimal fractional CPU allocations (line 33), and then
rounds up the computed fractional solutions (lines 34-36).

CPU Allocation Feasibility. To ensure that the rounding of
allocated fractional CPU cores does not violate the server
capacity constraint, we reserve a certain number of CPU
cores on each active server for the rounding (line 21). The
number of CPU cores to reserve is determined based on the
number of VNF instances |Fn| on the server.

Theorem 3. Preserving |Fn| − 1 CPU cores ensures that the
capacity of server n will not be violated due to the rounding
of the allocated fractional CPU cores.

Proof. Without loss of generality, assume mf,n is the frac-
tional amount of CPU cores allocated to a VNF instance f
at substrate node n. By model definition, it is enforced that∑
f∈Fn mf,n ≤ Mn − (|Fn| − 1). Since certainly dmf,ne ≤

mf,n+1, it follows that mfx,n+
∑
f∈Fn−{fx}dmf,ne ≤Mn−

(|Fn| − 1) + (|Fn| − 1), and thus
∑
f∈Fndmf,ne ≤Mn.

Once the algorithm has finished fixing mf,n (line 35), it re-
stores the capacities of the servers and reruns the model (lines
37-38) to apply the fixed mf,n to all derived variables before
returning the final solution. Fig. 2 shows an example demon-
strating how our CPU reservation and rounding schemes work.

VI. SCALABLE GEO-DISTRIBUTED SFC ORCHESTRATION

In this section, we devise a multi-stage algorithm named
xGSODL that, through separately solving the placement and
routing in an iterative manner, computes an approximate
orchestration solution to the problem. Although the placement
and routing are solved separately in each iteration, xGSODL
considers the scenario where a feasible placement with
minimal provisioning cost may result in no feasible routing
scheme and provides a mechanism to cope with such an inter-
stage dependency. Algorithm 3 details the steps of xGSODL
while Table II summarizes the notations used therein.

A. Placement

VNF Placement as Generalized Assignment. In the first
stage of the algorithm (lines 5-13), we focus only on finding
a VNF placement that minimizes the total cost. The model for
VNF placement is comprised of the objective function (B1)
together with constraints (B2)–(B4) in the original formula-
tion. We refer to this VNF placement model in xGSODL as
Mplace. The VNF placement is a form of the generalized
assignment problem for which finding just a feasible solution
is NP-complete. A generalized assignment instance for VNF
placement can be modeled as a bipartite graph. In the bipartite
graph, there exists a link e(v, n) connecting a virtual node v
to a substrate node n if n is in the list of possible locations
of v, n ∈ Nv . An assignment e(v, n) consumes mv,n units of
capacity while incurring a cost mv,nPn. Our task is to find
a minimal-cost assignment scheme that honors the capacity
constraints. The problem has been extensively studied with
a number of solution approaches reported in the literature.
Considering only the nominal traffic demands, we employ

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

TABLE II: Summary of Notations Used in xGSODL

Notation Description
Mplace Relaxed VNF placement model
Mroute Relaxed VNF routing model
Nsorted Sorted DCs in descending order of their cn/Pn
SPn1,n2

Set of paths between DC n1 and n2

Pj Set of paths for routing flow j
Pe Set of paths that use substrate link e
Je Set of flows that are routed through substrate link e
Pn Set of virtual nodes (VNF requests) that are mapped to n
Eirr Set of links whose capacities cannot be met in the irreducible system
Sirr Set of SFCs whose deadlines cannot be satisfied in the irreducible

system

Algorithm 3 xGSODL
Input:Mplace , Γ, k Return: ({Pn|∀n ∈ N}, {Je|∀e ∈ E})

1: Nsorted ←
{
n
∣∣∣ ∀n ∈ N, cn

Pn
≥
cn+1

Pn+1

}
. Sort the DCs in descending order

2: SPn1,n2 ← YenKSP(n1,n2), ∀(n1, n2) ∈ N . Compute the k-shortest paths

3: Nv ← {n |mv,n ≤ Mn, ∀n ∈ Nv} ∀v ∈ Nv
4: while True do
5: {Pn|∀n ∈ N} ← GAIterativeRounding(Nv,Mplace) . Find initial placement

6: for n ∈ Nsorted do . Check the DC capacity and perform migration if necessary
7: if

∑
v∈Pn m̄v,n + maxP′n⊆Pn, |P

′
n|≤Γ

∑
v∈P′ m̂v,n > Mn then

8: Pn,P
mig
n ← Solves (B9) with cn = cn−maxP′n⊆Pn, |P

′
n|≤Γ

∑
v∈P′ m̂v,n

9: for v ∈ Pmign do
10: {Pn|∀n∈N} ← VNFMigrate(v, Pn,Γ) . Migrate v to another DC
11: end for
12: end if
13: end for
14: Pj ← SPn1,n2

, ∀S ∈ U, ∀j ∈ SJ : j.source ∈ Pn1
∧ j.dest ∈ Pn2

15: Pe ← {p | ∀(n1, n2)∈N, ∀p ∈ SPn1,n2 : e∈p}, ∀e∈E
16: Mroute ← ConstructRouting(Pn,Pj,Pe) . Construct the routing model

17: {x̃p
j
|∀S∈U, ∀j∈SJ , ∀p∈Pj} ← Solves the integral-relaxed modelMroute

18: if x̃p
j

= None then . If relaxed the model is infeasible

19: Eirr, Sirr ← ComputeIIS(Mroute) . Compute the irreducible system
20: {Nv|∀S ∈ U, ∀v ∈ SV } ← UpdatePotentialLocs(Eirr,Sirr)

21: Go back to line 4 . Redo the placement according to the updated Nv in the next iteration
22: end if
23: x̂

p′
j
← 1, ∀S∈U, ∀j∈SJ : p′=argmaxp∈Pj {x̃

p
j
} . Select a path for each flow

24: Je = {j : ∀S ∈ U, ∀j ∈ SJ , ∀p ∈ Pj : e ∈ p ∧ x̂p
j

= 1}, ∀e ∈ E

25: for e ∈ E do . Check the link capacity and do flow migration if need
26: if

∑
j∈Je r̄

bwd
j + maxJ′e⊂Je,|J

′
e|≤Γ

∑
j∈J′e

r̂bwdj ≤ Ce then

27: Je,Jreve ← Solve (B9) with ce = ce −maxJ′e⊂Je,|J
′
e|≤Γ

∑
j∈J′e

r̂bwdj

28: for j ∈ Jreve do
29: {Je|∀e ∈ E} ← FlowMigrate(j,Je,Pj,Pe,Γ) . Migrate j to another path

30: if FlowMigrate fails then . No feasible migration scheme
31: n1 = n, j.source ∈ Pn . The DC where j.source is placed
32: n2 = n, j.dest ∈ Pn
33: if j.source 6= ingress ∨ |Nj.source|≥|Nj.dest| ∨

cn1

Pn1

<
cn2

Pn2

then

34: Nj.source.remove(n1)

35: else Nj.dest.remove(n2)

36: end if
37: Go back to line 4 . Redo the placement according to the updated Nv
38: end if
39: end for
40: end if
41: end for
42: Break . Certainly that the routing is feasible
43: end while
44: return ({Pn|∀n ∈ N}, {Je|∀e ∈ E}) . Placement and routing schemess

the iterative-rounding algorithm with capacity-constraint-
removal [27] to compute a VNF placement scheme (line 5)
whose objective value is no worst than the optimal solution
of the nominal model, accepting that each substrate node
may be over-allocated by at most twice its capacity.

Greedy VNF Migration. After obtaining an initial placement
which may not be feasible in practice, we perform VNF
migration to fix the capacity violations while taking into
consideration demand deviations (lines 6 - 13). The crux of
this step is to do the migration in a manner that retains as much
as possible the solution computed by the iterative rounding
algorithm in line 4 so that the change to the objective is kept
minimal. Recall that the cost for mapping a virtual node is
different from one location to another depending on the values

of cn (per-unit processing) and Pn (per-unit cost) at each
substrate node n. The virtual nodes ideally should be assigned
to the substrate nodes with the highest values of cn/Pn, as
they would incur the least costs. Those are also substrate
nodes most likely to have their capacity violated. We iterate
through each substrate node in descending order of their
cn/Pn ratios (line 6). At each node, assuming that the Γ most
deviated demands will take their maximum deviations, we
compute the total demand and verify if it is less than the node
capacity Mn (line 7). If the node capacity is not respected, we
migrate some virtual nodes originally assigned there to other
substrate nodes with available capacity. More specifically, we
first deduct the node capacity by the total deviation of Γ most
deviated demands and then solve the following recurrence:

opt(c, i) =


0 if i = 0 or c = 0,

opt(c, i− 1), if di > c,

max{opt(c − di, i − 1) + di, otherwise,

opt(c, i− 1)},

(B9)

to identify the set of virtual nodes to keep (Pn) as well as
those to migrate (Pmign) so that the remaining usable capacity
is maximally utilized (line 8). For notational simplicity in (B9),
we denote by c the capacity of the node being considered and
di the number of resource units demanded by the i-th virtual
node being placed at that node while opt(c, i) is the maximal
utilization of the capacity c considering the virtual nodes num-
bered from 1 to i. For each virtual node v ∈ Pmign , we then
call VNFMigrate to migrate v to a new location, considering
the substrate nodes with enough capacity ordered from best to
worst with respect to their cn/Pn ratios (lines 9-11).

Optimality Analysis. Let P robustopt and P xGSODL be the
total costs returned by the optimal robust model and our
approximation algorithm xGSODL, respectively. Theorem 4
characterizes the worst-case performance of xGSODL. For
clarity in the presentation, we use simplified notations such
as

∑
j to indicate the summation over all virtual links

(excluding those destined to an egress) and
∑Γ
j to indicate

the summation over the virtual links whose demands are
among the Γ most deviated demands.

Theorem 4. P xGSODL

P robustopt

≤
1

2
+
(1

2
+ α(Γ)

)Pwcb
Pbcw

, where b =

argmaxn{(cn/Pn) | ∀n ∈ N}, w = argminn{(cn/Pn) | ∀n ∈ N}, and

α(Γ) =

(∑Γ
j

r̂j

σj

)
/
(∑

j

r̄j

σj

)
+
((1

2

∑
j

1
)

+ Γ + 1
)
cw∑

j
r̄j/σj

. (B10)

Proof. Let P optnominal be the optimal cost computed by the non-
robust model that considers only the nominal demands, we
know that P robustopt ≥ Pnominalopt . This is rather trivial since
on top of the resources allocated to the nominal demand, the
robust model has to allocate more resources to account for the
demand deviations, which of course incurs additional cost. We
also know that the total cost returned by the iterative rounding
algorithm for generalized assignment (denoted by PGAIR)
considering only the nominal demands is no worse than that re-
turned by the non-robust model, hence P robustopt ≥Pnominalopt ≥
PGAIR. From this, we can deduce the following inequalities:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

P xGSODL

Probustopt

≤
P xGSODL

Pnominalopt

≤
P xGSODL

PGAIR
(B11)

≤

(⌊∑
j

⌈
r̄j

cbσj

⌉
/2

⌋
−

Γ∑
j

⌈
r̂j

cbσj

⌉)
Pb+

(⌈∑
j

⌈
r̄j

cwσj

⌉
/2

⌉
+

Γ∑
j

⌈
r̂j

cwσj

⌉)
Pw

∑
j

⌈
r̄j

cbσj

⌉
Pb

(B12)

≤
1

2
+

(
1

2cw

(∑
j

r̄j

σj

)
+ 1 +

1

2

∑
j

1

)
Pw +

(
1

cw

(
Γ∑
j

r̂j

σj

)
+ Γ

)
Pw

∑
j

r̄j

σj

Pb

cb

(B13)

=
1

2
+

Pwcb

2cwPb

+
Pwcb

cwPb

Γ∑
j

r̂j

σj∑
j

r̄j

σj

+
Pwcb

cwPb

(
1

2

(∑
j

1

)
+ Γ + 1

)
cw

∑
j

r̄j

σj

(B14)

=
1

2
+

(
1

2
+ α(Γ)

)
Pwcb

Pbcw
. (B15)

The inequality (B12) considers the scenario that causes the
largest discrepancy between PGAIR and P xGSODL . The de-
nominator in (B12) expresses the lowest possible cost that
could be achieved by PGAIR, where all virtual nodes are
assumed to be assigned to the substrate node b which pro-
vides the best processing capacity per unit of cost (i.e., b =
argmaxn{(cn/Pn) | ∀n ∈ N}). The numerator of (B12) ex-
presses the total cost as computed by xGSODL considering
the worst-case scenario, where virtual nodes decided to be
migrated by solving (B9) are all assigned to the substrate node
w with the least economical cost per unit of capacity (i.e.,w =
argminn{(cn/Pn) | ∀n ∈ N}). Specifically, the first term
in (B12)’s numerator expresses the total cost for the remaining
virtual nodes at b that are not migrated, while the second term
is the total cost of the virtual nodes migrated to w from b.

B. Routing

VNF Routing as Packing. Given the placement of virtual
nodes, our task then is to compute a routing scheme that
satisfies capacity constraints and respects the deadline of each
SFC. Without even considering the deadline constraint, the
problem of finding integer flows that satisfy all capacity
constraints is already NP-complete. By taking advantage of
the low path diversity exhibited by inter-datacenter networks,
we pre-compute candidate paths (as done in [28]) by finding
the K-shortest paths in terms of propagation delays for each
substrate node pair (line 2) and reformulate the problem as a
packing problem whose structure can be exploited to simplify
the solution. Specifically, let Pj denote the set of candidate
paths for flow j. If j.source and j.dest are mapped to n1 and
n2, respectively, then Pj is given by SPn1,n2

, the set of K-
shortest paths precomputed for node pair (n1, n2) (line 14). We
further have the set Pe which denotes the set of paths routed
through link e (line 15). Given this information, the routing
then can be modeled as shown in Formulation 3 (line 16). The
output of the model is the path-selection decision xpj , a binary
variable indicating whether to select path p to route flow j.

While the objective is only to compute a feasible routing
scheme, we augment the model with a dummy objective to
force it to always compute extreme point solutions, which
mostly consist of 0’s and 1’s. After having the routing model
constructed, we relax the integral constraints and solve the

Formulation 3 Mroute

Minimize
∑
S∈U

∑
j∈SJ

∑
p∈Pj

x
p
j d
prp
p (B16)

∑
p∈Pj

x
p
j = 1, ∀S ∈ U, ∀j ∈ SJ , (B17)

∑
p∈Pe

∑
S∈U

∑
j∈SJ

x
p
j < ce, ∀e ∈ E, (B18)∑

j∈Sj

∑
p∈Pj

x
p
j d
prp
p ≤ θS , ∀S ∈ U, (B19)

x
p
j ∈ {0, 1}, ∀S ∈ U, ∀j ∈ SJ .∀p ∈ Pj

relaxed model with the nominal demands taken as the input
(line 17). Let x̃pj denote the relaxed solution of xpj . Theorem 5
presents the preconditions on the model so that there will
always be some 0’s and 1’s in the computed solutions.

Theorem 5. If
∑
S∈U |SJ |−1> |E′| , then ∃S ∈ U , j∈SJ , p∈

Pj , x̃pj ∈{0, 1} where E′={e ∈ Pj | ∀S∈U ,∀j∈SJ ,∀e∈E}.

Proof. Consider proving its contra-positive by assuming that
there does not exist any relaxed variable that has the value
of 0 or 1, i.e., ∀S ∈ U , j ∈ SJ , p ∈ Pj , x̃pj /∈ {0, 1}. We
have

∑
S∈U |SJ | virtual links, each with a set of Pj candidate

paths, for a total of
∑
S∈U

∑
j∈SJ |Pj | variables. If there are

no variables with values of 0 or 1, then by the property of
extreme point solutions, we must have at least

∑
S∈U 2|SJ | in-

dependent tight constraints. However, by the model definition,
we have at most

∑
S∈U |SJ |+|E| + |U| constraints. Further,

note that depending on the number of precomputed paths K,
a substrate link e may not be included in any set of paths Pj
for any flow j. So, excluding those links, there can only be at
most |E′| active link capacity constraints (B18). Thus, we have
2
∑
S∈U |SJ | ≤

∑
S∈U |SJ |+|E′| + |U| ≤

∑
S∈U |SJ |+|E| +

|U| ⇔
∑
S∈U |SJ | ≤ |E′|+ |U| ⇔

∑
S∈U |SJ |−1 ≤ |E′|.

In practice, |E′| is typically smaller than
∑
S∈U |SJ | − 1 as

there are many more flows in the system compared to the size
of the inter-datacenter network. As we will later show in the
evaluation, considering a thousand instances of the problem,
the relaxed solution is fully integral in more than 90% of
the time, and even in the case the relaxed solution is not
completely integral, less than 5% of the variables are indeed
fractional. Taking advantage of the fact that the virtual link
assignment rarely splits a flows over multiple paths, instead of
solving the model iteratively, we solve it once then simply se-
lect the path p with the largest value of x̃pj to route j (line 23).

Routing Feasibility. When Γ = 0 and all x̃pj are already
fully integral, as we are assured to obtain a feasible routing
scheme, the link capacity check in lines 25-40 can be skipped.
For the general case when Γ ≥ 0 and some x̃pj are fractional,
we iterate through each link and verify if the total bandwidth
demands (considering both the nominal and uncertain
demands) exceed the link capacity. In the same manner that
the node capacity violation is handled, for any link with
insufficient capacity, we solve the recurrence (B12) to identify
a minimal amount of flows to migrate to satisfy the substrate
link capacity (line 27) and call FlowMigrate to migrate the
corresponding virtual links to different paths which do not use

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

this substrate link (line 28). For each virtual link j to migrate,
FlowMigrate iteratively checks through the set of paths
in Pj and assigns j to the first path with sufficient capacity
whose propagation delay does not violate the deadline of
the SFC that j belongs to. It is also important to point out
that given that there is a path that can satisfy the deadline
constraint, the deadline constraint cannot be violated as the
result of rounding unless the link capacity is also violated
since if there is capacity available at the shortest path, there
is no reason for the model to split a flow into multiple paths.

Placement Routing Dependency. Given a placement scheme,
there may not be any feasible routing scheme that can meet
the service deadlines and link capacity constraints. In such
cases, there may be no feasible fractional routing scheme
(line 18), or there is, but it has no feasible rounded solution
(line 30). In the case that the relaxed model is infeasible, we
compute its irreducible inconsistent subsystem (IIS), which
consists of a list of constraints and variables that cause the
model to be infeasible (line 19). If the infeasibility is caused
by a link capacity violation, we select the smallest flow j
which competes for the capacity on that link and relocate
either j.source or j.dest to a different substrate node by
updating their list of possible locations Nv (line 20) and redo
the placement (line 21). If the IIS indicates that a deadline
constraint is too tight for an SFC given a placement, we select
the virtual link j along that SFC whose shortest path in Pj has
the smallest propagation delay to do the relocation. Likewise,
for the case that we cannot find a feasible migration for a
flow j to fix the capacity violation as the result of rounding
(lines 30-37), we rerun the placement algorithm with the
list of possible locations Nv for j.source or j.dest updated
to omit the current location. For all scenarios above, the
decisions on whether to select j.source or j.dest to relocate
are based on the following precedence rules: (1) neither an
ingress or egress, (2) has a bigger set of Nv , and (3) currently
placed at a less cost-efficient location (i.e., lower Cn/Pn).

VII. PERFORMANCE EVALUATION

We conduct extensive simulations to demonstrate the perfor-
mance of our proposed algorithms for co-located (SODL and
xSODL) and geo-distributed SFC orchestration (xGSODL), in
terms of their ability to cope with demand fluctuations, scal-
ability and relative performance against other algorithms. All
algorithms are implemented in Python 2.7 and run on an Intel
Core i7-3720QM@2.6GHz machine with 16 GB RAM. We
utilize the Python interface of the Gurobi 8.1 optimizer [24]
to implement and solve the optimization models.

A. SODL Evaluation

Simulation Settings. We consider orchestrating 3 SFCs,
whose compositions and nominal service demands (in Gbps)
are shown in Fig. 3(a) (these SFCs are described in [29]). The
12 VNF requests in the service chains belong to five different
types, each with its own processing coefficient. We assume
that 3 licenses for each VNF type are available. By default,
the deadlines for all SFCs are set to 0.2 ms. These deadlines

Ingress FW TM WO IDPS Egress

Video Streaming

1.4 1.4 1.4 1.4 1.4

Ingress FW TM VO IDPS Egress0.6 0.6 0.6 0.6 0.6

Web Service

Ingress FW VO WO IDPS Egress1.6 1.6 1.6 1.6 1.6

Online Gamming

(a) Set of SFCs.

SW1

SW2 SW3

SW4 SW5 SW6 SW7

SV1 SV2 SV3 SV4 SV5 SV6 SV7 SV8

25 Gbps

10 Gbps

(b) NFV infrastructure.

Fig. 3: Exact model evaluation settings.

are strictly enforced by SODL as λ is set to be very large. The
NFVI is a Clos data center topology, as illustrated in Fig. 3(b),
with 8 servers, 7 switches and 36 directed links which have
negligible propagation delays. The core switch SW1 is set to
be both the ingress and egress location of all SFCs. Table III
summarizes the configurations for servers, switches and VNFs.

TABLE III: Settings for servers, switches and VNFs (from [30–32]).

Server configurations (4 classes)
No. of cores (Mn) 4 cores 6 cores 8 cores 10 cores

Raw core capacity (ccpun) 1.0 Gbps 1.0 Gbps 1.0 Gbps 1.0 Gbps
Idle power (Pactiven) 70 Watts 75 Watts 80 Watts 100 Watts
Max power (Pmaxn) 200 Watts 250 Watts 300 Watts 350 Watts

Switch configurations (1 class)
Switching capacity (cbwdn) 120.0 Gbps

Idle power (Pactiven) 30 Watts
Max power (Pmaxn) 60 Watts

VNF configurations (5 types)
VNF f Abbr. Processing coef. (σf) No. of licenses (Kf)

Traffic Monitor TM 1.0 3
Fire Wall FW 0.9 3

Intrusion Detection System IDS 0.7 3
WAN Optimizer WO 0.6 3
Video Optimizer VO 0.6 3

Effect of Demand Fluctuations. The goal of this experiment

0 1 2 3
Proactivity level (Γ)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
e
v
e
l

o
f

ro
b

u
st

n
e
ss

r̂j/r̄j =10% r̂j/r̄j =30% r̂j/r̄j =50%

(a) Effect of demand fluctuations.

0 1 2 3
Proactivity level (Γ)

0

200

400

600

800

1000

1200

1400

1600

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

r̂j/r̄j =10% r̂j/r̄j =30% r̂j/r̄j =50%

(b) Price of robustness.

Fig. 4: Performance of SODL under different proactivity level.

is to show: (i) the ability of SODL to proactively cope with
demand fluctuations, and (ii) the effect of the proactivity
of SODL on the service orchestration cost. We show the
results for different values of Γ, which is the parameter
that controls the proactivity of the algorithm. We consider
three demand profiles with relative maximum deviations of
r̂j/r̄j = 10%, 30%, and 50%. For each demand profile, first
we run SODL to compute the corresponding orchestration.
Then, we randomly generate 500 demand vectors (consistent
with the demand profile), where each vector consists of three
demands, one for each deployed SFC. For each demand
vector, we check whether the demands can be satisfied
by the computed orchestration scheme. This allows us to
compute the percentage of feasible (infeasible) demands,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

10% 30% 50%
Maximum demand deviation (r̂j/r̄j)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
e
v
e
l

o
f

ro
b

u
st

n
e
ss

ρ = 0.25 ρ = 0.50 ρ = 0.75 Γ = 1

(a) Relative protection levels.

10% 30% 50%
Maximum demand deviation (r̂j/r̄j)

0

200

400

600

800

1000

1200

1400

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

ρ = 0.25 ρ = 0.50 ρ = 0.75 Γ = 1

(b) Relative energy cost.

Fig. 5: Performance of SODL against the baseline algorithm

which indicates how proactive (reactive) is the orchestration
algorithm. Fig. 4(a) shows the percentage of feasible
demands (with 95% confidence intervals) as the proactivity
level increases. We observe that when the proactivity level
is 0, frequent reprovisioning is required. However, as the
proactivity level increases, the percentage of feasible demands
increases significantly. In particular, setting Γ to be as low
as one makes the computed orchestration immune to demand
fluctuations in 90% of cases. Fig. 4(b) plots the energy cost
of service orchestration against the proactivity level Γ for the
three demand profiles. As evident from the figure, the energy
consumption increases monotonically with Γ. This is expected
since by increasing Γ, the model becomes more proactive and
provisions more network resources to cope with higher future
demand fluctuations, thus increasing the energy consumption.

Comparision with a Baseline Approach. We compare
SODL with a baseline algorithm, which is constructed by
adding a safety margin to each SFC’s nominal demand to
account for future demand fluctuations. Specifically, if the
demand profile of flow j is given by [r̄j − r̂j , r̄j + r̂j], then
the baseline algorithm assigns the demand r̄j + ρr̂j to j,
for some 0 ≤ ρ ≤ 1. Specifically, setting ρ to 1 results in a
fully proactive orchestration, while setting ρ to 0 leads to an
orchestration that is susceptible to any demand fluctuation.
The baseline model is solved by setting Γ = 0 in our exact
model and using deterministic service demands computed
with respect to various values of ρ. Figs. 5(a) and 5(b),
respectively, compare the robustness and energy cost of the
baseline using three values for ρ (i.e., 0.25, 0.50 and 0.75)
against SODL with Γ = 1. As in the previous experiment,
to measure robustness, we use the computed orchestration
scheme to accommodate 500 randomly generated demands
and record the percentage of feasible demands. The results
shown in the figures reveal that SODL provides better
protection against demand fluctuations while at the same time
consuming less energy than the baseline algorithm for all
considered values of relative maximum deviation r̂j/r̄j .

B. xSODL Evaluation

Simulation Settings. To assess the performance of xSODL,
we consider a scaled-up version of the scenario considered for
the evaluation of SODL. Specifically, we triple the number
of SFCs, increasing the number of VNF requests from 12 to
36. The number of licenses for each VNF is also increased to
10. The nominal demands here are randomly generated over

0 2 4 6 8 10 12 14 16

Number of virtual nodes fixed per iteration (Υ)

3400

3600

3800

4000

4200

4400

4600

4800

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

50

100

150

200

250

R
u

n
ti

m
e

in
se

co
n

d
s

Power consumption

Runtime

Fig. 6: Runtime-energy trade-off in xSODL.

the range [0.5, 2.5] Gbps. The NFVI is still a Clos datacenter
topology as shown in Fig. 3(b), but has a larger capacity
with 24 servers, 21 switches and 132 directed links. All other
settings remain the same. To solve larger problem instances,
one can increase Υ and/or decrease the SFC batch size to
reduce the number of simultaneous SFCs that are placed by
the algorithm.

Runtime-Energy Trade-off. In this experiment, we run
xSODL on randomly generated demand profiles and record
the average energy consumption and runtime for different
values of Υ. Recall that Υ is the number of VNFs fixed in
each iteration of the model. The results with 95 % confidence
intervals are reported in Fig. 6. As expected, fixing more
virtual nodes per iteration reduces the time it takes to run the
model, thereby improving the runtime of the algorithm. It can
be seen from the runtime plot that as we double Υ, the runtime
reduces almost by half. Therefore, depending on the problem
scale, Υ can be set to allow the algorithm to run in a reasonable
time. Though this benefit comes at a price. As Υ increases,
the likelihood of virtual nodes being assigned to unfavorable
locations, which incur higher energy cost, increases since more
fractional assignment solutions are selected to be rounded.
This behavior is reflected in the energy plot shown in Fig. 6.

Comparison with Existing Algorithms. We have imple-
mented the following algorithms for comparison with xSODL:
• First Fit Clustering Allocation (FFCA) [7]: In this algo-
rithm, servers connecting to the same switch form a cluster.
FFCA tries to allocate all VNF requests on the same SFC
to servers within a cluster, with the server that has the most
amount of resources being considered first.
• MaxZ [8]: Similar to xSODL, MaxZ uses iterative rounding
for VNF placement. Different from xSODL, however, they
do not prevent the model from fractionally assigning VNF
requests to servers that do not have enough capacities in the
next run. After each run of the relaxed model, MaxZ selects
the largest fractional assignment that meets the capacity
requirement to fix the placement.

We note that both FFCA and MaxZ are only general
approaches for VNF mapping, they do not consider routing
or CPU allocation. As such, we only implement them as
alternative approaches for picking a location for mapping a
VNF request, while using the same procedures as in xSODL
for the CPU allocation and traffic routing. Fig. 7(a) and 7(b),
respectively, show the effect of increasing λ on the energy
provisioning cost and the percentage of SFCs that do not
meet the deadline. The 95% confidence intervals shown in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

0 10 20 30 40 50
Delay penalty factor (λ)

3600

3800

4000

4200

4400

4600

4800

5000

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

xSODL MaxZ FFCA

(a) Relative cost.

0 10 20 30 40 50
Delay penalty factor (λ)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e
rc

e
n
ta

g
e

o
f

d
e
la

y
-v

io
la

te
d

S
F

C
s

xSODL MaxZ FFCA

(b) Relative delay performance.

Fig. 7: Comparing xSODL with existing algorithms.

the figures are calculated based on 100 runs of the algorithms
on randomly generated demand profiles. We observe that
xSODL performs consistently better than the other two
approaches in terms of energy usage. However, in terms
of the quality of service (i.e., indicated by the percentage
of deadline-violated SFCs), while xSODL consistently
outperforms FFCA, xSODL only performs better than MaxZ
when λ is set to be sufficiently large. When λ is small, the
deadline violation does not significantly affect the objective,
and since MaxZ is less energy-efficient and provisions more
resources than xSODL, it is likely to cause fewer deadline
violations. It is also worth noting that setting λ to zero forces
the algorithm to provision just enough resources to meet the
service demands, which leads to 100% deadline violations.

C. xGSODL Evaluation

Simulation Settings. We consider the 28-nodes US Long-
haul [33] to be our network infrastructure. Given the distance
information between nodes in [33], we set the propagation
delay on each link to be proportional to its length, resulting
in delays between 15 and 35 ms. The traffic demands are
assumed to deviate by at most 20% of their nominal values,
which are uniformly randomly chosen between 8-12 Gbps.
With the capacity of each link randomly set to be between 35
and 60 Gbps, at most 2 to 3 flows can be routed through a
single path. For an SFC of length 5 as considered throughout
this evaluation, its end-to-end delay is expected to be
somewhere between 300-800 ms. By setting default service
deadlines to be 500-600 ms, we are able to create problem
instances where a placement scheme results in no feasible
routing scheme, forcing xGSODL to run multiple iterations.
Each substrate node is assumed to have 8-12 processing units
available for VNF services, with each unit providing 4-8 Gbps
processing capacity while incurring a cost of $200-$600. We
further assume that each VNF has a processing coefficient
between 0.5 and 1.0 and is supported by only a subset of
substrate nodes randomly selected from N (i.e., Nv⊂N).

Comparisons with a Greedy approach. In this experiment,
we evaluate the performance of xGSODL against a greedy
algorithm. The greedy algorithm sorts the substrate nodes in
descending order of their cost efficiency (i.e., Cn/Pn) and
maps each virtual node v in a first-fit manner to the most
cost-effective substrate node as allowed by its Nv . For each
setting used in this experiment, we run both algorithms on 500
problem instances, each of which involves the deployment of

0 1 2 3 4 5
Proactivity level (Γ)

10000

12000

14000

16000

18000

20000

22000

T
o
ta

l
e
x
p

e
n

se
(∑

P
n
)

in
$

xGSODL Greedy algorithm

(a) |Nv| = 10

0 1 2 3 4 5
Proactivity level (Γ)

10000

12000

14000

16000

18000

20000

22000

T
o
ta

l
e
x
p

e
n

se
(∑

P
n
)

in
$

xGSODL Greedy algorithm

(b) |Nv| = 20

Fig. 8: Comparison of xGSODL and Greedy algorithms.

0 20 40 60 80 100
Amount of traffic demands

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
u

n
ti

m
e

in
se

co
n

d
s

95 percentile

75 percentile

(a) θS ∈ U [500, 600]

0 20 40 60 80 100
Amount of traffic demands

0

1

2

3

4

5

6

7

8

R
u

n
ti

m
e

in
se

co
n

d
s

95 percentile

75 percentile

(b) θS ∈ U [450, 550]

Fig. 9: xGSODL’s runtime as the level of resource competition increases.

15 randomly generated SFCs. Fig. 8 reports the average costs
(with 95% confidence intervals) of the placement schemes
computed by the two algorithms as Γ increases. In both
scenarios when |Nv| = 10 and |Nv| = 20, we can see that
the greedy algorithm costs 20% to 40% more than xGSODL.
Note that by formulating VNF placement as an instance of
generalized assignment, xGSODL takes into consideration the
relative capacities (i.e., relative Mn) of the substrate nodes
when performing the placement, whereas the greedy algorithm
just greedily packs as many virtual nodes as possible in the
substrate nodes with the least costs without considering their
capacities. As such, the greedy algorithm tends to leave many
substrate nodes with a small gap of usable capacity unutilized,
leading to a higher overall cost. Compared to when |Nv| = 10,
we also note that the costs given by both algorithms are
cheaper when |Nv| = 20 as a result of the algorithm having
more freedom in choosing where to map the virtual nodes.

Resource Competition versus Runtime. The runtime of
xGSODL is not determined primarily by the size of the
network but the level of resource competition, or more
specifically, the user traffic demands relative to the amount of
available resources. Fig. 9 plots the 95th and 75th percentiles
of xGSODL runtime as a function of traffic demands
considering two different settings for θS . The percentiles are
computed over 200 runs of xGSODL on randomly generated
demand profiles. When θS ∈ U [500, 600], Fig. 9(a) shows that
xGSODL runtime increases almost linearly with the amount
of traffic demands. Specifically, for any problem instance
with less than 100 traffic demands, we can expect that in 95%
of the cases, xGSODL will take no more than 1 second to
run. The effect of resource competition on xGSODL runtime
becomes more apparent in Fig. 9(b) when θS is set to be
more stringent (i.e., θS ∈ U [450, 550]). As there is less
flexibility in terms of delay, it is more likely that a computed

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

TABLE IV: Effects of different parameters on the routing solutions.

|Nv|
∑
S∈U

|SJ |
K=2 K=4 K=7 K=10

η1 η2 η3 η1 η2 η3 η1 η2 η3 η1 η2 η3

1
25 99% 95% 2.0 97% 97% 2.0 94% 98% 2.0 93% 99% 2.0
50 84% 97% 2.1 82% 99% 2.1 69% 99% 2.2 72% 99% 2.3

2
25 99% 90% 4.0 93% 97% 2.3 88% 98% 2.0 87% 99% 2.0
50 65% 97% 2.5 63% 98% 2.5 60% 99% 2.6 60% 99% 2.6

3
25 100% - 0 93% 97% 2.0 92% 98% 2.0 93% 99% 2.0
50 57% 97% 2.4 65% 98.0% 2.8 62% 99% 2.6 64% 99% 2.6

5
25 99% 94% 2.0 95% 96.8% 2.4 89% 98% 2.2 89% 99% 2.0
50 57% 97% 2.5 52% 98.1% 3.0 49% 99% 2.9 50% 99% 2.9

10
25 99% 94% 2.0 92% 97% 2.3 87% 98% 2.3 89% 98% 2.4
50 57% 97% 2.5 54% 98% 2.7 51% 98% 3.1 56% 99% 3.0

20
25 97% 94% 2.0 83% 97% 2.1 83% 97% 2.0 83% 98% 2.2
50 62% 96% 2.4 30% 98% 2.7 29% 99% 2.8 30% 99% 2.7

25
25 100% - 0 84% 97% 2.1 82% 98% 2.0 85% 98% 2.0
50 59% 97.0% 2.3 24% 98% 2.5 18% 99% 2.5 18% 99% 2.8

placement scheme will not have a feasible routing solution.
xGSODL therefore has to redo the placement stage more
often, resulting in a longer runtime. A larger gap between 95th
and 75th percentiles in Fig. 9(b) indicates a larger variation
in xGSODL runtime as the deadline becomes more strict.

Routing Integrality. This experiment studies the effects of
parameters such as the degree of support for each virtual node
|Nv|, the total traffic demand

∑
S∈U |SJ |, and the number

of precomputed paths K on the integrality of the relaxed
Mroute. For each setting of these parameters, we make 200
runs of xGSODL on randomly generated demand vectors and
record the following information: η1 - the percentage of runs
in which the relaxed solutions are all integral, η2 - the average
percentage of variables that are not integral, and η3 - the
average number of non-integral solutions. All collected data
are reported in Table IV. As |Nv| becomes bigger, we observe
that η1 decreases for all considered traffic loads and numbers
of precomputed paths. When |Nv| increases, constraint (B17)
in Mroute will have more variables with non-zero coefficients,
making it less likely a linear combination of other constraints.
As such, there are less dependent constraints in Mroute, and
consequently, less chance that the relaxed solutions will be
fully integral. And even for those relaxed solutions that are not
fully integral, records for η2 and η3 indicate a vast majority
of the relaxed variables are still integers. We further observe
that η1 has a tendency to decrease when K increases. This
is because with a bigger set of paths considered by each
flow, more link capacity constraints will be active (i.e., bigger
|E′|), thus increasing the upper bound on the number of active
variables and hence the likelihood of fractional assignments.
The data also suggests a strong influence of the traffic load
on the integrality of the relaxed solutions. Note that with a
smaller set of traffic demands, there will be less competition
for resources on each path, allowing the relaxed model in the
majority of cases to fully assign a flow to the shortest path.

VIII. RELATED WORK

We review relevant works in three categories, as follows.
Reactive Algorithms. These works, commonly consider de-

terministic service demands (nominal or worst-case) when
orchestrating SFCs offline [34]. In [35], the authors present
a graph-matching based solution for the service placement

problem in distributed fog computing, but ignore traffic rout-
ing. The works [8], [19] investigate sharing VNF instances
between multiple flows and compute the optimal split of
traffic. However, it is unclear how the number of instances can
be pre-determined, independent of the demand. While reactive,
[36] aims at minimizing the migration frequencies, thereby
avoiding constant disruption of services. In this work, we try to
avoid VNF migration by proactively accounting for future fluc-
tuations in service demands while keeping the cost minimal.
The work [37] provides an energy and deadline-aware SFC
orchestration mechanism in datacenters, though it neglects the
load-dependent delay components (e.g., queueing delay).

Online Algorithms. Online algorithms, assume no
information about future service demands and perform
the orchestration dynamically to satisfy any possible future
service demands without frequent resource reprovisioning.
The authors in [15], [38] develop online SFC orchestration
algorithms based on the solutions to the ski-rental and weight
matching problems. The work [39] proposes the decoupling
of routing and placement decisions which can significantly
simplify the design of an online algorithm. The work [40]
investigates the joint placement of service chains and steering
of traffic through them over a 5G multi-technology edge
network, assuming that service demands are constant. Online
gradient descent is used in [13] to obtain estimates of future
traffic demands which allow to compute SFC orchestrations
that are better prepared for changes in demands. This approach
is complementary to our work, as the online predictions can
be used to estimate demand deviations that are used in
our model. Considering only the placement of VNFs, the
work [41] applies the concept of modularly varying goals
to design an online genetic algorithm that mimics biological
evolution to provide better adaptability to demand variations.

Robust Algorithms. A few works have considered demand
uncertainty when orchestrating SFCs. The work in [17]
formulates SFC orchestration as a robust optimization problem
with the objective of maximizing the NFVI operator’s profit.
More relevant to our work is [16], in which the authors
propose a robust orchestration model that aims at minimizing
the energy consumption of the NFVI. Their model, however,
is computationally expensive to solve. To speed up solving
this model, the heuristic approach in [7] solves the placement,
routing and resource allocation sub-problems separately, which
can result in sub-optimal solutions. In a follow-up work [14],
the authors use a robust binary optimization problem, which
can be solved efficiently. This work, however, considers a
simplified delay model, where a deadline is considered for
each pair of consecutive VNFs in a hop-by-hop manner. The
work [42] assumes that the demands are normally distributed
and uses capacity chance-constraints to model the uncertain
resources in the geo-distributed SFC orchestration problem.
This work, however, only considers fixed propagation delays.

IX. CONCLUSION

This paper studied the co-located and geo-distributed
SFC orchestration problems. We formulated the problems
as robust optimization problems and developed exact and

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

approximate algorithms to solve them. By leveraging uncertain
demand information, our algorithms are able to compute
service orchestration solutions that proactively account for
fluctuations in service demands. The simulation results
revealed that our algorithms are cost-effective and work well
under general service demands without requiring frequent
resource reprovisioning. An interesting future study would be
to design algorithms for other system objectives based on the
techniques developed in this paper and evaluate their effects.

REFERENCES

[1] M. Chiosi et al., “Network functions virtualization: An introduction,
benefits, enablers, challenges & call for action,” ETSI White Paper, 2012.

[2] ETSI, “NFV management and orchestration,” ETSI GS NFV-MAN, 2014.
[3] H. Ballani et al., “Towards predictable datacenter networks,” in ACM

SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, 2011.
[4] J. Duan et al., “Dynamic Scaling of Virtualized, Distributed Service

Chains: A Case Study of IMS,” IEEE J. Sel. Areas Commun., vol. 35,
no. 11, 2017.

[5] B. Yi et al., “A comprehensive survey of network function virtualiza-
tion,” Computer Networks, vol. 133, 2018.

[6] D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications
of robust optimization,” SIAM Review, vol. 53, no. 3, 2011.

[7] A. Marotta et al., “A fast robust optimization-based heuristic for the
deployment of green virtual network functions,” Journal of Network
and Computer Applications, vol. 95, 2017.

[8] S. Agarwal et al., “Joint VNF placement and CPU allocation in 5G,” in
IEEE INFOCOM, 2018.

[9] Q. M. Nguyen, “Deadline-aware service function orchestration under
demand uncertainty,” Master’s thesis, Science, 2020. [Online]. Available:
https://prism.ucalgary.ca/bitstream/handle/1880/111528/

[10] J. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
October 2015. [Online]. Available: https://tools.ietf.org/html/rfc7665

[11] R. Doriguzzi-Corin et al., “Dynamic and application-aware provisioning
of chained virtual security network functions,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 1, pp. 294–307, 2020.

[12] B. Yi, X. Wang, and M. Huang, “A generalized VNF sharing approach
for service scheduling,” IEEE Commun. Lett., vol. 22, no. 1, 2018.

[13] X. Zhang et al., “Proactive VNF provisioning with multi-timescale cloud
resources: Fusing online learning and online optimization,” in IEEE
INFOCOM, 2017.

[14] A. Marotta et al., “On the energy cost of robustness for green virtual
network function placement in 5G virtualized infrastructures,” Computer
Networks, vol. 125, 2017.

[15] X. Wang et al., “Online VNF scaling in datacenters,” in IEEE CLOUD,
2016.

[16] A. Marotta and A. Kassler, “A power efficient and robust virtual network
functions placement problem,” in IEEE ITC, 2016.

[17] V. S. Reddy, A. Baumgartner, and T. Bauschert, “Robust embedding of
VNF/service chains with delay bounds,” IEEE NFV-SDN, 2016.

[18] D. T. Nguyen et al., “Real-time optimized nfv architecture for internet-
working webrtc and ims,” in IEEE ITNSP Sym. Net., 2016.

[19] S. Agarwal et al., “VNF Placement and Resource Allocation for the
Support of Vertical Services in 5G Networks,” IEEE/ACM Trans. Netw.,
vol. 27, no. 1, 2019.

[20] S. Albers, “On energy conservation in data centers,” ACM Trans.
Parallel Comput., vol. 6, no. 3, Nov. 2019. [Online]. Available:
https://doi.org/10.1145/3364210

[21] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, 2016.

[22] N. F. V. NFV and U. Cases, “ETSI GS NFV 001 V1. 1.1 (2013-10).”
[23] Y. Jia et al., “Online scaling of NFV service chains across geo-

distributed datacenters,” IEEE/ACM Trans. Netw., vol. 26, no. 2, pp.
699–710, 2018.

[24] Gurobi. (2018). [Online]. Available: http://www.gurobi.com/
[25] S. Zymler, D. Kuhn, and B. Rustem, “Distributionally robust joint chance

constraints with second-order moment information,” Mathematical Pro-
gramming, vol. 137, no. 1-2, 2013.

[26] S. Patterson, N. McGlohon, and K. Dyagilev, “Optimal k-leader selection
for coherence and convergence rate in one-dimensional networks,” IEEE
Trans. Control Netw. Syst., vol. 4, no. 3, 2017.

[27] L. C. Lau, R. Ravi, and M. Singh, Iterative methods in combinatorial
optimization. Cambridge University Press, 2011, vol. 46.

[28] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
2013.

[29] N. Huin, B. Jaumard, and F. Giroire, “Optimal network service chain
provisioning,” IEEE/ACM Trans. Netw., 2018.

[30] Cisco. (2018) Power Calculator. [Online]. Available: http:
//ucspowercalc.cisco.com

[31] Aruba. (2018) 3810 Switch Series. [Online]. Available: https:
//www.arubanetworks.com/assets/ds/DS_3810SwitchSeries.pdf

[32] J. Martins et al., “ClickOS and the art of network function virtualiza-
tion,” in USENIX NSDI, 2014.

[33] P. Datta Choudhury, N. Agarwal, and T. De, “Spectrum and splitter
utilization efficient traffic grooming routing and spectrum assignment in
elastic optical networks,” in IEEE SPICES, 2017.

[34] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Trans. Netw. Service Manag., vol. 13,
no. 3, 2016.

[35] F. Chiti et al., “Virtual functions placement with time constraints in fog
computing: A matching theory perspective,” IEEE Trans. Netw. Service
Manag., vol. 16, no. 3, 2019.

[36] D. Harutyunyan et al., “Latency-Aware Service Function Chain Place-
ment in 5G Mobile Networks,” in IEEE NetSoft, 2019.

[37] M. M. Tajiki et al., “Joint energy efficient and QoS-aware path allocation
and VNF placement for service function chaining,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 1, 2019.

[38] X. Wang et al., “Online learning-assisted VNF service chain scaling
with network uncertainties,” in IEEE CLOUD, 2017.

[39] B. Zhang et al., “Toward online virtual network function placement in
software defined networks,” in IEEE/ACM IWQoS, 2016.

[40] N. Akhtar et al., “Virtual function placement and traffic steering over
5g multi-technology networks,” in IEEE NetSoft, 2018.

[41] M. Otokura et al., “Evolvable virtual network function placement
method: Mechanism and performance evaluation,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 1, 2019.

[42] D. Chemodanov, P. Calyam, and F. Esposito, “A near optimal reli-
able composition approach for geo-distributed latency-sensitive service
chains,” in IEEE INFOCOM, 2019.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2020.3029749

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

