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Abstract—In this paper, we investigate dynamic base station
activation with the aim of reducing energy consumption in
cellular networks. Using the two-timescale Lyapunov optimization
approach, we develop an online control algorithm to choose
active set of base stations so as to satisfy users’ demands while
incurring minimum energy consumption. The algorithm selects
the minimum cardinality subset of base stations that ensures
stabilization of user queues. Our algorithm achieves stabilization
without relying on instantaneous feedback about the network
conditions, instead it only requires information about the average
load and demand over a coarse time scale. The formulated
problem which consists of joint base station activation and user
association is generally intractable. However, we show that it
features submodularity, and consequently present a near-optimal
solution for certain instances of the problem. We further develop
a greedy algorithm to solve general cases of the problem. We
supplement our theoretical analysis with numerical results to
demonstrate the behavior of our algorithm in terms of energy
and delay in some example network scenarios.

I. INTRODUCTION

There has been a massive growth in cellular data traffic
over the past few years. This trend is expected to continue
and has already resulted in a global shortage of wireless
bandwidth [1]. To accommodate increasing volumes of traffic,
mobile operators are moving towards denser deployment of
base stations (BSs) in order to provide more capacity by
increasing the spatial reuse of radio frequencies [2]. In a dense
deployment, each base station covers a small geographical area
and serves a small number of users, which allows it to provide
them with higher rate. While this is an effective approach to
provide better service to users, deploying a large number of
base stations could result in a significant increase in network
energy consumption. This has become a great concern for the
cellular operators due to higher operational expenditure, e.g.,
electricity bill, as well as higher carbon footprint. Therefore,
energy efficiency has emerged as a critical performance metric
for cellular networks [3].

As reported in [4], among various elements of a cellular
network, base stations account for 60-80% of the total network
energy consumption. A notable observation is that while cellu-
lar traffic exhibits periodic behavior, the energy consumption
approximately stays the same [5]. This can be attributed to the
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fact that cellular operators often deploy as many base stations
as necessary to satisfy the peak traffic demand, while keeping
them active (i.e., in the On state) all the time. In addition, due
to various sources of energy consumption in BS equipment
(e.g., cooling system and processing unit), transmission power
control mechanisms alone cannot compensate for BSs being
always active. Particularly, with current base stations, about
50-90% of peak energy (energy consumed during the peak traf-
fic) is consumed even in idle or low traffic state [3]. Dynamic
base station activation has been proposed and considered as a
viable solution to address this problem [6], [7].

The idea is to completely power off underutilized base
stations when their traffic load could be handled by nearby
base stations, and in turn, power on some inactive base stations
when the load in their coverage area exceeds the capacity of
the current active BSs, so as to satisfy the demand. It has
been observed that by dynamically activating base stations in
a network, significant energy savings can be achieved [5]. In
this paper, we investigate this idea with the aim of minimizing
the long-term energy cost of operating a cellular network. This
is a challenging problem as solving it requires knowledge of
future network conditions, e.g., traffic load and power price.
Since this information is not available a priori, we seek online
control mechanisms which do not rely on such information,
as they utilize the knowledge of current network conditions to
minimize the long-term energy consumption.

To this end, we model the problem following the frame-
work of stochastic optimization. An important feature of our
approach is that it relies only on the information that is readily
available in current cellular networks, e.g., information about
user queue backlogs. Utilizing the recent results from the two-
timescale Lyapunov optimization technique [8], we formulate
the problem and specify the control decisions that the system
implements in order to minimize the long-term energy con-
sumption, while stabilizing user queues. Our algorithm only
requires the knowledge of the average data rate supported
by each base station and the average traffic arrival rate for
each user. As a result, our algorithm adds minimal overhead
to the backhaul links connecting base stations to the core
network elements, where the control algorithm resides. At a
longer time scale (e.g., minutes), the controller decides about
the set of active base stations, while decisions that require a
shorter time scale (e.g., milli-seconds) such as user association
and transmission power control are delegated to base stations
themselves.978-1-4799-4657-0/14/$31.00 c© 2014 IEEE



There are some recent works on the subject. In [5], a
location-dependent traffic profiling study is conducted on
real 3G network traces showing that 23-53% energy saving
is possible via dynamic base station activation. Operators
cooperation is investigated in [9], where the optimal switch-
off frequencies of base stations are computed in order to
achieve balanced energy savings and roaming costs. Assuming
a sinusoidal traffic profile, and following a threshold-based
activation rule by each base station, an analysis of achievable
energy savings is provided in [7]. The closest works to our
work are presented in [10] and [6]. In [10], centralized and
heuristic methods are presented for finding and deactivating
the base station with the lowest load. The joint problem of
base station activation and user association is studied in [6],
where the objective is to minimize a joint energy and delay
cost function. Our work differs from the above mentioned
works in several aspects: 1) we consider the long-term energy
cost of the system as opposed to short-term energy cost,
3) we systematically incorporate queue backlogs into our
formulation which allows to control the relative importance
of delay versus energy cost 3) our algorithm operates over a
long timescale that causes minimal backhaul overhead, and
4) our algorithm only requires information about the average
traffic and demand rate.

The two-timescale Lyapunov optimization for the purpose
of power reduction in data centers has been employed in [8].
However, unlike [8], the problem in our work has a combina-
torial nature (due to On/Off behavior of base stations) which
makes it different and more challenging to solve. The optimal
sleep-wake scheduling for energy harvesting mobile devices
using Lyapunov optimization has recently been considered
in [11]. The work investigates On/Of scheduling for only one
device, while we consider such scheduling over a set of base
stations.

Our contributions in this work can be summarized as
follows:

• We formulate the base station activation problem as a
stochastic optimization problem aiming to minimize the
long-term energy cost of the cellular network.

• We derive a control decision problem based on the two-
timescale Lyapunov optimization technique by employ-
ing a suitable Lyapunov function and deriving an upper
bound on its T -slot drift function.

• We show that the main decision problem is submodular
and present efficient approximation algorithms to solve
it. For certain cases, we present a 1/3-optimal approxi-
mation algorithm.

The rest of the paper is organized as follows. In Section II,
the system model and formulation of the energy cost mini-
mization problem are presented. In Section III, the Lyapunov
framework to solve the problem is introduced and the cor-
responding control problem is derived. The approximation
algorithms are presented in Section IV. Sample numerical
results are presented in Section V. Section VI concludes the
paper.
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Fig. 1. A set of base stations is connected to a gateway.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a network similar to the one depicted in Fig. 1.
The network consists of the gateway (system controller), the
set B = {b1, . . . , bn} of base stations that jointly provide
coverage for the set L = {l1, . . . , lm} of locations 1. In our
model, instead of dealing with individual users, we consider
locations, where multiple users can be present in a single
location. The system graph is defined as the bipartite graph
Gs = (B ∪ L, E) in which an arc eij ∈ E connects BS bi to
location lj if lj is under the coverage of bi (notion of coverage
will be clarified later). Let Li denote the subset of locations
that are under the coverage of BS bi and Bj denote the set of
all base stations that cover location lj .

BS activation decisions are made by the controller which op-
erates on a discrete-time basis. To avoid unnecessary overhead
due to transient network states, BS activation is performed at
a timescale that is different from other network operations
such as user association and scheduling. Therefore, time is
divided into frames of size T timeslots. Activate and de-
activate decisions are made at the beginning of each time
frame. Binary vector Y (t) = [yi(t)]|B| which is defined as
follows

yi(t) =

{
1, If bi is active at t,
0, otherwise.

denotes the set of active base stations at timeslot t.

B. Resource Allocation

Similar to the LTE systems [12], we consider an OFDMA-
based radio access interface. In OFDMA systems, available
frequency bandwidth is partitioned into orthogonal subcarriers.
The transmit power P is divided between these subcarriers.

Assume that base station bi communicates with a user at
location lj . Let pij denote the power allocated to lj from bi.
Let gij denote the power gain between bi and lj received signal
power of the user is given by gij ·pij . A location is considered
covered by a base station if the received power of the pilot
signal at that location is higher than a prespecified threshold.
The achievable rate of a user has direct relation to the received

1Such a network model is consistent with 4G cellular networks based on
LTE technology [12].



Signal-to-Noise-and-Interference Ratio (SINR). SINR of the
received signal at lj when served from BS bi is given by

SINRij =
gijpij
nj + Ij

, (1)

where nj and Ij =
∑
bi′∈Bj\bi gi′jpi′j are background noise

power and interference power at location lj , respectively.
The achievable rate of the user is obtained from a rate

function R(·), which is generally increasing and concave w.r.t
SINRij . A common choice is the Shannon capacity formula.
Similar to [13], to make the formulation tractable, we use an
upper bound I on the interference power instead of using an
exact expression for Ij . Following [14], I denotes the max-
imum multi-cell interference level. While this approximation
results in a conservative estimation of the achieved rate, it
does not need substantial amount of signaling to compute the
actual value of interference at each location. We further borrow
the following simplifying assumptions from the literature [15],
[16]:

• In OFDMA systems e.g., LTE, each subcarrier is shared
among multiple users using TDM i.e., resources are
shared in both frequency and time. We assume that each
subcarrier can be fractionally shared among users [15].
This assumption is particularly true in our system as we
consider the long-term averages during frames.

• We assume the total transmission power P is divided
equally among all subcarriers. Therefore, if the band-
width is partitioned into R subcarriers, the allocated
power to each one is p = P/R. While it is possible to
consider optimal power allocation across subchannels, it
is a problem that is orthogonal to the problem considered
in this paper. Moreover, as shown in [15], this scheme is
nearly-optimal and is widely used in practice.

• As provisioned in LTE networks [16], we assume that
neighboring cells are able to coordinate allocation of
resources to users in overlapping regions such that or-
thogonal resources are allocated from neighboring BSs
to locations in overlapping regions.

In the rest of the paper, we use the term resources to refer to
subcarriers. Let 0 ≤ γij ≤ 1 denote the fraction of resources
allocated to location lj from base station bi. Following the
third assumption, the total received rate at location lj is given
by:

rj =
∑
bi∈Bj

γij ·Rij , (2)

where Rij is the rate received from base station bi if all of its
resources were to be allocated to location lj , i.e.,

Rij = R · log(1 + β
pgij
nj + I

) . (3)

In (3), β is the SINR gap due to limited modulation levels
available in practice. Let RY denote rate region of Y i.e., the
set of all rate vectors r = [rj ]|L| achievable at all locations L

by the active base stations Y . We then have

RY =
{
r = [rj ] :

∑
bi:yi=1

γijRij = rj ,
∑

lj∈Li:yi=1

γij ≤ 1
}
.

(4)

C. Energy Cost Model

If an active BS bi at timeslot t consumes total power Pbi ,
then the energy cost incurred by bi is given by

Ci(t) = CP (t) · Pbi(t), (5)

where Cp(t) is the energy price at t. Cp(t) changes according
to an exogenous random process which is assumed to have
a stationary distribution. The total power consumption Pbi(t)
consists of two parts [5] as follows:

Pbi(t) = Ptx(t) + Pmisc(t), (6)

where Ptx(t) is the transmission power used to communicate
with users at t. The term Pmisc(t) accounts for the base power
spent in cooling and power supply at t. Clearly, Ptx depends on
the carried load traffic and can be approximated as follows [5],

Ptx(t) = Pα · µ(t) + Pβ , (7)

where µ(t) is the traffic load factor of the base station at
t. The slope and offset power coefficients Pα and Pβ are
constants that vary for different types of base stations from
different vendors. Overall, there is a base cost for activating
a base station due to residual factors Pmisc and Pβ and a
traffic dependent part due to Pα. As reported in [17], the base
activation cost can take up to 50% of the total base station
power consumption.

D. Problem

The traffic intended for users is first received at the gateway
and stored in user queues. The gateway keeps queue Qj(t) for
each location lj2. We denote the amount of workload arrived
at timeslot t as A(t) = [A1(t), . . . , Am(t)]. We assume the
arrival at location lj follows an i.i.d. distribution throughout
the whole frame while the average rate Āj is known to the
gateway (the gateway can estimate this over each frame). In
addition, we assume that there exist bounds Amin and Amax
such that Amin ≤ Aj(t) ≤ Amax for all lj ∈ L.

The data stored in queue Qj will be disseminated among
all the base stations that provide service to location lj . Let
µji(t) denote the amount of lj’s traffic routed to BS bi at the
beginning of timeslot t. We assume that the system tries to
match the amount of data transferred to BS bi to the service
rate provided to lj by bi at timeslot t i.e.,

µji(t) ≤ γij(t) ·Rij(t) ∀bi ∈ B, lj ∈ L, (8)

while, ∑
lj∈Bi

γij(t) ≤ 1 ∀bi ∈ B . (9)

2In our method, we only need information regarding the backlog state of
each location. In practice, queues might actually be resided in BSs while
information regarding their sizes is fed back to the gateway.



Although in practice, base stations keep buffers for the data
that are not transmitted yet, this assumption simplifies the
queuing model considered in this paper. In addition it does
not affect the resulting solution as we make decisions based
on the whole backlog for each location. Obviously, if bi does
not cover lj then µji(t) = 0. We assume that the rate provided
for each location is subject to maximum bound µmax such
that the inequality 0 ≤

∑
bi∈B yi(t)µji(t) ≤ µmax holds for

all locations lj ∈ L. Queues evolve in consecutive timeslots
according to the following queuing dynamic,

Qj(t+1) = max[Qj(t)−
∑
bi∈B

yi(ft)µji(t), 0]+Aj(t) . (10)

We say that the system is stable if the following condition
holds on queue backlogs,

Q , lim sup
t→∞

1

t

t−1∑
τ=0

m∑
j=1

E{Qj(τ)} <∞ . (11)

The energy cost of the system at timeslot t is the sum of
the energy cost of all base stations, i.e.,

Cost(t) =
∑
bi∈B

Ci(t) . (12)

The problem we consider in this paper is to minimize the
long-term cost of the system defined as follows,

P1: Minimize lim sup
t→∞

1

t

t−1∑
τ=0

Cost(τ)

subject to: (8), (9), (11) .

(13)

In the next section, we derive a control algorithm to solve (13).

III. ONLINE ALGORITHM DESIGN

To develop the online control algorithm, we first define the
Lyapunov function L(t) as a scalar measure of queue backlog
in the system as follows,

L(t) ,
m∑
j=1

1

2
[Qj(t)]

2 . (14)

It is desirable for our algorithm to push the system towards a
lower backlog state. Therefore, to observe the expected change
in the Lyapunov function over T timeslots, we define the T -
slot Lyapunov drift as follows,

∆T (t) , E{L(t+ T )− L(t)|Q(t)} . (15)

In addition, we would like to minimize the long-term energy
cost of the system as defined in (13). Hence, following the
drift-plus-penalty approach [18], we add the expected energy
cost of the system to (15), which results in the following drift-
plus-penalty expression,

∆T (t) + V · E{
t+T−1∑
τ=t

Cost(τ)}, (16)

where the parameter V is chosen so as to control the trade-
off between energy cost and congestion (reflected in queue

backlogs) in the network. The next derivation step in Lyapunov
optimization is to find an upper bound on this expression. We
show that the following theorem holds.

Theorem 1. Let V > 0 and t = kT for some k ∈ Z+. For any
set of possible activation decisions Y (t) and user associations
µ(t), we have,

∆T (t) ≤ BT

− E{
t+T−1∑
τ=t

∑
lj∈L

Qj(τ)
[ ∑
bi∈B

yi(t)µji(τ)−Aj(τ)
]
|Q(t)}

+ V E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)Ci(τ)},

where, B = 1
2m(A2

max + µ2
max).

Proof: Assume τ ∈ [t, t + T − 1]. Squaring the queuing
dynamics (10), the following inequality is obtained,

Qj(τ + 1)2 ≤Qj(τ)2 + [
∑
bi∈B

yi(t)µji(τ)]2 +Aj(τ)2

−2Qj(τ)
[ ∑
bi∈B

yi(t)µji(τ)
]

+ 2Aj(τ)Qj(τ) .

(17)

Summing (17) over all locations lj ∈ {l1, . . . , lm} and using
inequalities

∑
bi∈B yi(t)µji(τ) ≤ µmax and Aj(τ) ≤ Amax,

we have,
1

2

∑
lj∈L

[
Qj(τ + 1)2 −Qj(τ)2

]
≤ 1

2
m(A2

max + µ2
max)

−
∑
lj∈L

Qj(τ)
[ ∑
bi∈B

yi(t)µji(τ)−Aj(τ)
]
.

By taking the expectation of both sides w.r.t to arrival traffic
from BSs to locations conditioned on Q(t), it is obtained that,

∆1(τ) ≤ B−

E{
∑
lj∈L

Qj(τ)
[ ∑
bi∈B

yi(t)µji(τ)−Aj(τ)
]
|Q(t)} . (18)

Summing (18) over τ = [t, . . . , t+T−1] and adding the cost
term V E{

∑t+T−1
τ=t

∑
bi∈B yi(t)Ci(τ)}, yields the following:

∆T (t) ≤ BT

− E{
t+T−1∑
τ=t

∑
lj∈L

Qj(τ)
[ ∑
bi∈B

yi(t)µji(τ)−Rj(τ)
]
|Q(t)}

+ V E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)Ci(τ)} .

(19)

The rule of Lyapunov optimization is to choose the control
action so as to minimize the right-hand side of (19). To do so,
we need information on the queue backlogs Qj(τ) in timeslots
τ = t, t + 1 . . . , t + T − 1, which is not available at the
beginning of the frame which is t. Therefore, we approximate



the queue backlog at each timeslot τ , i.e., Qj(τ), by the queue
backlog at the beginning of the frame, i.e., Qj(t). However,
doing so loosens the upper bound obtained in (19) as explained
in the following. From queuing dynamics (10), the following
inequality holds for every timeslot τ ∈ [t, t+ T − 1],

Qj(t)− (τ − t)µmax ≤ Qj(τ) ≤ Qj(t) + (τ − t)Amax .

Therefore, from (19), we obtain that,

∆T (t) ≤ BT − E{
t+T−1∑
τ=t

∑
lj∈L

[
Qj(t)− (τ − t)µmax

]
×
[ ∑
bi∈B

yi(t)µji(τ)−Aj(τ)
]
|Q(t)}

+ V E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)Ci(τ)},

which, leads to the following expression,

∆T (t) ≤ BT−

E{
t+T−1∑
τ=t

∑
lj∈L

Qj(t)
[ ∑
bi∈B

yi(t)µji(τ)−Aj(τ)
]
|Q(t)}

+
T (T − 1)

2
mµmax[µmax −Amin]

+ V E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)Ci(τ)} .

Define B1 = B+ T−1
2 mµmax[µmax−Amin]. It follows that,

∆T (t) ≤ B1T−

E{
t+T−1∑
τ=t

∑
lj∈L

Qj(t)
[ ∑
bi∈B

yi(t)µji(τ)−Aj(τ)
]
|Q(t)}

+ V E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)Ci(τ)} .

(20)

In the next section, we show how this expression can be
used to design our control algorithm.

IV. SOLUTION

Our goal is to minimize the R.H.S. of (20) or equivalently
maximize the following term,

E{
t+T−1∑
τ=t

∑
lj∈L

Qj(t)
[ ∑
bi∈B

yi(t)µji(τ)−Aj(τ)
]
|Q(t)}

− V E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)Ci(τ)} .

(21)

Knowing the average arrival rate for each location j, the
term (21) is reduced to the following,

E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)
[ ∑
lj∈L

Qj(t)µji(τ)− V Ci(τ)
]
} . (22)

Using (22), the optimization problem now can be stated as
the joint optimization of user association (determining µ′ijs)
at each timeslot and base station activation (finding optimal
activation vector Y ) at the beginning of each frame.

Assume that initially all the queues are empty. For a
given V > 0, It has been shown [19] that any method that
maximizes (22) satisfies the following

lim sup
t→∞

1

t

t−1∑
τ=0

Cost(τ) ≤ Cost∗ +
D

V
(23)

where Cost∗ is the minimal achievable long-term cost that
stabilizes queues under any activation policy and D is a
constant. This indicates that by increasing V the distance
between the achieved cost and the optimal one can be made
arbitrarily small. Note that larger V means larger queue sizes
as we usually have performance-backlog trade-off [19].

To solve the problem (22), we need to make a few simpli-
fying assumptions. Recall that reducing the number of active
base stations will reduce energy cost. Therefore, we consider
the worst case energy cost when activating a BS. Particularly,
we assume that when a BS is activated, it transmits at maxi-
mum transmission power. Fully utilizing the active BSs seems
to be the best policy as base power consumed for cooling and
idle mode signaling is comparable with its transmission power
consumption. Thus, in (22), Ci(τ) is replaced with constant
Ci such that Ci(τ) ≤ Ci. Note that by reducing the number
of active BSs, we lean more towards energy cost reduction
and may increase queue sizes in the network. On the other
hand, the amount of backlog in the system can be controlled
by choosing the right value of control parameter V .

In addition, recall that to compute the optimal user associa-
tions, only the queue backlog information at the beginning of
a frame is used in (22). This fact along with the assumption
activation decisions do not change during the frame indicates
that, there is an optimal solution to (22) in which associations
between base stations bi and locations lj , i.e., µ̄ji, are constant.

Taking the above assumptions into consideration, prob-
lem (22) is transformed to the following problem,

P2: Maximize N(Y ) =
∑
bi∈B

yi
[ ∑
lj∈L

Qj µ̄ji − V Ci
]

Subject to: µ̄ji ≤ γijRij , ∀lj ∈ L, bi ∈ B∑
lj∈Li

γij ≤ 1, ∀bi ∈ B∑
bi∈Bj

γijRij ≤ Qj ,

(24)

N(Y ) is called the net utility of the system. Qj denotes the
queue backlog of location lj at the beginning of the current
time frame. The rate that transfered to BS bi intended for
location lj i.e., µ̄ji cannot be larger than the rate supported
by the BS i.e., γijRij . Rij is computed based on long-term
average power gain between bi and lj . Moreover, rate allocated
to lj cannot exceed its demand i.e., Qj . P2 belongs to the
class of maximum facility location [24] problems which are
generally NP-hard.



In the following, based on the concept of generalized
network flows [20], we demonstrate that Problem P2 is a
nonmonotone submodular maximization problem [21]. This
property allows us to employ approximation algorithms pro-
posed to solve these types of problems [21], [22]. The
demonstration is through the decomposition of the objective
into two joint goals. The first part is to choose active base
stations and associate users to them so as to maximize the
following term, ∑

bi∈B

yi
[ ∑
lj∈L

Qj µ̄ji
]
, (25)

which is the sum of flows from BSs to users. The second
part is to choose active base stations so as to minimize the
following term, ∑

bi∈B

yiV Ci, (26)

which is the energy cost of active base stations. In the next
sections, the concepts of submodular functions and generalized
flows are introduced in order to solve this problem.

A. Submodular Functions

Submodular functions are discrete counterparts of con-
vex/concave functions3. A set function f(.) defined over the
ground set V is submodular if it satisfies the following property
for all A ⊆ B ⊆ V\{v},

f(A+ v)− f(A) ≥ f(B + v)− f(B) . (27)

This property is called the diminishing return property as it
states that adding an element to a smaller context would make
more difference in the function value than adding it to a larger
context. If negation of (27) holds for all A ⊆ B ⊆ V\{v},
then the function is called supermodular. A set function f
is monotone if f(A) ≤ f(B) for all A ⊆ B. If f and g
are submodular functions then αf + βg is submodular for
any α, β ≥ 0. A linear (modular) function f is defined as
f(A) =

∑
i∈A wi for some weight function w : V → R.

Linear functions are both submodular and supermodular.

B. Generalized Maximum Flow

Generalized network flow problems are similar to the tra-
ditional network flow problems except that a link gain is
defined on each link. Let G = (V, E) be a directed graph.
Let uvw ≥ 0, γvw > 0, and fvw denote capacity, gain, and
flow on link (v, w). The received flow at w from v will be
given by γvw ·fvw. Each node v has excess dv . If dv > 0, v is
a source. There also exists a sink node t. The maximum flow
problem for G is an optimal solution to the following linear

3They share properties of both types of functions. Similar to convex
functions, their minimum value can be obtained in polynomial time while
finding the maximum is NP-hard. Also similar to concave functions, they
feature diminishing return property.

program:

Maximize
∑
v

γvtfvt,

subject to:
∑
w

fvw − γwvfwv ≤ dv, ∀v ∈ V

fvw ≤ uvw, ∀(v, w) ∈ E
fvw ≥ 0, ∀(v, w) ∈ E .

(28)

The first constraint ensures that the flow out of a source does
not exceed its capacity. Suppose there exists a set function
that maps every subset of V to the maximum generalized flow
obtained from only the sources included in that subset. It has
been shown that the this function is submodular [20].

To show that the maximum base station flow problem (25)
is submodular, we extend the system graph Gs defined in
Section II as follows. A virtual sink t is added to the set of
nodes. Also arcs (j, t) are added to connect every location lj to
t. The capacity of each arc (j, t) and its gain are both set to the
queue backlog of location lj , i.e., Qj . In addition, the excess
from each base station is assumed to be 1 which represents
the whole fraction of resources that can be allocated to users.
Gain and capacity of each arc connecting BS bi to location lj
are set to Rij . It follows that the maximum generalized flow
on the constructed graph is equal to the optimal flow obtained
from (25). Based on the results in [20], this demonstrates that
maximum BS flow problem is submodular.

Moreover, the energy cost component of the Problem
P2 (24) is linear and hence supermodular. Since

∑
bi∈B V Ci

is supermodular, −
∑
bi∈B V Ci is submodular, which means

that (24) is submodular due to the closure of submodular
functions under the addition operation.

C. Approximate Solutions

We first assume that the net utility is nonnegative for all
possible subsets of B that are active, though it might be
nonmonotone. This happens when the costs of activating BSs
are small compared to the flow rates that they provide to
users. Then, P2 (24) problem is an instance of maximizing
a nonnegative nonmonotone submodular function. Hence, to
solve it, we can employ general combinatorial solutions to
this type of problems as presented, for example, in [21]. The
algorithm presented here (see Algorithm 1) is based on the
work by Buchbinder et al. [22] that has a very simple structure
and guarantees finding a 1

3 -optimal solution.
The algorithm starts with sets X and Y initialized to ∅ and

B, respectively. Every BS bi ∈ B is considered and both sets
agree on its inclusion in the final solution. If the utility (added
flow minus the BS cost) of adding the BS to set X is greater
than the lost utility of removing it from Y , it will be added
to X . Otherwise, it will be removed from Y . At the end, both
sets are identical and give the set of the base stations to be
activated. The algorithm runs O(n) number of times, scanning
all the BSs. In each iteration, to obtain the added utility, a
linear program similar to (28) is solved. The running time of
the algorithm is the product of O(n) and the running time
of solving the linear program which is dependent on the type



of linear optimization method employed. For example, linear
optimization can be carried out in O( n

3

lnnS) [23] where S is
the bit length of data and n is dimension of the optimization
vector.

Algorithm 1: Set-Matching Activation Algorithm
Input: B
Output: Y
begin
X ← ∅;
Y ← B;
foreach bi ∈ B do

rx ← N(X ∪ bi)−N(X );
ry ← N(Y\bi)−N(Y);
if rx ≥ ry then
X ← X ∪ bi;

else
Y ← Y\bi;

yi ← 1, ∀bi ∈ X ;

For instances of P2 that nonnegativity property cannot be
assumed e.g., in sparse networks or when the cost of activating
a BS is very high, the above algorithm cannot provide any
optimzality guarantee. In fact when this is the case, non-
monotone submodular maximization is inapproximable [24].
To deal with these situations, a greedy algorithm is presented
in Algorithm 2. The intuition behind the algorithm is to make
the best possible decision in each iteration.

The algorithm starts with an empty activation set Y = 0.
At each step, the base station that offers the highest utility
is chosen and added to the set of active BSs. This process
continues until no BS can be found that provides positive
utility for the current set of active BSs. As one base station
is activated in each iteration, the loop is executed at most n
times. In addition, selection of the optimal base station in each
iteration needs solving at most n linear programs, thus greedy
activation needs to solve O(n2) linear programs to obtain the
result. Combining this with the complexity of solving each
linear program gives the the running time of Algorithm 2.

Algorithm 2: Greedy Activation Algorithm
Input: B
Output: Y
begin

Y ← 0;
continue← true;
while continue do

bi∗ ← argmaxbi∈B,yi 6=1N(Y ∪ yi)−N(Y );
u← N(Y ∪ yi∗)−N(Y );
if u > 0 then

yi∗ ← 1;
else

continue← false;

V. NUMERICAL RESULTS

In this section, we conduct a numerical study to better
understand the properties of the proposed solution.

A. Setup

Transmission parameter values are adopted from [25] as the
assumptions regarding channel gains are consistent with the
standard 3GPP propagation models. The power gain between
the sender and a receiver is g = f(d) where d is the distance
from the sender to the receiver in (km). f(d) = 10h0d−κ with
path loss exponent κ = 3.5 and h0 = −14.4. The background
noise is N0 = −174 dbm (Hz−1). The bandwidth is 1 MHz
and maximum power is set to P = 10W .

We consider a network of size 1200m × 1200m. Base
stations are placed on a regular grid. The distance between
each two neighboring BSs is 200m. There are in total 25
base stations in the network. Activation costs of all BSs are
the same. A base station is able to cover users which are
up to 350m away from it. Two scenarios for the distribution
of users in the network are considered: uniform and non-
uniform. In the uniform case, location of a user is chosen
uniformly at random in the network. To distribute users non-
uniformly, nine crowded regions are considered in the network.
Each crowded region is a circle of radius 160m. Users are
divided equally among theses crowded regions and distributed
uniformly within each region.

B. Energy vs delay tradeoff

Our goal is to study the behavior of the proposed algorithm
in terms of energy cost and delay. These parameters can be
approximated indirectly via the number of active BSs and aver-
age queue sizes respectively. Each frame is assumed to consist
of 5 timeslots. Arrival to each location follows a Bernoulli
process. Associated to each location lj is a probability of
acceptance pj . This probability is determined randomly and
independently for each location. With probability pj , 40Kb
is added to the queue of location lj in each timeslot. To
demonstrate how the algorithm responds to variation in the
arrival traffic by the changing the set of active BSs, we divide
frames into framesets. In even-numbered framesets arrived
data goes to the gateway as normal, whereas there is no
arrival in odd-numbered framesets. Each frameset consists of
5 frames. Cost of activating each BS is assumed to be 1100.
For different values of control parameter V , average queue
sizes and the number of active BSs are depicted in Fig. 2. As
can be seen in the figure, initially the queues are empty and no
BS is active. During the first frame, queues are filled up until
the beginning of the next frame at which some base stations
are activated. At this time, queues start to get empty. Overall,
during even-numbered framesets, some of the BSs are active
and queues have data. In odd-numbered, as there is no new
arrival, gradually queues become empty and BSs are turned
off. A notable observation is that by increasing V average
queue sizes are increased. On the other hand, average number
of active BSs is decreased. In addition, we see more variation
both in queue sizes and the number of active BSs. In fact, with



large V ’s, queues should become larger to justify activating
BSs. However, when enough BSs are activated the system
returns to the stable (smaller queues) state quite rapidly which
in turn puts BSs into inactive state. In this set of results on
average only 10 BSs are needed to satisfy the aforementioned
arrival traffic demand. This shows great improvement in terms
of energy consumption compared to activating all 25 BSs in
the network.
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(a) Queue size variation, V = 1.
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(b) Number of active BSs, V = 1.
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(c) Queue size variation, V = 4.
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(d) Number of active BSs, V = 4.
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(e) Queue size variation, V = 10.
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(f) Number of active BSs, V = 10.

0 50 100 150

0

1

2

3

4

5

Timeslot

A
ve
ra
g
e
q
u
eu

e
si
ze

(K
b
)

 

 

V =19

(g) Queue size variation, V = 19.
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(h) Number of active BSs, V = 19.

Fig. 2. Variation of queues and active BSs versus V .
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(b) Nonuniform user distribution.

Fig. 3. Number active BSs varying activation cost.

C. Effect of user distribution

Here, behavior of the algorithm is studied when distribution
of users in the network is changed. To do so, for both cases
of uniform and non-uniform user distribution, the number
of activated base stations is determined varying both the
activation cost and queue sizes. Fig. 3 shows the results. As
can be seen in the figure, increasing the queues pushes more
base stations to the active state while increasing the activation
cost reduces the number of active base stations. In addition,
uniform user distribution associates approximately the same
number of locations to base stations which results in almost
similar utilities for them. In comparison to the non-uniform
user distribution, this allows activating more base stations
when the cost is low. On the other hand, when the cost is
high, activating almost every BS will result in negative utility
which leads to lower number of active BSs compared to the
non-uniform case.

What is interesting, however, is the matching between base
stations and crowded places. This is demonstrated in Fig. 4.
This figure shows snapshots of the network and the corre-
sponding active base stations while increasing the activation
cost. The snapshots are taken from the above results where
queue sizes are equal to 25Kb. As apparent in the figure,
base stations are activated in more populated areas which is
expected according to the definition of utility.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered the dynamic base station
activation problem with the objective of minimizing the long-
term energy cost of the system. We proposed an online
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Fig. 4. Snapshots of network and activated base stations for non-uniform
user distribution (‘∗’).

control algorithm by employing the two-timescale Lyapunov
optimization technique. Our control algorithm does not rely on
the full knowledge of system statistics except some that are
readily available to the cellular network such as queue sizes.
Our numerical results showed that the proposed control algo-
rithm could deliver significant energy savings by dynamically
activating the base stations.
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