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Covert Communications in Multi-Channel
Slotted ALOHA Systems

Azadeh Sheikholeslami, Majid Ghaderi and Dennis Goeckel

Abstract—The fundamental limits of covert communication, where a message is sent from transmitter Alice to intended recipient Bob
without detection by an attentive adversary warden Willie, has been considered extensively in recent years at the physical layer. The
covert throughput depends critically on the warden’s understanding of the characteristics of the radio environment and the type of
receiver that he employs, and, as expected, the throughput increases when the warden has some uncertainty about the environment or
some non-idealities in his receiver. In this paper, we consider the covert throughput when the adversary is only able to observe the
medium access control (MAC) layer in a wireless communication system. In particular, given that the system has a rate of λ packets
per slot transmitted over n channels by allowable system users, we study the allowable rate λa by covert users while maintaining
covertness from an attentive warden observing the channel status in a slotted ALOHA system. We characterize performance for
wardens with different abilities to discern the number of packets on a given channel, ranging from simple receivers that detect only
whether there was a packet present to complicated receivers that can determine the number of packets involved in any collision, and
also consider intended recipients Bob with varying abilities to perform multi-packet reception. In contrast to prior work in covert
communications, the application considered motivates the consideration of results for finite (often small) observation vector lengths n
at the adversary. Numerical results are provided both to illustrate the tightness of our achievability regions for the packet transmission
rate of the covert transmitters and to demonstrate the covert throughput of the system as a function of λ and n.

Index Terms—Covert communications, Wireless system security, Multi-channel ALOHA.
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1 INTRODUCTION

Security and privacy are major concerns of modern
communication networks. Much of the work on secrecy
with cryptographic and information-theoretic approaches
has considered hiding the content of a message transmitted
by Alice intended for legitimate receiver Bob from an eaves-
dropper Eve. However, there are applications where even
the presence of a message can convey meaningful informa-
tion to the adversary. For example, radio transmissions can
be used as a surrogate for the presence of military activity,
or any communication between dissidents that is detected
by an authoritarian government might be reason to shut
down all communications. And, in particular, the Snowden
disclosures indicate that the “meta-data” revealing whom is
talking to whom can be of significant interest to an observer.
This motivates the study of undetectable communications,
which has been termed “covert communications” in recent
literature. In the covert communications scenario, Alice tries
to communicate to legitimate receiver Bob without detection
of the presence of that message by an attentive and capable
adversary denoted warden Willie.

Undetectable communications has been of great interest
historically. At the physical layer, spread spectrum tech-
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niques have been traditionally employed when such low
probability of detection (LPD) communication was of inter-
est. In computer networks, covert channels have attracted
significant interest [2], [3], which can be classified into covert
timing channels [4]–[6] and covert storage channels [7],
[8]. Various practical aspects and security issues related to
covert channels have been considered in the literature. For
example, covert channels in cloud computing environments,
where multiple virtual machines share the same physical
server, have been extensively studied as a means for sharing
small, but sensitive data (e.g., a secret key) [9]–[11].

However, a fundamental investigation of the achievable
throughput of such a system was not established until
[12], and then independently and formally in [13], [14]. In
[13], [14], additive white Gaussian noise (AWGN) channels
from Alice to each of Bob and Eve were considered, and it
was established that, in n channel uses, O(

√
n) bits1 could

be transmitted reliably from Alice to Bob while bounding
warden Willie’s detection error probability arbitrarily close
to one-half; conversely, ω(

√
n) bits2 cannot be transmitted

reliably while being kept covert from Willie. The work of
[13], [14] motivated significant further work on the char-
acterization of covert point-to-point communication system
performance as n → ∞. In particular, performance lim-
its with scaling constants for covert communications for
point-to-point links, including discrete-memoryless chan-
nels (DMCs) and AWGN channels, were rapidly character-
ized [15]–[17]. Further work has begun to consider multiple

1. Let f(n) and g(n) be two functions, and ∃k > 0 and ∃N > 0, such
that ∀n > N, |f(n)| ≤ |k.g(n)|, then f(n) = O(g(n)).

2. Let f(n) and g(n) be two functions, and ∀k > 0, ∃N > 0, such
that ∀n > N, 0 ≤ k.g(n) ≤ f(n), then f(n) = ω(g(n)).
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access channels [18] and coding schemes that can achieve
the limits of covert communications [19]–[22].

Recent work has demonstrated that the achievable covert
throughput depends critically on the capabilities of Willie’s
receiver and his knowledge of the operating environment.
In [13], [14], the authors assume an ideal situation for Willie:
Willie is able to employ an optimal receiver on the received
physical layer signal, and the characteristics of the channel
from Alice to Willie are known perfectly at Willie. In par-
ticular, [13], [14] assume that Willie knows both the timing
of any potential message from Alice and also the variance
of the AWGN affecting his received signal. In contrast, [23]
considers what happens when the timing of the message
is not known, and [24]–[26] consider what happens when
the level of the background noise is not known. These
works have demonstrated that there is a significant increase
in covert throughput in the presence of such uncertainty,
although [27] shows that the background noise level can
generally be estimated so as to limit the covert throughput.
To keep the adversary from estimating the background
noise, the authors in [28] employ an uninformed jammer
to improve the covert throughput.

Motivated by this extensive work at the physical layer,
in this paper we move one layer up in the protocol stack to
consider the covert throughput when the adversary warden
Willie is viewing the behavior of the medium access control
(MAC) to attempt to detect the presence of covert users. In
particular, consider a slotted ALOHA system where each
of N allowable system users randomly transmit a packet
in each slot independently with probability pt1 and thus
with aggregate rate λ = Npt1 . If a user transmits a packet
in a given time slot, the user chooses one of the n chan-
nels at random. The warden Willie, with knowledge of N
and pt1 , has a statistical characterization of the number of
packets on the n channels when only allowable users are
present. If covert users are present, suppose that each of M
covert users sends a packet in each slot independently with
probability pt2 and thus with aggregate rate λa = Mpt2 ;
if a covert user sends a packet, they choose one of the n
channels at random to do such. Willie attempts to detect
the presence of such covert users by observing the number
of packets on each of the n channels and determining
whether these observations indicate a deviation from the
statistical model of the behavior when only allowable users
are present. We consider here values for λa as a function of λ
that maintain covertness from a warden Willie as a function
of his receiver complexity. In particular, we will consider a
range of receivers at Willie, from a simple receiver able only
to determine whether each channel contains a packet or not,
to a complicated receiver that is able to determine the exact
number of packets on each channel. Given the allowable λa
determined by the covertness constraint, we then consider
the covert throughput as a function of the complexity of the
intended recipient Bob’s receiver.

We will assume that pt1 and pt2 are small and thatN and
M are large. Given these assumptions, the number of pack-
ets from either the legitimate or covert users in a given slot
will be modeled as a Poisson random variable with means λ
and λa, respectively. This mathematical formulation makes
the results applicable in other contexts, ranging from the
covert throughput on optical communication channels [29]

to packet insertion on Poisson channels [30]. However, in
contrast to prior work in covert communications, the length
n of the observation vector at Willie here is not the number
of symbols in a codeword, which has (reasonably) been
taken to infinity in previous works on the foundations of
covert communication, but rather the number of channels
in the system. Hence, rather than being concerned with
only scaling results, we are instead interested in achievable
covert throughput results for finite (and possibly very small)
n. To our knowledge, these are the first non-asymptotic
results in the recent study of the foundations of covert
communications. Mathematically, this means that we are
unable to rely on concentration inequalities [13]–[17] or laws
of large numbers [31]–[33] to aid us in the derivation of our
results.

The probability of error at the adversary Willie being
lower bounded is a general condition of covertness, as
defined precisely in Section 2 below. The probability of
error of Willie’s optimal receiver can be related to the total
variation between the distribution of Willie’s observations
when Alice is not transmitting and the distribution of
Willie’s observations when Alice is transmitting. The total
variation can be further upper bounded by the Kullback-
Leibler (KL) distance, and, since the KL distance is generally
more amenable to analysis than the total variation, particu-
larly for the vector observation case generally of interest, a
vast majority of prior work has focused on upper bounding
the KL distance to insure covertness. However, the Poisson
probability mass functions that arise in the model here are
more easily addressed through total variation for n = 1,
and we employed such in our preliminary work [1]. When
turning to the multi-channel case, one might expect that we
would need to employ the KL distance, since the vector
KL distance in the case of independent components can be
readily expressed as the sum of the KL distances in each
of the components. However, the sum of the total variation
in each dimension provides an upper bound to the total
variation of the vector total variation [34], and hence a total
variation approach can also be applied in the vector case. We
will see that approaches based on both total variation and
KL distance will require further bounding to derive clean
analytical results for the achievable regions, reinforcing that
it is not clear a priori which will lead to a larger achievable
region. In fact, we will observe that the metric that leads to
the larger achievable region for the covert traffic intensity
λa will depend on the system traffic λ and the number of
channels n; hence, achievable regions for λa under both a
total variation constraint and a KL distance constraint will
be considered in Section 3. Section 4 presents numerical
results to demonstrate the tightness of our achievable covert
rate regions under both constraints for different Willie’s
detection capability and different number of channels.

Although knowing the achievable regions for the covert
rate λa is useful in designing a covert ALOHA system
with n channels and load λ, the quantity that shows the
actual amount of covert data passing through the system is
the covert throughput. The covert throughput depends on
the covert rate λa, and is limited by the collisions at Bob.
Hence, there is a trade-off between an overloaded system
with large λ (more covertness), and a system with small
load λ (less collisions). In Section 5, we study the covert
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throughput of transmission from Alice to Bob, and will
find the system nodes’ transmission rate λ that maximizes
the covert throughput. Also, we will study the effect of
number of channels n being utilized by Alice and the system
nodes, and will find the number of channels that lead to the
maximum covert throughput. Finally, Section 6 presents the
conclusions and future work.

2 SYSTEM MODEL AND METRICS

2.1 System Model

Consider a multi-channel time-slotted random access sys-
tem with N legitimate users u1, u2, . . . , uN , called system
users, contending for n independent channels. Likewise,
M covert users c1, c2, . . . cM may (or may not) access the
medium while trying to avoid detection by a network moni-
tor termed Willie. In each time slot, each user independently
flips a coin with probability of heads pt1 (pt2 for covert
users) and if the result is heads, it transmits a packet in that
time slot on a channel chosen uniformly at random. Hence,
there is the possibility that multiple users will transmit in a
given channel in a time slot, causing a collision. Throughout
this work, we will assume that the number of users is large
enough and pt1 and pt2 small enough such that:

• The number of transmissions in each time slot for
each type of user can be approximated by a Poisson
random variable. That is, the number of packet trans-
missions in a given time slot from system (allowed)
users is Poisson with rate λ = Npt1 , and the number
of packet transmissions in a given time slot over the
network from covert users (when they are present) is
Poisson with rate λa =Mpt2 .

• Given λ, λa, n, and whether the covert users are
present (or not), the number of packets in a given
channel is independent of that in other channels.
Strictly, for a finite number of system users and
covert users, there would be dependence between
the numbers of packets on distinct channels, as a user
using one channel would preclude that user from
using another channel. However, this dependence
disappears as N and M become large for fixed λ
and λa.

Traditionally, packets involved in a collision would sim-
ply be discarded and re-transmission would be required.
However, with advances in multi-user detection, e.g. succes-
sive interference cancellation, multiple receiving antennas,
capture effect, and etc. [35]–[39], it is often possible for
an advanced receiver to recover multiple packets from a
collision. The ability of a receiver to receive multiple simulta-
neous transmissions is referred to as Multi-Packet Reception
in the literature [40]. To detect covert communications, the
network monitor is only interested in detecting the number
of packets transmitted in a time slot. In other words, the
network monitor does not need to decode and recover the
content of the packets, which requires a more sophisticated
receiver. We will denote the ability to detect multiple simul-
taneous transmissions as Multi-Packet Detection (MPD). A
receiver is called a K-MPD detector if it can detect up to K
packet transmissions in a time slot on a channel. Let s denote

the state of a channel in a given time slot. Specifically, a K-
MPD detector can detect one of the following K+2 channel
states in a given time slot:

• Idle state (s = 0): No packets were on the channel
during the time slot.

• Packet states (s = 1, 2, . . . ,K): Exactly s packets
were detected on the channel during the time slot.

• Collision state (s = K + 1): In this state, more than
K packets are transmitted over the channel.

That is, a K-MPD detector can always determine the
number of packets involved in a collision as long as that
number is less than or equal to K; when the number of
packets involved in the collision is more thanK, the receiver
only knows that there were more than K packets on the
channel but not the exact number. We will consider detec-
tors ranging from a 0-MPD detector to a K-MPD detector,
1 ≤ K < ∞, to an ∞-MPD detector. The 0-MPD detector,
which is the weakest detector we will consider at Willie,
can only determine whether there was any packets on the
channel or not, whereas an ∞-MPD detector, which is the
most powerful detector we consider at Willie, can determine
the exact number of packets involved in any collision.

Let H0 be the hypothesis that the covert users are
not present, and H1 the hypothesis that the covert users
are present. We will denote P0 and P1 as the distribu-
tion of observed channel states at Willie given H0 and
H1, respectively. Given the above assumptions, for state s
(0 ≤ s ≤ K + 1), we have

P0(s) =

{
( λn )se−λ/n

s! , s ≤ K,∑∞
l=K+1

( λn )le−λ/n

l! , s = K + 1,
(1)

and,

P1(s) =

 ( (λ+λa)
n )se−(λ+λa)/n

s! , s ≤ K,∑∞
l=K+1

( (λ+λa)
n )le−(λ+λa)/n

l! , s = K + 1.

(2)

Willie makes such observations on each of n channels. As
noted earlier, we will assume that N and M are large
enough that the components of this vector observation
containing the number of packets on each of the n channels
given H0 or H1 can be modeled as mutually independent,
which means that Willie will make his decision based on a
vector observation for which the product distributions Pn0
and Pn1 characterize the observations under H0 and H1,
respectively.

2.2 Metrics
Covertness Condition. The covert users’ goal is to prevent
Willie from determining whether the covert users are active
or not. The condition they employ for such is that the
probability of error of Willie’s optimal decision is close to
that which he would have obtained if he made the decision
while ignoring his observations.

In particular, if the probability that the covert users is
active (inactive) is P (H1) (P (H0)), then Willie’s probability
of error is:

PE = PWFAP (H0) + PWMDP (H1),
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where Willie’s probability of false alarm is denoted by PWFA,
and his probability of missed detection is denoted by PWMD .
If Willie ignores his observations, he will always choose the
most likely hypothesis and thus have an error probability of
min(P (H0), P (H1)). Noting that

PWFAP (H0) + PWMDP (H1) ≥ (PWFA + PWMD)min(P (H0), P (H1)),

a transmission will be defined to be covert when PWFA +
PWMD > 1 − ε for any ε > 0 [41], hence guaranteeing
that Willie’s performance is close to that obtained when he
ignores his observations.

We define covert rate as the maximum rate3 of packet
transmission by the covert users, λa, such that their trans-
mission is covert from Willie, as a function of the rate λ
of packet transmission by the system users. We will also
consider covert throughput, which is the reliable throughput
obtained by the covert users as a function of λ, although we
hasten to note that λ is a system parameter and hence not
available for optimization by the covert users.

Total Variation. The total variation distance between two
probability mass functions gives the maximum difference
over all events in the probability assigned to the event by
the corresponding probability measures, and is defined for
Pn0 and Pn1 as:

dTV (Pn0 ,P
n
1 ) =

1

2

∑
s

|Pn0 (s)− Pn1 (s)|, (3)

where the sum is over all n-dimensional vectors of channel
states (denoted by s) in the support of Pn0 ∪ Pn1 . An optimal
receiver at Willie can be characterized in terms of the total
variation as [42]:

PWFA + PWMD = 1− dTV (Pn0 ,Pn1 ).

Hence, if

dTV (Pn0 ,P
n
1 ) < ε, (4)

covertness is maintained. Because the sum over the n-
dimensional support in (3) is challenging to use, total varia-
tion is often difficult to employ except in the n = 1 case, an
example of which is done in the single channel version of
this work in [1]. However, since we are interested in achiev-
able rates, an upper bound for the total variation distance
is sufficient. The following result from [34] characterizes
an upper bound on the total variation distance between
product distributions:

Theorem 1. (Total Variation Bound) Let Pn0 and Pn1 be the
products of probability distributions P0 and P1, respectively. The
total variation distance between Pn0 and Pn1 is bounded as:

dTV (Pn0 ,P
n
1 ) ≤ ndTV (P0,P1). (5)

Hence, in order to obtain covertness, it is sufficient to
maintain

dTV (P0,P1) <
ε

n
. (6)

Kullback-Leibler (K-L) Distance. The Kullback-Leibler dis-
tance (K-L distance), which provides another measure of
the difference between two probability mass functions, is

3. Rate is defined as the long term average of the number of packets
per time slot.

broadly used in information theory under the term relative
entropy [43], and is defined as:

dKL(P0,P1) =
∑
x

P0(x)(lnP0(x)− lnP1(x)).

Pinsker’s inequality gives the K-L distance operational
meaning in detection theory [43]:

dTV (Pn0 ,P
n
1 ) ≤

√
dKL(Pn0 ,Pn1 )

2
, (7)

where dKL(Pn0 ,Pn1 ) is the KL distance between Pn0 and Pn1 .
In particular, since the K-L distance can be used to provide
an upper bound on the total variation, and hence a lower
bound on Willie’s probability of error, it can be used to
establish achievability results for covert communications as
we seek to do here. In particular, using (7), the condition√

dKL(Pn0 ,Pn1 )
2

< ε, (8)

or equivalently,

dKL(Pn0 ,P
n
1 ) < 2ε2, (9)

is sufficient to maintain covertness. The KL distance be-
tween product of probability distributions Pn0 and Pn1 is [43]:

dKL(Pn0 ,P
n
1 ) = ndKL(P0,P1). (10)

This property makes the KL distance a very useful tool
in analyzing covertness when facing with multiple inde-
pendent and identically distributed random variables. In
particular, (9) becomes

dKL(P0,P1) <
2ε2

n
. (11)

By applying Pinsker’s inequality to the distribution of
a single channel, one can observe that the condition in (6)
leads to a tighter lower bound on the error probability at
Willie than the condition in (11) for n = 1, and hence
(6) should lead to a larger region of achievable rates for
Alice than than in (11) for the n = 1 case. However, for
larger n, it is not clear which criterion is tighter, and thus
it is not apparent a priori which of the metrics will lead
to higher achievable rates for n > 1. Furthermore, we will
employ significant bounding when employing each of these
metrics to find achievable rates for Alice. Hence, we explore
achievable rates under both metrics in the next section.

3 COVERT RATE ANALYSIS

In this section, we present the main results of the paper. We
will consider two covertness metrics: total variation distance
and KL distance.

3.1 Covert Rate with Total Variation Distance Metric
In this subsection, we characterize the total variation dis-
tance of the state of a channel conditioned on the presence
or absence of covert transmissions when Willie has different
detection capabilities. We consider four different scenarios,
and will find an achievable region for the transmission rate
of the covert users in each case:
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1) 0-MPD detector: Willie can only distinguish between
an idle channel and a busy channel. This is the least
capable Willie, and thus the allowable covert rates
will be the largest (or at least no smaller) compared
to those of other scenarios.

2) 1-MPD detector: Willie can distinguish between an
idle channel and one packet transmission, but when
more than one packet is transmitted over the chan-
nel, he only knows that more than one packet was
on the channel.

3) K-MPD detector: Willie can detect up to K simul-
taneous transmissions. If more than K packets are
transmitted over the channel, he only detects a
collision.

4) ∞-MPD detector: Willie can determine the exact
number of packets on the channel. This is the most
capable Willie, and thus the allowable covert rates
are the smallest (or at least no larger) compared to
the other scenarios.

Note that, in any security scheme, the goal is to protect
against a certain class of adversaries. In this work, we
provide security (covertness) against a class of Willies that
is only able to observe the medium access control (MAC)
layer in a wireless communication system. In the following,
in each case we characterize the probability distribution of
the channel state conditioned on the presence or absence of
covert users. Recall that the channel state denotes the num-
ber of packet transmissions in a time slot. The conditional
state probability distributions are then used to compute
the total variation distance, and consequently the covert
transmission rate.

Theorem 2 (Willie with 0-MPD capability). In the presence of
a 0-MPD Willie observing n channels with total system nodes’
rate λ, if λ ≥ n ln

(
n
ε

)
, the transmission of covert users is covert

for any λa > 0. Otherwise, if λ ≤ n ln
(
n
ε

)
, the transmissions of

covert users is covert if

λa ≤ n ln
1

1− ε
ne

λ/n
.

Proof. When Willie has 0-MPD capability, he can only deter-
mine if the channel is busy or not. If the channel is busy,
Willie is not able to determine how many packets are being
transmitted in a time slot.

In this case, the probability distributions of the network
states observed by Willie, P0 and P1, are Bernoulli distri-
butions. Let S = {s0, s1} denote the set of states of each
Bernoulli process, where s0 and s1 indicate that the channel
is, respectively, idle and busy. We have:

P0{s = s0} = 1− P0{s = s1} = e−λ/n,

P1{s = s0} = 1− P1{s = s1} = e−(λ+λa)/n. (12)

Hence, the total variation distance between Pn0 and Pn1 is,

dTV (P0,P1) =
1

2

∑
s∈S

|P1(s)− P0(s)|

=
1

2

(∣∣∣e−λ/n− e−(λ+λa)/n
∣∣∣+ ∣∣∣1− e−λ/n− (1− e−(λ+λa)/n)

∣∣∣)
= e−λ/n(1− e−λa/n), (13)

where the last equality holds because for λa ≥ 0, we have
1− e−λa/n ≥ 0. Using Theorem 1, the covertness condition
is satisfied if

dTV (Pn0 ,P
n
1 ) ≤ ne−λ/n(1− e−λa/n) ≤ ε. (14)

The term 1 − e−λa/n in the above equation is always less
than one. Hence, if ε

ne
λ/n ≥ 1, any covert rate λa ≥ 0 can

be obtained. Otherwise, in order to maintain covertness,

λa ≤ n ln
1

1− ε
ne

λ/n
, (15)

should be satisfied.

Theorem 3 (Willie with 1-MPD capability). In the presence of
a 1-MPD Willie observing n channels with total system nodes’
rate λ, if λ satisfies

εeλ/n

1 + max{λn , 1−
λ
n}
≥ n,

the transmission of covert users is covert for any λa ≥ 0.
Otherwise, the covertness is maintained if

λa ≤ −n ln
(
1− εeλ/n

n+max{n− λ, λ}

)
.

Proof. When Willie has 1-MPD capability, he can detect an
idle channel (s = s0), a single packet transmission (s = s1),
or more than one packet transmission (s = s2). Hence,

P0{s = s0} = e−λ/n,

P0{s = s1} =
λ

n
e−λ/n,

P0{s = s2} = 1− (P0{s = s0}+ P0{s = s1}) , (16)

and,

P1{s = s0} = e−(λ+λa)/n,

P1{s = s1} =
λ+ λa
n

e−(λ+λa)/n,

P1{s = s2} = 1− (P1{s = s0}+ P1{s = s1}) . (17)

Let S = {s0, s1, s2} denote the set of states of each process.
The total variation distance between P0 and P1 is,

dTV (P0,P1) =
1

2

∑
s∈S

|P1(s)− P0(s)|

=
1

2

(∣∣∣e−λ/n− e−(λ+λa)/n
∣∣∣+ ∣∣∣∣λne−λ/n− λ+ λa

n
e−(λ+λa)/n

∣∣∣∣
+

∣∣∣∣1−(1 + λ

n
)e−λ/n−1+ (1 +

λ+ λa
n

)e−(λ+λa)/n

∣∣∣∣)
=

1

2

(∣∣∣e−λ/n− e−(λ+λa)/n
∣∣∣+ ∣∣∣∣λne−λ/n− λ+ λa

n
e−(λ+λa)/n

∣∣∣∣
+

∣∣∣∣(1 + λ

n
)e−λ/n− (1 +

λ+ λa
n

)e−(λ+λa)/n

∣∣∣∣)
≤
∣∣∣e−λ/n− e−(λ+λa)/n

∣∣∣+ ∣∣∣∣λne−λ/n− λ+ λa
n

e−(λ+λa)/n

∣∣∣∣
= e−λ/n(1− e−λa/n) + e−λ/n

∣∣∣∣λn (1− e−λa/n)− λa
n
e−λa/n

∣∣∣∣ ,
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where the inequality is the triangle inequality. We know
|x| ≤ max{x,−x}. Hence,

dTV (P0,P1) ≤ e−λ/n(1− e−λa/n)

+ e−λ/nmax
{λ
n
(1−e−λa/n)−λa

n
e−λa/n,

− λ

n
(1−e−λa/n) + λa

n
e−λa/n

}
≤ e−λ/n(1− e−λa/n) + e−λ/nmax

{λ
n
(1− e−λa/n),

− λ

n
(1− e−λa/n) + 1− e−λa/n

}
= e−λ/n(1− e−λa/n) + e−λ/n(1− e−λa/n)max

{λ
n
, 1− λ

n

}
,

where the second inequality follows from the fact that for
λa ≥ 0, λan e

−λa/n ≥ 0, and λa
n e
−λa/n ≤ 1 − e−λa/n. The

equality follows because 1 − e−λa/n ≥ 0. Therefore, the
covertness condition is satisfied if

dTV (Pn0 ,Pn1 ) ≤ ne−λ/n(1− e−λa/n)(1 + max{λ
n
, 1− λ

n
}) ≤ ε.

(18)

The term 1− e−λa/n ≤ 1 for any λa ≥ 0. Hence, if

εeλ/n

1 + max{λn , 1−
λ
n}
≥ n, (19)

for any λa ≥ 0 transmission is covert. Otherwise, from (18)
transmission is covert if,

λa ≤ −n ln
(
1− εeλ/n

n+max{n− λ, λ}

)
. (20)

In the next theorem, we characterize the covert rate when
Willie has K-MPD capability. In this case, in order to be able
to find a closed form expression for the covert rate, we only
consider λ ≥ nK .

Theorem 4 (Willie with K-MPD capability, λ ≥ nK). In
the presence of a K-MPD Willie observing n channels with total
system nodes’ rate λ ≥ nK , if

εeλ/n∑K
k=0

(λ/n)k

k!

≥ n,

transmission is covert for any λa ≥ 0. Otherwise, covertness is
maintained if

λa ≤ −n ln
(
1− εeλ/n

n
∑K
k=0

(λ/n)k

k!

)
.

Proof. In this case, suppose Willie is able to detect up to K
simultaneous packet transmissions. If more than K packets
are transmitted, then Willie will only detect a collision
event. Thus, the network state observed by Willie is one
of K + 2 states denoted by s0, s1, · · · , sK , sK+1, where si,
i = 0, 1, . . . ,K , indicates that Willie detected i concurrent

transmissions. Let S = {s0, s1, · · · , sK+1} denote the set of
states of each channel process. Hence,

dTV (P0,P1) =
1

2

∑
s∈S
|P1(s)− P0(s)|

=
1

2

(
K∑
k=0

∣∣∣∣∣ (λn )ke−λ/nk!
−

(λ+λan )ke−(λ+λa)/n

k!

∣∣∣∣∣
+

∣∣∣∣∣1−
K∑
k=0

(λn )
ke−λ/n

k!
− 1 +

K∑
k=0

(λ+λan )ke−(λ+λa)/n

k!

∣∣∣∣∣
)

≤
K∑
k=0

e−λ/n

k!

∣∣∣∣(λn )k − (
λ+ λa
n

)ke−λa/n
∣∣∣∣ , (21)

where the inequality is the triangle inequality. Because of
the absolute value in (21), it is hard to find an upper-bound
for dTV (P0,P1) for arbitrary λ. However, when λ

n ≥ K,
the term in the absolute value is greater than zero for any
λa ≥ 0, which makes the analysis of (21) easier. In this case,

dTV (P0,P1)≤
K∑
k=0

e−λ/n

k!

∣∣∣∣(λn)k − (λ+ λa
n

)k
e−λa/n

∣∣∣∣
=

K∑
k=0

e−λ/n

k!

((λ
n

)k
−
(λ+ λa

n

)k
e−λa/n

)

≤
K∑
k=0

e−λ/n

k!

((λ
n

)k
−
(λ
n

)k
e−λa/n

)

=
K∑
k=0

e−λ/n

k!

(λ
n

)k
(1− e−λa/n). (22)

Thus, if the following relation holds,

dTV (Pn0 ,P
n
1 ) ≤ n

K∑
k=0

e−λ/n

k!

(λ
n

)k
(1− eλa/n) ≤ ε, (23)

then covertness is maintained. Using the same reasoning as
in Theorems 2 and 3, the statement is proved.

Theorem 5 (Willie with ∞-MPD capability). In the presence
of an ∞-MPD Willie observing n channels with total system
nodes’ rate λ, if,

λa ≤ max

{
ε,
eε2

2n
+
ε
√
2eλ

n

}
,

then transmissions of cover users are covert.

Proof. An∞-MPD Willie can determine the number of pack-
ets being transmitted simultaneously over the channel. In
this case, the probability distributions of the channel states
observed by Willie are given by two Poisson probability
distributions: P0 = Poisson(λn ), and P1 = Poisson(λ+λan ).
Using the upper-bound for total variation distance between
two Poisson distributions in [44], it then follows that

dTV (P0,P1) ≤ min

{
λa
n
,

√
2

e

(√
λ+ λa
n

−
√
λ

n

)}
. (24)

Consequently, the covertness is maintained if,

dTV (Pn0 ,Pn1 ) ≤ min

{
λa,

√
2n

e

(√
λ+ λa −

√
λ
)}
≤ ε.
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After some algebraic manipulations, the statement of the
theorem follows.

Overloaded Willie. With the exception of the case of an
∞-MPD receiver at Willie, there is an intensity λ of system
traffic above which Willie cannot detect the covert commu-
nication, regardless of λa. Intuitively, this is because the
channel hits the largest state of Willie’s detector so often
just from the system traffic that the presence of the covert
users rarely changes his observation. Next, we establish
this intuition more formally. Consider n = 1. Observe that
Willie’s optimal strategy will result in him always choosing
H1 if the system state is s = K+1 if he is trying to minimize
PFA+PMD ; if this were not true, his strategy would choose
H0 regardless of the system state and thus PFA+PMD = 1.
Given that he always chooses H1 when s = K + 1,

PFA + PMD ≥ PFA ≥ P (s = K + 1|H0) =
∞∑

l=K+1

λle−λ

l!
.

(25)

Thus, if
∞∑

l=K+1

λle−λ

l!
≥ 1− ε, (26)

λa can be arbitrary, which recovers the condition on λ for
λa to be arbitrary for n = 1 in Theorems 2 and 4.

For n > 1, let M be the event that Willie’s receiver
observes its maximum on each channel; that is, the event
that {s1 = K + 1} ∪ {s2 = K + 1} ∪ . . . ∪ {sn = K + 1}.
Then, following the reasoning above:

P (M) = 1− P (
n⋃
i=1

{si ≤ K}) (27)

≥ 1−
K∑
i=1

P (si ≤ K) (28)

= (1− n)
K∑
l=0

(λ/n)le−λ/n

l!
, (29)

which is greater than 1− ε, allowing arbitrary covert traffic
λa, for the conditions given in Theorems 2 and 4 for n > 1.

3.2 Covert Rate with KL Distance Metric
The additive property of the KL distance for independent
distributions makes it a useful metric in analyzing covert-
ness in the literature [43]. In particular, it can be a useful
metric when considering multiple independent channels.
Hence, in this section we characterize the KL distance con-
ditioned on the presence or absence of covert transmissions
when Willie has different detection capabilities. Since KL
distance is a complicated function of the probability dis-
tributions of the channel states observed by Willie, in this
section we only consider Willie with 0-MPD and ∞-MPD
detection capabilities.

Theorem 6 (Willie with 0-MPD capability). In the presence of
a 0-MPD Willie observing n channels with total system nodes’
rate λ, if

λ ≥ n ln
( n

2ε2
+ 1
)
,

any λa ≥ 0 can be obtained. Otherwise, if

λa ≤ n ln
(

1

1− 2ε2

n (eλ/n − 1)

)
,

then the transmissions of covert users are covert.

Proof. Similar to Theorem 2, Willie can only determine if the
channel is busy or not. If the channel is busy, Willie is not
able to determine how many packets are being transmitted
in a time slot. Using the probability distributions from (12),

dKL(P0,P1) =
∑
s∈S

P1(s) ln

(
P1(s)

P0(s)

)

= e−(λ+λa)/n ln
e−(λ+λa)/n

e−λ/n

+
(
1− e−(λ+λa)/n

)
ln

1− e−(λ+λa)/n

1− e−λ/n

= −λa
n
e−(λ+λa)/n +

(
1− e−(λ+λa)/n

)
ln

1− e−(λ+λa)/n

1− e−λ/n
.

(30)

The logarithmic term can be written as,

ln

(
1− e−(λ+λa)/n

1− e−λ/n

)
= ln

(
1 + e−λ/n

1− e−λa/n

1− e−λ/n

)
. (31)

Using the ln(1 + x) ≤ x for x ≥ 0 results in the following
relation,

dKL(P0,P1)

≤ −λa
n
e−(λ+λa)/n +

(
1− e−(λ+λa)/n

)
e−λ/n

1− e−λa/n

1− e−λ/n

≤ e−λ/n (1− e
−(λ+λa)/n)(1− e−λa/n)

1− e−λ/n

≤ 1− e−λa/n

eλ/n − 1
. (32)

Therefore, to upper bound dKL(Pn0 ,Pn1 ) to satisfy the
covertness constraint of (11) with some ε ≥ 0, the following
relation should be satisfied,

1− e−λa/n

eλ/n − 1
≤ 2ε2

n
, (33)

or equivalently,

1− e−λa/n ≤ 2ε2

n
(eλ/n − 1). (34)

This condition holds for any λa ≥ 0 if the right side of (34)
is not less than one, i.e. λ, n, and ε are such that,

λ ≥ n ln
( n

2ε2
+ 1
)
. (35)

Otherwise, if (35) does not hold, the covert rates

λa ≤ n ln
(

1

1− 2ε2

n (eλ/n − 1)

)
, (36)

are achievable.

Theorem 7 (Willie with ∞-MPD capability). In the presence
of an ∞-MPD Willie observing n channels with total system
nodes’ rate λ, if

λa ≤ 2ε
√
λ,
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then the transmissions of covert users are covert.

Proof. Suppose Willie has ∞-MPD capability, i.e. he can
determine how many packets are being transmitted simul-
taneously over the channel. In this case, the probability dis-
tributions of the channel states observed by Willie are given
by two Poisson probability distributions: P0 = Poisson(λn ),
and P1 = Poisson(λ+λan ). It then follows that

dKL(P0,P1) =
λa
n
− λ

n
ln

(
1 +

λa
λ

)
≤ λa

n
− λ

n

(
λa
λ
− 1

2

(
λa
λ

)2
)

=
λ2a
2λn

, (37)

where the inequality is true since λa
λ ≥ 0. Therefore, to

maintain covertness, i.e.

dKL(Pn0 ,P
n
1 ) = ndKL(P0,P1) ≤

λ2a
2λ
≤ 2ε2, (38)

λa is bounded as,

λa ≤ 2ε
√
λ. (39)

Willie with∞-MPD capability is the most capable Willie,
and thus the covert rates in this case are the smallest
compared to the covert rates in other scenarios. In fact, in
contrast to the other scenarios, we see a square root law
similar to that in [41] and subsequent work [29] at the
physical layer.

4 NUMERICAL EXAMPLES

In this section, we numerically evaluate the bounds ob-
tained in previous sections. In all figures we set ε = 0.1
as the covertness parameter4.

4.1 Covert rate of single-channel ALOHA
First, we study how the covert rate λa depends on the
transmission rate of the system nodes in a single-channel
ALOHA network configuration5. Whereas we have pro-
vided closed-form analytical expressions for the covert rate
achievable by the covert users, it is possible to evaluate the
exact covert rate numerically. This exact covert rate along
with the covert rate with TV distance, and the covert rate
with KL distance, versus the system nodes’ transmission
rate are shown in Fig. 1, with different levels of Willie’s
MPD capability. These figures show the accuracy of our
analytical bounds. Also, they demonstrate that as expected
from results of Section 3, when Willie has 0-MPD, 1-MPD, or
5-MPD capability, the covert rate λa can be arbitrarily large
for sufficiently large λ. Whereas at first this seems surprising
(or even erroneous), the reason is clear: if λ is much larger
than K, then Willie’s detector observes the event of more
than K packets occurring with high probability in each time
slot, even when the covert users are not present. When the

4. As in Section 2.2, ε = 1 − (PWFA + PWMD), and thus a small ε is
desirable.

5. This section is presented in [1].

covert users are present, they are unlikely to cause a change
in the observation at Willie, hence providing covertness. A
more interesting observation is that the square root law of [41] is
not observed at small λ for the 0-MPR and 1-MPR detector, hence
indicating the degree to which only a noisy view of the collision
status of the channel can hide the presence of covert users.

λ

0 1 2 3 4

λ
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100

101

Exact
TV diatance
KL divergence

(a) 0-MPD (Theorems 2 and 6)

λ

0 1 2 3 4

λ
a

10-2

10-1

100

101

Exact
TV distance

(b) 1-MPD (Theorem 3)

λ

0 2 4 6 8 10

λ
a

10-2

10-1

100

101

Exact
TV distance

(c) 5-MPD (Theorem 4)

λ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

λ
a

10-2

10-1

100

Exact
TV distance
KL divergence

(d) ∞-MPD (Theorems 5 and 7)

Fig. 1: Single channel (n = 1) covert rate λa versus system
nodes rate λ.

4.2 Covert rate of multi-channel ALOHA
In this section, we study examples of multi-channel ALOHA
networks. In Figs. 2-4, the exact and lower bound (evaluated
based on TV distance and/or KL distance in Section 3) for
the covert rate λa versus system nodes rate λ for different
Willie capabilities are shown. In each figure, a single channel
network, a two channel network, and a ten channel network
are considered.

In Figs. 2 and 3, it can be seen that as λ gets larger, the
covert users can hide a higher number of covert packets in
the traffic of legitimate users and thus λa becomes higher.
Also, for n = 1 and n = 2, when λ is larger than a thresh-
old, Willie is overwhelmed and thus the communication is
covert for any λa. This threshold for n = 5 and n = 10 is
higher and is not depicted in Figs. 2 and 3.

Another observation is that as the number of channels n
increases, for a given λ, the covert rate λa becomes smaller.
Hence, increasing the number of channels does not help to
improve the covert rate. However, in the next section, we
will show that a larger number of covert channels can help
to improve the covert throughput.

In Fig. 4, for Willie with∞-MPD capability, as is shown
in Section 3, the exact λa and the KL bound are independent
of the number of channels n. However, the total variation
(TV) bound depends on n, and since the total variation
bound becomes looser as n increases, the difference between
the exact λa and the total variation λa increases too. Hence,
in general for the ∞-MPD case, the KL distance is a more
accurate metric and should be used in covertness analysis.

In order to calculate the covert throughput, in addition
to the covertness constraint we should consider the success
probability of packet transmissions in the presence of colli-
sions. We will consider this in the next section.
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(a) n = 1

λ
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(b) n = 2

λ
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(c) n = 5

λ
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KL, n=10

(d) n = 10

Fig. 2: Covert rate λa versus the rate of system nodes λ for
different number of channels when Willie employs a 0-MPD
detector. As n increases, the achievable covert rate λa for a
given rate λ decreases.
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(a) n = 1

λ
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(b) n = 2

λ
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λ
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(c) n = 5

λ
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λ
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10-1

100
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TV, n=10

(d) n = 10

Fig. 3: Covert rate λa versus the rate of system nodes λ for
different number of channels when Willie employs a 1-MPD
detector.

5 COVERT THROUGHPUT ANALYSIS

Suppose covert transmitters and a receiver (Bob) are trying
to convey as many covert packets as possible. The number
of covert packets that Bob can receive successfully is deter-
mined by the covertness constraint, the number of collisions
at Bob’s receiver, and Bob’s multiple packet reception (MPR)
capability. The achievable transmission rate of covert trans-
mitters in different network settings is obtained in Section
3, and numerical examples are studied in Section 4. In this
section, we analyze the covert throughput of the network
by considering Bob’s capability in successful reception of
packets. Given the throughput, other performance metrics
of the covert users are readily derived. For instance, the
average delay,

delay ∝ 1

Throughput
,

λ

0 5 10 15

λ
a

10
-1

10
0

Exact

KL

TV, n=1

TV, n=2

TV, n=5

TV, n=10

Fig. 4: Covert rate λa versus the rate of system nodes λ for
different number of channels (n = 1, 2, 5 and 10) when Willie
employs an∞-MPD detector. Note that the KL bound does not
depend on the number of channels (Theorem 7).

and the loss probability,

PLoss = 1− rate
Throughput

,

are both monotonic functions of the throughput. In the
following, we will consider a receiver Bob with differ-
ent multiple packet reception capabilities: Bob with single
packet reception capability (1-MPR), two packet reception
capability (2-MPR), and infinity packet reception capability
(∞-MPR).

5.1 Bob with single packet reception capability (1-
MPR)

Suppose Bob’s receiver has 1-MPR capability, i.e. it can
receive and decode a packet successfully if only one packet
is transmitted in a time slot on a given channel. The success
probability is the probability that on a given channel, in a
given time slot, only one packet from the covert users and
no packet from the system users, is transmitted. Hence, the
covert throughput of a channel is given by

τ 1-MPR =
λae
−(λ+λa)/n

n
. (40)

Consequently, the covert throughput of a network consist-
ing of n channels is

T 1-MPR = λae
−(λ+λa)/n. (41)

First, assuming that there is no restriction on λa, we find the
values of λa for which T 1-MPR is maximized:

∂T 1-MPR

∂λa
= e−(λ+λa)/n − λae

−(λ+λa)/n

n
= 0, (42)

which results in λa = n.
Next, we will study the covert throughput when Willie

has different detection capabilities.

5.1.1 Willie with 0-MPD receiver
From Theorem 2, if εeλ/n ≥ n, λa is not limited by
the covertness constraint, and thus the maximum covert
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Fig. 5: Covert throughput versus number of channels for differ-
ent values of system nodes’ transmission rate λ. Willie employs
a 0-MPD detector and the intended receiver (Bob) employs a
1-MPR receiver.

throughput is obtained when λa = n. Thus, when εeλ/n ≥
n,

T 1-MPR
0-MPD =

ne−λ/n

e
. (43)

However, if εeλ/n ≤ n, the transmission is covert if λa ≤
εeλ/n. Since (41) is increasing in λa for any λa ≤ n, it is
also increasing for λa ≤ εeλ/n. Hence, the maximum covert
throughput is obtained when λa = εeλ/n, i.e.

T 1-MPR
0-MPD =

ε

n
exp

(
−εeλ/n

n

)
. (44)

In Fig. 5, covert throughput versus the number of chan-
nels for different values of the system nodes’ transmission
rate λ is shown. For small values of λ, increasing the number
of channels does not help to improve the covert throughput.
However, as λ increases, the number of collisions in the
network increases and thus having more channels can help
to improve the covert throughput.

5.1.2 Willie with 1-MPD receiver
From Theorem 3, if ε and λ are such that

εeλ/n

n+max{λ, n− λ}
≥ 1, (45)

the transmission is covert for any λa ≥ 0. Hence, from (42)
the maximum covert throughput is obtained when λa = n,
i.e.,

T 1-MPR
1-MPD =

ne−λ/n

e
. (46)

If ε and λ are such that

εeλ/n

n+max{λ, n− λ}
< 1, (47)

the covert rate that maximizes the throughput is:

λa = min

{
n ln

(
n+max{n− λ, λ}

n+max{n− λ, λ} − εeλ/n

)
, n

}
. (48)

and the covert throughput is obtained by substituting λa
from (48) into (41).
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Fig. 6: Covert throughput versus number of channels for differ-
ent values of system nodes’ transmission rate λ. Willie employs
a 1-MPD detector and Bob employs a 1-MPR receiver.

In Fig. 6, the curves of covert throughput versus number
of channels for different system nodes’ transmission rates
are depicted. Similar to the case of Willie with 0-MPD
capability, for small values of λ, increasing the number of
channels does not help to improve the covert throughput,
but as λ increases having more channels can help to improve
the covert throughput.

5.1.3 Willie with∞-MPD receiver

In Section 4, it is shown that for the case of ∞-MPD,
KL distance gives a tighter lower bound of covert rate
λa compared to TV distance. Hence, in this case we use
Theorem 7 for λa, i.e.,

λa ≤ 2ε
√
λ. (49)

Let ε be sufficiently small such that λ ≤ 1
4ε2 , and,

λa ≤ 2ε
√
λ ≤ n, ∀n ≥ 1, (50)

and thus (41) is increasing in λa. Hence, the maximum
throughput is obtained when λa = 2ε

√
λ,

T 1-MPR
∞-MPR = 2ε

√
λe−(λ+2ε

√
λ)/n. (51)

In Fig. 7, covert throughputs versus the number of
network channels for different system nodes’ transmission
rates are shown. In this setting, ε = 0.1 and thus (51) can
be used for λ ≤ 25. Similar to Willie with 0-MPD and 1-
MPD detector, for small values of λ increasing the number
of channels does not help, but as λ, and consequently the
number of collisions, increases more channels will help to
obtain a higher covert throughput.

5.2 Bob with multiple packet reception capability (2-
MPR)

Now, suppose Bob has 2-MPR capability, i.e. if two packets
are transmitted over one channel simultaneously, Bob can
receive and decode both packets successfully. Let L is the
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Fig. 7: Covert throughput versus the number of channels for
different values of system nodes’ transmission rate λ. In this
case, Willie employs an ∞-MPD detector and Bob employs a
1-MPR receiver.

random variable associated with the number of covert pack-
ets received at Bob. Hence, the expected number of packets
successfully received at Bob is given by,

E{L} =
2∑
`=1

LP (success, L = `)

=
λae
−λan

n

(
e−

λ
n +

λe−
λ
n

n

)
+ 2×

(
λa
n

)2 e−
λa
n

2

(
e−

λ
n

)
=
λae
−λ+λan

n

(
1 +

λ+ λa
n

)
. (52)

Hence, the covert throughput of a channel is given by

τ 2-MPR =
λae
−(λ+λa)/n

n

(
1 +

λ+ λa
n

)
, (53)

and the covert throughput of the network consisting of n
channels is,

T 2-MPR = λae
−(λ+λa)/n

(
1 +

λ+ λa
n

)
. (54)

Now, assuming that there is no restriction on λa, T 2-MPR

is maximized when:

∂T 2-MPR

∂λa
= e−(λ+λa)/n

[
1 +

λ+ λa
n

(
1− λa

n

)]
(55)

= 0.

We need to find a λa that maximizes T 2-MPR for any value of
λ. For λa ≤ n,

∂T 2-MPR

∂λa
≥ 0,

and thus, T 2-MPR is increasing in λa for λa ≤ n. Now, let
λa = n(1 + δ) when δ > 0 is arbitrary. Substituting λa =
n(1 + δ) in (55) yields,

∂T 2-MPR

∂λa
= e−(1+δ+λa/n)

[
1 +

λ+ n(1 + δ)

n

(
1− n(1 + δ)

n

)]
=

= e−(1+δ+λa/n)
[
1− δ − δ2 − δ(λ

n
)

]
.
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Fig. 8: Covert throughput versus number of channels for differ-
ent values of system nodes’ transmission rate λ. Willie employs
a 0-MPD detector and the intended receiver (Bob) employs a
2-MPR receiver.

For λ > (1− δ − δ2)nδ ,

∂T 2-MPR

∂λa
< 0,

and thus, T 2-MPR is decreasing in λa for λa > n. Hence,
when there is no restriction on λa, λa = n maximizes
T 2-MPR.

Next, consider Willie with different detection capabili-
ties:

5.2.1 Willie with 0-MPD receiver
From Theorem 2, if εeλ/n ≥ n, λa is not restricted by
covertness considerations, and thus we can set λa = n.
Substituting this into (55),

T 2-MPR
0-MPD =

ne−λ/n

e

(
2 +

λ

n

)
. (56)

If εeλ/n ≤ n, covertness is maintained if λa ≤ εeλ/n. Eq.
(54) is increasing in λa for λa ≤ n. Hence, it is increasing for
λa ≤ εeλ/n ≤ n, and thus the maximum covert throughput
is obtained when λa = εeλ/n,

T 2-MPR
0-MPD = εe−

1
n εe

λ/n

(
1 +

λ+ εeλ/n

n

)
. (57)

In Fig. 8, the covert throughput versus the number of
channels for different values of system nodes transmission
rate λ is shown. Similar to previous cases, for larger system
nodes transmission rates, using more channels can help to
improve the covert throughput. Further, comparing Fig. 5
and Fig. 8, when Bob employs a 2-MPR receiver, larger λ
leads to achieving a higher covert throughput.

5.2.2 Willie with 1-MPD receiver
From Theorem 3, if ε and λ are such that

εeλ/n

n+max{λ, n− λ}
≥ 1, (58)

the communication is covert for any λa > 0. Hence, using
(55), the covert rate λa = n is achievable, and

T 2-MPR
1-MPD =

ne−λ/n

e

(
2 +

λ

n

)
. (59)
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Fig. 9: Covert throughput versus number of channels for differ-
ent values of system nodes’ transmission rate λ. Willie employs
a 1-MPD detector and Bob employs a 2-MPR receiver.

If ε and λ are such that

εeλ/n

n+max{λ, n− λ}
< 1, (60)

the covert rate,

λa = min

{
n ln

(
n+max{n− λ, λ}

n+max{n− λ, λ} − εeλ/n

)
, n

}
,

is achievable, and the covert throughput is obtained by
substituting λa from the above equation into (54).

In Fig. 9, the curves of covert throughput versus number
of channels for different system nodes’ transmission rates
are depicted. Similar to the case of Willie with 0-MPD
capability, for small values of λ, increasing the number of
channels does not help to improve the covert throughput,
but as λ increases having more channels can help to improve
the covert throughput.

5.2.3 Willie with∞-MPD receiver
Using the same reasoning as in Section 5.1.3, when ε is
sufficiently small such that λ ≤ 1

4ε2 , the covert rate

λa = 2ε
√
λ, ∀n ≥ 1, (61)

can be achieved. Hence, substituting (61) into (54),

T 2-MPR
∞-MPD = 2ε

√
λe−(λ+2ε

√
λ)/n

(
1 +

λ+ 2ε
√
λ

n

)
. (62)

In Fig. 10, covert throughput versus number of network
channels for different system nodes’ transmission rates are
shown. The covertness factor ε = 0.1, and thus (62) holds
for λ ≤ 25.

5.3 Bob and Willie with unbounded reception capabili-
ties
Let us consider the extreme case that Bob is able to apply
an∞-MPR receiver, and Willie is able to apply an∞-MPD
detector. In this case, the expected number of covert packets
that is transmitted over one channel in a time slot is λa

n , and
thus the channel throughput is,

τ∞-MPR =
λa
n
. (63)

n

0 2 4 6 8 10 12 14 16 18 20

C
o
v
e
rt

 T
h
ro

u
g
h
p
u
t

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

λ=.1

λ= .5

λ=1

λ=5

λ=10

λ=15

λ=20

Fig. 10: Covert throughput versus the number of channels for
different values of system nodes’ transmission rate λ. In this
case, Willie employs a ∞-MPD detector and Bob employs a
2-MPR receiver.

Thus, the throughput of the n channel network is,

T∞-MPR = λa. (64)

The network throughput is monotonically increasing in λa,
and thus a larger λa leads to a higher covert throughput.
From Theorem 7, when Willie has ∞-MPD detection capa-
bility, in order to maintain covertness λa is bounded as,

λa ≤ 2ε
√
λ.

Hence,

T∞-MPR
∞-MPD = 2ε

√
λ. (65)

This shows that when both Bob and Willie have unbounded
reception capabilities, there is a square root relationship
between the covert throughput and the transmission rate
of the system nodes, and the covert throughput does not
depend on the number of channels.

6 CONCLUSIONS AND FUTURE WORK

The fundamental limits of covert communications have
been considered extensively in recent years at the physical
layer for the scenario of covert transmitter Alice, receiver
Bob, and capable and attentive warden Willie who attempts
to detect Alice. Here, we consider for the first time the
medium access control (MAC), where a number of covert
users are attempting to access the channel without detection
by warden Willie, who is observing the channel collision
process. We consider a variety of receivers at Willie, ranging
from one that can only determine whether the channel was
idle or busy (0-MPD), to one that always knows the number
of packets involved in a collision (∞-MPD). In the latter
case, the results follow much of what has been found at the
physical layer, where the rate of the covert users is restricted
roughly to the square root of the rate of the system users.
However, for a K-MPD detector, K < ∞, the throughput
grows much faster than the square root of λ, thus indicating
the degree to which Willie’s blindness to the channel state
allows for covert transmission.

Our results also reveal that, while the achievable covert
rate generally increases as the system traffic rate increases,
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the covert throughput has a more subtle relationship with
the system traffic rate. Specifically, depending on the num-
ber of channels, there exists a traffic rate that maximizes the
covert throughput. This finding can be used to design end-
to-end covert communication strategies in network scenarios
where Alice and Bob can choose a set of intermediary relays
across the network to help them convey their messages
covertly. By strategically choosing those relays that are
located optimally, with respect to the system traffic rate in
their neighborhood and considering Willies’ receiver capa-
bilities, a covert routing algorithm can maximize end-to-end
covert throughput for Alice and Bob. In the current paper,
we were able to derive the covert rate when Willie has a K-
MPD receiver only for λ ≥ nK . The general covert rate and
covert throughput analysis (for any λ) can be considered in
future research.
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