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Abstract—There is a rich recent literature on how to assist secure
communication between a single transmitter and receiver at the
physical layer of wireless networks through techniques such as
cooperative jamming. In this paper, we consider how these single-
hop physical layer security techniques can be extended to multi-hop
wireless networks and show how to augment physical layer security
techniques with higher layer network mechanisms such as coding
and routing. Specifically, we consider the secure minimum energy
routing problem, in which the objective is to compute a minimum
energy path between two network nodes subject to constraints
on the end-to-end communication secrecy and goodput over the
path. This problem is formulated as a constrained optimization
of transmission power and link selection, which is proved to be
NP-hard. Nevertheless, we show that efficient algorithms exist to
compute both exact and approximate solutions for the problem.
In particular, we develop an exact solution of pseudo-polynomial
complexity, as well as an ǫ-optimal approximation of polynomial
complexity. Simulation results are also provided to show the utility
of our algorithms and quantify their energy savings compared
to a combination of (standard) security-agnostic minimum energy
routing and physical layer security. In the simulated scenarios, we
observe that, by jointly optimizing link selection at the network
layer and cooperative jamming at the physical layer, our algorithms
reduce the network energy consumption by half.

I. INTRODUCTION

A. Background and Motivation

Protecting the secrecy of user messages is a major concern in

modern communication networks. Due to the propagation prop-

erties of the wireless medium, wireless networks can potentially

make the problem more challenging by allowing an eavesdropper

to have relatively easy access to the transmitted message if

countermeasures are not employed. Our goal is to provide

everlasting security in this wireless environment; that is, we will

consider methods that will prevent an eavesdropper from ever

decoding a transmitted message, even if the eavesdropper has

the capability to record the signal and attempt decryption over a

long period of time. There are two different classes of security

techniques of interest here: cryptographic approaches based on

computational complexity, and information-theoretic approaches

that attempt to obtain perfect secrecy.

The traditional solution to providing security in a wireless

environment is the cryptographic approach: assume that the

eavesdropper will get the transmitted signal without distortion,

but the desired recipient who shares a key with the transmitter

is able to decode the message easily, while the eavesdropper

lacking the key must solve a hard problem that is beyond her/his

computational capabilities.In the information-theoretic approach

to perfect secrecy [1], on the other hand, the goal is to guarantee

that the eavesdroppers can never extract information from the

message, regardless of their computational capability. Wyner [2]

and succeeding authors [3], [4] showed that perfect secrecy

is possible if the channel conditions between the transmitter

and receiver were favorable relative to the channel conditions

between the transmitter and eavesdropper. In this so-called

wiretap channel, perfect secrecy at a positive rate with no pre-

shared key is possible. This clearly satisfies the requirement for

everlasting secrecy, but it relies on favorable channel conditions

that are difficult (if not impossible) to guarantee in a wireless

environment. Hence, information-theoretic secrecy requires a

network design which inhibits reception at the eavesdropper

while supporting reception at the desired recipient.

Our work supports both a cryptographic (computational)

approach or information-theoretic approach. Per above, it is

advantageous in either case to seek or create conditions so as

to inconvenience reception at eavesdropper(s) while facilitating

communication of the legitimate system nodes. This has been

actively considered in the literature on the physical layer of

wireless networks over the last decade, with approaches based on

both opportunism [5], [6] and active channel manipulation [7],

[8] being employed. Most of these works have arisen in the

information-theoretic community and considered small networks

consisting of a source, destination, eavesdropper, and perhaps

a relay node(s) [6]–[12]. More recently, there has been the

active consideration of large networks with the introduction

of the secrecy graph to consider secure connectivity [13]–

[15] and a number of approaches to throughput scaling versus

security tradeoffs [16]–[18]. Hence, whereas there has been a

significant consideration of small single- and two-hop networks

and asymptotically large multi-hop networks, there has been

almost no consideration of the practical multi-hop networks that

lie between those two extremes. It is this large and important

gap that this paper fills.

B. Our Work

Consider a network where system nodes communicate with

each other wirelessly, possibly over multiple hops, such as

in wireless mesh networks and ad hoc networks. A set of

eavesdroppers try to passively listen to communications among

legitimate system nodes. To prevent the eavesdroppers from

successfully capturing communications between system nodes,

mechanisms to thwart such are employed at the physical layer

of the network (i.e., physical layer security). Two nodes that wish

to communicate securely may need to do so over multiple hops

in order to thwart eavesdroppers or simply because the nodes are

not within the reach of each other. While we make no argument

about the optimality or practicality of any specific physical layer



security mechanism, for the sake of concreteness, we focus on

cooperative jamming, which has recently received considerable

attention [7]–[12]. In cooperative jamming, whenever a node

transmits a message, a number of cooperative nodes, called

jammers, help the node conceal its message by transmitting a

carefully chosen signal to raise the background noise level and

degrade the eavesdropping channels. Because our general phi-

losophy applies to any physical layer approach, the framework

can be extended to include other forms of physical layer security.

However, some of the attractive features of cooperative jamming

that motivated us to consider this technique include:

1) Opportunistic techniques [5], [6] that exploit the time-

varying wireless channel may suffer from excessive delays.

For applications that require security without an excessive

delay, active channel manipulation such as cooperative

jamming should be adopted. The price to be paid, in this

case, is the increased interference due to jamming.

2) Multi-antenna systems can also be used to jam eaves-

droppers. However, the use of multiple antennas on every

wireless device may not be feasible due to cost and

size (e.g., wireless sensors). Cooperative jamming is a

distributed alternative to multi-antenna systems.

3) The implementation of node cooperation, while requiring

a more complex physical layer, is advancing rapidly [19],

[20] and has been incorporated in commercial wireless

technologies such as LTE systems [21]. Indeed, node

cooperation at physical layer has been implemented on

software-defined [22] as well as commodity radios [23].

In this general case, the main questions are: (1) how to choose

the intermediate nodes that form a multi-hop path from the

source node to the destination node, and (2) how to configure

each hop at the physical layer with respect to the security and

throughput constraints of the path. Specifically, the problem

we consider in this paper is how to find a minimum cost

path between a source and destination node in the network,

while guaranteeing a pre-specified lower bound on the end-to-

end secrecy and goodput of the path. In a wireless network,

transmission power is a critical factor affecting the throughput

and lifetime of the network. With cooperative jamming at the

physical layer, transmission power is even more important due

to the additional interference caused by jamming signals if they

need to be employed. Thus, in this work, we consider the amount

of end-to-end transmission power as the cost of a path with the

objective of finding secure paths that consume the least amount

of energy. In turn, such paths, by minimizing interference in

the network, result in higher throughput. Note that solutions

employing power only at the nodes transmitting the messages

(and no cooperative jamming) are part of the space over which

the optimization will be performed; thus, if it is more efficient

to not employ cooperative jamming, such a solution will be

revealed by our algorithms.

While it might seem that physical layer security techniques

can be extended to multi-hop networks by implementing them

on a hop-by-hop basis, in general, such extensions sacrifice

performance or are not feasible. The eavesdropping probability

on a link is a function of the power allocation on that link. A

hop-by-hop implementation is unable to determine the optimal

eavesdropping probability and consequently power allocation for

each link in order to satisfy the end-to-end constraints (i.e.,

the chicken-egg problem). Moreover, a hop-by-hop approach

overlaid on a shortest path routing algorithm might pay an enor-

mous penalty to mitigate eavesdroppers on some links (e.g., by

routing through a node with one or more links, that, because of

system geometry, are very vulnerable to nearby eavesdroppers).

A routing algorithm that is designed in conjunction with physical

layer security can selectively employ links that are easier to

secure when it is power-efficient to do so and, in such a way,

minimize the impact of the security constraint on end-to-end

throughput.

Our main contributions can be summarized as follows:

• We formulate the secure minimum energy routing problem

with end-to-end security and goodput constraints as a con-

strained optimization of transmission power at the physical

layer and link selection at the network layer.

• We prove that the secure minimum energy routing problem

is NP-hard, and develop exact and ǫ-approximate solutions

of, respectively, pseudo-polynomial and fully-polynomial

time complexity for the problem.

• We show how cooperative jamming can be used to establish

a secure link between two nodes in the presence of multiple

eavesdroppers or probabilistic information about potential

eavesdropping locations by utilizing random linear coding

at the network layer.

• We provide simulation results that demonstrate the signif-

icant energy savings of our algorithms compared to the

combination of security-agnostic minimum energy routing

and physical layer security.

Finally, while there are numerous works on secure routing

in wireless networks (see, e.g., [24] and references therein),

their focus is on preventing malicious attacks that disrupt the

operation of the routing protocol using such mechanisms as

authentication and cryptography. The focus of this paper, on

the other hand, is on secure transmission of messages via the

most cost-effective paths, which is orthogonal to the secure

routing problem considered in the existing literature. Also, our

approach is complimentary to those security techniques that

rely on network topology [25], [26], by providing a mechanism

to find a minimum-cost path that is information-theoretically

secure, regardless of the diversity of paths in the network.

The rest of the paper is organized as follows. Our system

model is described in Section II. The optimal link and path

cost are analyzed in Sections III and IV. Our routing algorithms

are presented in Section V. Simulation results are discussed in

Section VI, while Section VII concludes the paper. Due to space

limitation, some proofs, technical details and simulation

results are omitted from this version and can be found

(online) in [27].

II. SYSTEM MODEL AND ASSUMPTIONS

Consider a wireless network where each node (legitimate

or eavesdropper) is equipped with a single omni-directional

antenna. A K-hop route Π between a source and a destination

in the network is a sequence of K links connecting the source to



the destination1. We use the notation Π = 〈ℓ1, . . . , ℓK〉 to refer

to a route that is formed by K links ℓ1 to ℓK . A link ℓk ∈ Π is

formed between two nodes Sk and Dk on route Π. We assume

that every link ℓk is exposed to a set of (potential) eavesdroppers

denoted by Ek. Whenever Sk transmits a message to Dk, a set of

trusted nodes, called jammers, cooperate with Sk to conceal its

message from the eavesdroppers in Ek by jamming Sk’s signal

at the eavesdroppers. The set of the jammers cooperating with

Sk is denoted by Jk =
{

J1 . . . , J|Jk|

}

, where |A| denotes the

cardinality of set A. Throughout the paper, we use the notation

ℓk = (Sk, Dk, Ek,Jk) to identify link ℓk.

In the following subsections, for notational simplicity, we may

drop the link index k whenever there is no ambiguity.

A. Wireless Channel Model

Consider the discrete-time equivalent model for a transmission

from node S to node D. Let xS be the normalized (unit-power)

symbol stream to be transmitted by S, and let yD be the received

signal at node D. We assume that transmitter S is able to control

its power PS in arbitrarily small steps, up to some maximum

power Pmax. Let nD denote the receiver noise at D, where

nD is assumed to be a complex Gaussian random variable with

E
[

|nD|2
]

= N0. The received signal at D is expressed as

yD =
√

PS hS,D xS + nD, (1)

where hS,D is the complex channel gain between S and D. The

channel gain is modeled as hS,D = |hS,D|eθS,D , where |hS,D|
is the channel gain magnitude and θS,D is the uniform phase.

We assume a non line-of-sight environment, implying that |hS,D|
has a Rayleigh distribution, and that E[|hS,D|2] = 1/dαS,D, where

dS,D is the distance between nodes S and D, and α is the path-

loss exponent (typically between 2 and 6). This is the standard

narrowband fading channel model employed in the physical layer

literature [28].

B. Adversary Model

We limit our attention to non-colluding passive eavesdroppers

as in prior work [6]–[12]. Although there are other forms of

adversarial behavior, their consideration is beyond the scope of

this paper.While the literature on physical layer security often

assumes not only eavesdropper locations but also either perfect

(e.g., [8]) or imperfect (e.g., [12]) knowledge at the transmitters

and jammers of the complex channel gains of the eavesdropping

channels (i.e., availability of instantaneous eavesdropper channel

state information (CSI)), we consider the more realistic scenario,

in which CSI for eavesdropping channels is not available.

Specifically, we assume that each link ℓk is subject to po-

tential eavesdropping from a set of locations denoted by Ek =
{

E1, . . . , E|Ek|

}

, where the probability of eavesdropping from

location Ei is given by p(Ei). Although our model cannot be

applied to every possible scenario, it is more general compared

to the models in the literature on physical layer security (see [7]–

[12], and references therein) and can be used to represent a

wide range of eavesdropping scenarios. For example, setting

all p(Ei)’s to 1 for a link models multiple eavesdroppers for

that link. Other examples include military scenarios where the

1The terms “path” and “route” are used interchangeably in the paper.

locations of enemy installations are known, or wireless networks

where a malicious user(s) has been detected. In general, for any

given link, there is only a limited region around the link that can

be exploited for eavesdropping (due to the attenuation of wireless

signals). By dividing the effective eavesdropping region to a few

smaller areas (for example, by tessellating the eavesdropping

region [29]), one can compute the most effective eavesdropping

location within each area, and consequently, construct the set of

eavesdropping locations for that link. As the uncertainty about

the location of eavesdroppers increases, so does the cost of

establishing a secure link as will be shown in the next section.

C. Physical Layer Security Model

Consider a secure link formed between source S and receiver

D with the help of jammers J . For the moment, we assume

that cooperative jamming is implemented at the physical layer

to deal with a single eavesdropper E located at a fixed position.

Later, in Section III, we show how this physical layer primitive

can be used to provide security against multiple eavesdroppers

or unknown eavesdropping locations.

When node S transmits a message, there are multiple ways in

which cooperative jamming by system nodes can be exploited,

ranging from relatively simple noncoherent techniques to sophis-

ticated beamforming techniques [30]. Since the implementation

of beamforming in other contexts, with the same challenges

of synchronization in the wireless environment, is advancing

rapidly [19], [20], we assume that the jammers cooperatively

beamform a common artificial noise signal z to the receiver in

such a way that their signals cancel out at the receiver [31]. The

noise signal z is transmitted in the null space of the channel

vector hD = [hJ1,D, hJ2,D, . . . , hJ|J |,D]T where, hJi,D denotes

the channel gain between jammer Ji and destination D and A
T

denotes the conjugate transpose of vector A. Thus, the signal

transmitted by the jammers can be expressed as sJ = h
⊥
D z,

where h
⊥
D is a vector chosen in the null space of hD. It follows

that the total transmission power of the jammers is given by

PJ =‖ h
⊥
D ‖2. Then, the signals received at the destination and

the eavesdropper are given by

yD =
√

PS hS,D xS + nD,

yE =
√

PS hS,E xS + h
T
Eh

⊥
Dz + nE ,

(2)

where, hE = [hJ1,E , hJ2,E , . . . , hJ|J |,E ]
T is the channel gain

vector between the jammers and the eavesdropper, and nD and

nE denote the complex Gaussian noise at the destination and

eavesdropper, respectively, with E
[

|nD|2
]

= E
[

|nE |2
]

= N0.

Although the jammers try to prevent the eavesdropper from

successfully receiving the message, there is still some probability

that the eavesdropper actually obtains the message due to the

fact that the channel to the eavesdropper is unknown in our

model, i.e., hE and hS,E are unknown. Recalling that the

signal-to-interference-plus-noise ratio (SINR) at the destination

is controlled via power control, let γE denote the minimum

required SINR at the eavesdropper in order to violate the

security constraints of the protocol (e.g., for the cryptographic

case, the SINR above which the eavesdropper can record a

meaningful version of the transmitted signal; in the information-

theoretic case, the SINR above which, for a given wire-tap code,



the equivocation does not equal the entropy of the message).

Let SINRE denote the SINR at the eavesdropper. We have

(see [27]):

P {SINRE ≥ γE} ≤ e
−N0γE

dα
S,E
PS

1 +
γEdα

S,E

PS

∑

Ji∈J
PJ

dα
Ji,E

, (3)

where dA,B is the distance between nodes A and B. In the

remainder of the paper, we use (3) in equality form to compute

the eavesdropping probability for a given jamming power PJ .

While this results in a (slightly) conservative power allocation,

it is sufficient to satisfy the security requirement of each link.

D. Routing Model

Consider a K-hop route Π = 〈ℓ1, . . . , ℓK〉 between a source

and destination in the network. Let L denote the set of all

possible routes between the source and destination. Let C(Π)
denote the cost of route Π, which is defined as the summation

of the costs of the links forming the route. With slight abuse of

the notation, we use C(ℓk) to denote the cost of link ℓk as well.

The secure routing problem is then defined as follows.

SMER: Secure Minimum Energy Routing Problem

Consider a wireless network and a set of eavesdroppers dis-

tributed in the network. Given a source and destination, find a

minimum energy path Π∗ between the source and destination

subject to constraints π and λ on the end-to-end successful

eavesdropping probability and goodput of the path respectively.

Let λ(ℓk) denote the goodput of link ℓk ∈ Π. We have,

λ(Π) = min
ℓk∈Π

λ(ℓk), (4)

where λ(Π) denotes the goodput of path Π. Since goodput of a

link is an increasing function of the transmission power of the

transmitter of that link, a necessary condition for minimizing

power over the path Π is given by λ(ℓk) = λ, for all ℓk ∈ Π.

Thus, our power allocation scheme (see Section III) establishes

links that achieve exactly the minimum required goodput λ. Con-

sequently, the constraint on the end-to-end goodput is satisfied

by any path in the network, and hence does not need to be

explicitly considered when solving SMER. As such, SMER can

be formally described by the following optimization problem:

Π∗ = argmin
Π∈L

∑

ℓk∈Π

C(ℓk)

s.t. P {eavesdropping on route Π} ≤ π,

(5)

for some pre-specified π (0 < π < 1).

The constraint on the route eavesdropping probability in the

above optimization problem can be expressed in terms of the

eavesdropping probability on individual links ℓk that form the

route Π, as
∏

ℓk∈Π(1 − πk) ≥ 1 − π, where πk (0 < πk < 1)

denotes the successful eavesdropping probability on link ℓk.

Lemma 1: The cost of route Π is a monotonically increasing

function of
∏

ℓk∈Π(1− πk).
Proof: See [27].

Thus, to minimize the cost of the optimal route, the in-

equality constraint can be substituted by the equality constraint

∏

ℓk∈Π(1 − πk) = 1 − π. On each link ℓk, it is desirable to

keep the successful eavesdropping probability πk close to 0. In

this case, the product
∏

ℓk∈Π(1 − πk) can be approximated by

the expression 1 −∑

ℓk∈Π πk. By substituting the approximate

linearized constraint in the routing problem, the following opti-

mization problem is obtained

Π∗ = argmin
Π∈L

∑

ℓk∈Π

C(ℓk)

s.t.
∑

ℓk∈Π

πk = π ·
(6)

In the rest of the paper, we focus on this optimization problem.

III. SECURE LINK COST

Let C(ℓk) denote the cost of link ℓk = (Sk, Dk, Ek,Jk). The

link cost is composed of two components: (1) the source power,

and (2) the jammers power. Then, C(ℓk) is given by:

C(ℓk) = P
(k)
S + P

(k)
J , (7)

where P
(k)
S and P

(k)
J denote, respectively, the average source

and jammers power on link ℓk. In the following subsections,

we will compute the optimal values of P
(k)
S and P

(k)
J under the

constraint of eavesdropping probability πk.

A. Source Transmission Power

Assume that the (complex) fading channel coefficient hSk,Dk

is known at the source Sk of the given link ℓk. Because we

are trying to maintain a fixed rate (and, hence, a fixed received

power), the source will attempt to invert the channel using

power control. However, for a Rayleigh frequency-nonselective

fading channel, as assumed here, the expected required power for

such an inversion goes to infinity, and, hence truncated channel

inversion is employed [28, Pg. 112]. In truncated channel in-

version, the source maintains the required link quality except

for extremely bad fades, where the link goes into outage. When

a link is in a bad fade, the source will need to wait until the

link improves before transmitting the packet and delay will

be incurred. To limit the delay, we maintain a given outage

probability ρ per link. Then, for a given packet, we need to

transmit at rate R = λ/(1− ρ) to maintain the desired goodput

λ. Associated with that rate R is the SINR threshold γD = 2R−1
required for successful reception at the link destination [28].

Let P
(k)
S denote the average transmission power of Sk, and

let P
(k)
S (|hSk,Dk

|2) denote the power used for a given packet

as a function of the power |hSk,Dk
|2 in the fading channel

between Sk and Dk. Per above, below some threshold τ ,

the source will wait for a better channel. From the Rayleigh

fading model employed, |hSk,Dk
|2 is exponential with parameter

1/dαSk,Dk
; hence, τ = − ln(1− ρ) · dαSk,Dk

and truncated chan-

nel inversion yields:

P
(k)
S (|hSk,Dk

|2) =

{

γD

|hSk,Dk
|2

· dαSk,Dk
, |hSk,Dk

|2 ≥ τ

0, |hSk,Dk
|2 < τ

(8)

Then, the average power employed on the link is given by:

P
(k)
S =

1

1− ρ

∫ ∞

τ

γD
x

· dαSk,Dk
e−xdx = γD · kρ · dαSk,Dk

, (9)

where kρ is a constant that depends on the parameter ρ.



B. Jammers Transmission Power

Our physical layer security primitive described in Section II

can provide security only against a single eavesdropper at a

fixed location. To achieve security in the presence of multiple

eavesdroppers or uncertainty about the location of eavesdroppers,

we utilize random linear coding on each link (other forms of

coding [32] can be equally incorporated).

Consider link ℓk between transmitter Sk and receiver Dk

with the associated set of potential eavesdropping locations

Ek =
{

E1, . . . , E|Ek|

}

. Transmitter Sk performs coding over

|Ek| messages accumulated in its buffer for transmission to Dk.

To generate a coded message, Sk selects a random subset of

the messages in its buffer and adds them together (module-2).

To recover the original messages, the receiver needs to collect

|Ek| linearly independent coded messages. In order to transmit

only linearly independent coded messages, Sk keeps track of the

coded messages it has transmitted so far. Let mi denote the i-
th coded message that is being transmitted to Dk. To securely

transmit mi, Sk employs the cooperative jamming primitive of

Section II assuming that there is an eavesdropper in location

Ei ∈ Ek. Since each coded message is hidden from at least one

eavesdropping location, it is guaranteed that an eavesdropper

located at location Ej , for all Ej ∈ Ek, will not be able to

obtain any information about the original messages.

Note that our model can be extended to handle colluding

eavesdroppers by requiring that at least one of the coded mes-

sages be protected against all eavesdroppers (see [27]).

1) Single Eavesdropper: Let πk(|hSk,Dk
|2) denote the prob-

ability the eavesdropper achieves SINR greater than threshold

γE for a given source to destination channel hSk,Dk
(recall that

the source power will fluctuate as hSk,Dk
fluctuates, and this

will impact the interception probability at the eavesdropper). To

maintain a given πk, it is sufficient to maintain πk(|hSk,Dk
|2) =

πk across all |hSk,Dk
|2. Under this condition, using (3), it is

obtained that

πk =
1

1 +
γEdα

Sk,Ek

P
(k)
S

∑

Ji∈Jk

P
(k)
J

dα
Ji,Ek

· (10)

2) Multiple Eavesdroppers: Let πk(i) denote the

successful eavesdropping probability on link ℓk
conditioned on having an eavesdropper at location

Ei. The unconditional eavesdropping probability πk

on link ℓk is then given by the approximate relation

πk =
∑

Ei∈Ek
pk(Ei) ·πk(i), where pk(Ei) is the probability of

having an eavesdropper at location Ei. Since jamming power

depends on the location of the eavesdroppers, by optimally

allocating jamming power to each potential eavesdropping

location, we can minimize the total jamming power across all

eavesdropping locations for a given link.

The minimum jamming power for link ℓk over all eaves-

dropping locations Ek is given by the solution of the following

optimization problem:

min
P

(k)
J

(i)

∑

Ei∈Ek

P
(k)
J (i)

s.t.
∑

Ei∈Ek

pk(Ei) · πk(i) = πk,
(11)

where P
(k)
J (i) =

∑

Jj∈Jk
P

(k)
j (i) is the jamming power condi-

tioned on the eavesdropping location Ei. Define φk(i) as follows

φk(i) =
γE

γSkρ

( dSk,Ei

dSk,Dk

)α ∑

Jj∈Jk

1
dα
Jj,Ei

· (12)

After substituting for πk(i) using (10), we obtain the following

optimization problem:

min
P

(k)
J

(i)

∑

Ei∈Ek

P
(k)
J (i)

s.t.
∑

Ei∈Ek

pk(Ei)

1 + φk(i)P
(k)
J (i)

= πk ·
(13)

The optimization variables in this optimization problem are

the jamming powers P
(k)
J (i). Using the Lagrange multipliers

technique, it is obtained that [27]

πk(i) =
1

φk(i)

1/
√

pk(Ei)
φk(i)

∑

Ei∈Ek

√

pk(Ei)
φk(i)

πk · (14)

Consequently, the average jamming power per message on link

ℓk is given by:

P
(k)
J = 1

πk

1
|Ek|

(

∑

Ei∈Ek

√

pk(Ei)
φk(i)

)2

− 1
|Ek|

∑

Ei∈Ek

1
φk(i)

· (15)

IV. SECURE PATH COST

In this section, we formulate the optimal cost of a given path

Π subject to an end-to-end eavesdropping probability π.

A. Optimal Path Cost

Consider a given path Π. We find the optimal cost of path Π
by solving the optimization problem (6). Consider link ℓk ∈ Π,

where ℓk = (Sk, Dk, Ek,Jk). Define xk and yk as follows:

xk = 1√
|Ek|

∑

Ei∈Ek

√

pk(Ei)
φk(i)

, and, yk = 1
|Ek|

∑

Ei∈Ek

1
φk(i)

·

By substituting the above expressions in the optimal routing

formulation described in (6), the following optimization problem

is obtained for minimizing the cost C(Π) of route Π:

min
P

(k)
J

∑

ℓk∈Π

P
(k)
S + P

(k)
J

s.t.
∑

ℓk∈Π

( x2
k

yk + P
(k)
J

)

= π ·
(16)

The optimization variables in this optimization problem are

jamming powers P
(k)
J . Using the Lagrange multipliers technique,

the following relation for the optimal eavesdropping probability

πk on link ℓk is obtained [27]

πk =
xk

∑

ℓi∈Π xi

π · (17)

For a given route Π and end-to-end eavesdropping probability

π, we can use (17) to divide π between links ℓk ∈ Π. Having

computed πk, the optimal power allocated to jammers on link

ℓk is given by the following expression:

P
(k)
J =

1

π
· xk

∑

ℓi∈Π

xi − yk, (18)

which yields the following expression for the cost of link ℓk

C(ℓk) =
(

(γSkρ)·d
α
Sk,Dk

−yk
)

+
1

π

(

xk

∑

ℓi∈Π

xi

)

, for ℓk ∈ Π · (19)



Consequently, the cost of secure route Π is given by:

C(Π) =
∑

ℓk∈Π

(

(γSkρ) · dαSk,Dk
− yk

)

+
1

π

(

∑

ℓk∈Π

xk

)2 · (20)

To this end, for a given route Π between the source and

destination, the optimal cost of Π subject to the end-to-end

eavesdropping constraint π is given by (20). The optimal cost

is achieved by allocating P
(k)
S and P

(k)
J to each link ℓk ∈ Π

using (9) and (18), respectively. Thus, SMER is reduced to

finding a path, among all possible paths between the source

and destination, that minimizes the optimal path cost (20). The

following proposition formally states this result.

Proposition 1: SMER with end-to-end eavesdropping and

goodput constraint π and λ, respectively, is equivalent to finding

a path that minimizes the optimal path cost C(Π) as given

by (20).

B. Optimal Path Cost Structure

Define C1(ℓk) and C2(ℓk) as follows:

C1(ℓk) = (γSkρ) · dαSk,Dk
− yk,

C2(ℓk) =
1√
π
· xk ·

(21)

Then the optimal path cost (20) can be expressed as

C(Π) =
∑

ℓk∈Π

C1(ℓk) +
(

∑

ℓk∈Π

C2(ℓk)
)2

· (22)

It is important to note that, while the C1(ℓk)’s may assume

negative values, the path cost structure in (22) is monotonous

in the number of links, i.e., if a path Π̂ is a subset of a path

Π, then C(Π̂) < C(Π). This is because π < 1, and it can be

shown that
(
∑

ℓk∈Π xk

)2
>

∑

ℓk∈Π yk. Consequently, (22) is

minimized by a simple path.

V. SECURE MINIMUM ENERGY ROUTING

In this section, we begin by establishing that SMER is

NP-hard. Then, by exploiting the structure of the optimal so-

lution, we employ dynamic programming to obtain a pseudo-

polynomial time algorithm that provides an exact solution. This

means that the problem is weakly NP-hard [33], thus fully

polynomial time approximate schemes are possible. Accordingly,

we conclude the section by presenting a fully polynomial time

ǫ-approximation algorithm for the problem, which takes an

approximation parameter ǫ > 0 and after running for time

polynomial in the size of the network and in 1/ǫ, it returns a

path whose cost is at most (1 + ǫ) times more than the optimal

value.

A. Computational Complexity

We first show that our routing problem is NP-hard.

Theorem 1: Problem SMER is NP-hard.

Proof: We describe a polynomial time reduction of the

Partition problem [33] to SMER. Given a set of integers

S = {k1, k2, . . . , kn}, with
∑n

i=1 ki = 2 · K, the Partition

problem is to decide whether there is a subset S ′ of S such

that
∑

i∈S′ ki = K. Given an instance S = {k1, k2, . . . , kn}
of the Partition problem, with

∑n
i=1 ki = 2 · K, we construct

the following network. The set of nodes is identical to S . For

i = 1 to n − 1, we interconnect node ki to node ki+1 with

two links, as follows: an “upper” link ℓ
(u)
i , to which we assign

C1(ℓ(u)i ) = 2 ·K · ki and C2(ℓ(u)i ) = 0, and a “lower” link ℓ
(w)
i ,

to which we assign C1(ℓ(w)
i ) = 0 and C2(ℓ(w)

i ) = ki.
Lemma 2: The answer to the Partition problem is affirmative

iff the solution to SMER in the constructed network, i.e., the

minimum value of (22) of a path between nodes k1 and kn,

equals 3 ·K2.

Proof: See [27].

Since the Partition problem is NP-complete [33], the theorem

follows.

B. Pseudo-Polynomial Time Exact Algorithm

First, scale the values of the C2(ℓ)’s for any link ℓ in the

network so that they are all integers. Let B denote an upper-

bound on the sum of the C2(ℓ)’s on any simple path. A trivial

bound is given by B = (N − 1) · Cmax
2 , where N is the number

of nodes in the network and Cmax
2 is the maximum value of

C2(ℓ) among all network links.

Algorithm 1 DP-SMER (source s, dest. d, network N ).

/* path cost from s to itself is always 0 */
for b = 1 → B do

Cs(b) = 0
/* initial path cost from s to any other node is infinite */
for all ni ∈ N , ni 6= s do

for b = 1 → B do
Ci(b) = ∞

for b = 1 → B do
/* all node pairs can form a link and be neighbors */
for all ni ∈ N do

for all nj ∈ N do
/* update path cost via the neighboring nodes */
if b+ C2(ℓij) ≤ B then

t = Ci(b) + C1(ℓij)
if t < Cj(b+ C2(ℓij)) then

Πj(b+ C2(ℓij)) = i /* set nj’s parent to ni */
Cj(b+ C2(ℓij)) = t /* update path cost */

/* include the “b” component, i.e., C2, in the path costs */
for b = 1 → B do

Ĉd(b) = Cd(b) + b2

/* choose the best value for reaching the destination */

b∗ = argmin
b

Ĉd(b)

return [Ĉd(b
∗),Π(b∗)]

Our algorithm, termed DP-SMER, is listed above. DP-SMER

iterates over all values of C2(ℓ), i.e., C2(ℓ) = 1, 2, . . . , B, and

for each value of C2(ℓ), it minimizes
∑ C1(ℓ). Upon return, the

algorithm returns the cost of the optimal path from source s to

destination d along with the structure Π that contains the network

nodes that form the path.

Theorem 2: DP-SMER runs in time O(N2 · B), where N
is the number of nodes in the network. Upon completion, the

algorithm returns an optimal solution to Problem SMER.

Proof: See [27].

C. Fully Polynomial Time ǫ-Approximation

As in the previous section, we scale the values of the C2(ℓ)’s
for any link ℓ in the network so that they are all integers and



denote by B an upper-bound on the sum of the C2(ℓ)’s on any

simple path.

The above pseudo-polynomial solution indicates that SMER

is only weakly NP-hard (see [33]), which enables us to apply

efficient, ǫ-optimal approximation schemes of polynomial time

complexity, similar to the case of the widely investigated Re-

stricted Shortest Path problem (RSP, see, e.g., [34] and refer-

ences therein). The RSP problem considers a network where

each link has two metrics, say “cost” and “delay”, and some

“bound” on the end-to-end delay. Then, for a given source-

destination pair, the problem is to find a path of minimum cost

among those whose delay do not exceed the delay bound. This

weakly NP-hard problem admits efficient ǫ-optimal approxima-

tion schemes of polynomial complexity, e.g., [34].

We turn to specify our approximation scheme for SMER

by a simple employment of any solution to the RSP problem.

First, a technical difficulty arises in applying RSP approximation

schemes to SMER. Recall that while link costs as given by (19)

are non-negative, C1(ℓ) can be negative for some links ℓ. In

RSP, specifically in the approximation scheme of [34], it is

assumed that link costs are non-negative. Nevertheless, we show

that the original network with possibly negative link weights can

be safely transformed (i.e., without affecting the identity of the

solution) to an expanded network with non-negative link weights,

by employing the following pre-processing step:

Algorithm 2 Expand_Network (source s, network N ).

1) Add the source node s to the expanded network.
2) For each node u (u 6= s) in the original network, add N − 1

replicas denoted by u(1), u(2), . . . , u(N − 1) to the expanded
network.

3) For each link ℓsu from node s to node u in the original network,
add a link from node s to node u(1) in the expanded network
with the same metrics as for the original link.

4) For each link ℓuv in the original network, where u 6= s, u 6= d,
v 6= s, and for each h = 1, . . . , N − 2, add a link between node
u(h) and node v(h+1) in the expanded network with the same
metrics as for the original link.

5) For each link ℓ in the expanded network, add some (identical to
all links) bias δ ≥ 0 to each link cost C1(ℓ) so that the new link
costs would be non-negative.

The following lemmas establish the relation between the

shortest paths in the original network and the shortest paths in

the expanded network.

Lemma 3: A path that is shortest w.r.t. the biased metric

(C1(ℓ) + δ) among those that obey a bound on the
∑ C2(ℓ)

and have precisely h hops, is also shortest w.r.t. the unbiased

metric C1(ℓ) among those that obey the same bound on
∑ C2(ℓ)

and have precisely h hops.

Proof: See [27].

Lemma 4: A shortest path from source s to node d(h) in the

expanded network has precisely h hops.

Proof: See [27].

For a given approximation value ǫ > 0, let η = ǫ/3. Further-

more, let L be the smallest integer for which ⌈(1 + η)L⌉ ≥ B.

Our algorithm, called ǫ-SMER, is listed below. In this algorithm,

ǫ-RSP refers to an ǫ-optimal approximation solution for RSP.

Algorithm 3 ǫ-SMER (error ǫ, source s, dest. d, net. N ).

Nx = Expand_Network(s, N )
for all ℓ ∈ Nx do

cost(ℓ) = C1(ℓ)
delay(ℓ) = C2(ℓ)

for l = 1 → L do
delay_bound = ⌈(1 + η)l⌉
/* compute the approximate h-hop path */
for h = 1 → N − 1 do

[C(l, h),Π(l, h)] = ǫ-RSP(ǫ, s, d(h),Nx)
/* compute the actual cost as per SMER metric */

Ĉ(l, h) = (C(l, h)− h · δ) + ⌈(1 + η)l⌉2

/* choose the best l and h for reaching the destination */

(l∗, h∗) = argmin
l,h

Ĉ(l, h)

return [Ĉ(l∗, h∗),Π(l∗, h∗)]

In the ǫ-SMER algorithm, for each considered delay bound

⌈(1 + η)l⌉, N − 1 instances of the approximation solution to

the RSP problem, for the same bound, are run on the expanded

network: in each instance h, we consider s to be the source and

d(h) to be the destination. Using Lemma 4, it is straightforward

to verify that, in each instance h, the RSP approximation

obtains a solution that satisfies the required delay bound with

the restriction that the path has precisely h hops (in both the

expanded and the original network). Therefore, per considered

bound on the C2(ℓ) metric and per possible number of hops

up to N − 1, we get an ǫ-optimal path with respect to the

original metric C1(ℓ) (of precisely that many hops). It follows

from Lemmas 3 and 4, that, by comparing all solutions (for

all considered bounds on the C2(ℓ) metric and number of hops

h), we will find a shortest ǫ-optimal path that corresponds to an

ǫ-optimal solution to SMER. This is established next.

Lemma 5: Let Π∗ be an optimal solution (path) to SMER.

Denote by C(Π∗) and C(Π̂), the costs, per the SMER metric, of

the optimal solution and of the solution obtained by ǫ-SMER,

correspondingly. Then:

C(Π̂) ≤ (1 + ǫ) · C(Π∗) · (23)

Proof: See [27].

Lemma 6: The computational complexity of ǫ-SMER is

O(A · 1
ǫ
· log(B) ·N3), where O(A) is the computational com-

plexity of the employed approximation scheme for RSP.

Proof: See [27].

Theorem 3: ǫ-SMER is an ǫ-optimal approximation scheme

of polynomial complexity. In particular, when employing the

approximation solution of [34] to the RSP problem, ǫ-SMER

runs in O(N6 · (log logN + 1
ǫ
) · 1

ǫ
· log(B)) time.

Proof: The RSP scheme of [34] has computational complex-

ity of O
(

N ·M ·(log logN+1/ǫ)
)

for N nodes and M links. In

worst-case, when the network forms a complete graph, we have

M = O(N2). The proof then follows from Lemmas 5 and 6.

More efficient versions of ǫ-SMER should be possible, yet

our goal has been to show that fully polynomial time ǫ-
approximation schemes (FPTAS) exist for the NP-hard problem

SMER.



VI. SIMULATION RESULTS

A. Simulation Environment

We have implemented our routing algorithms in a custom-built

simulator. We simulate a wireless network, in which nodes are

distributed uniformly at random in a 5×5 square area with node

density σ = 3. We also place a number of eavesdroppers in the

network with density σE , as described later. We consider one

eavesdropper per link. Every node has a maximum transmission

power that is set in such a way that the resulting network

becomes connected (the absolute value of the maximum power

does not affect the results). We choose two nodes s and d
located at the lower left and the upper right corners of the

network, respectively, and find paths from s to d. We then

compute the total amount of energy consumed on each path using

different routing algorithms. The performance metric “energy

savings” refers to the percentage difference between total energy

used by different algorithms with respect to the benchmark.

For simulation purposes, we set π = 0.1, σE = 1, N0 = 1,

γD = 0.8, and γE = 0.6, unless otherwise specified. The

numbers reported are obtained by averaging over 10 simulation

runs with different seeds.

B. Simulated Algorithms

In addition to DP-SMER and ǫ-SMER, we have also imple-

mented a security-agnostic algorithm based on minimum energy

routing as a benchmark to measure energy savings achieved

by our algorithms. The benchmark algorithm, called security-

agnostic shortest path routing (SASP), is described below. Note

that some of the optimizations described in Sections III and IV

have been incorporated in SASP, making it a considerably

efficient benchmark (see Subsection VI-C).

Algorithm 4 SASP (source s, dest. d, network N ).

1) Find a shortest path in terms of transmission power between s
and d ignoring eavesdroppers. The standard Dijkstra’s algorithm
can be used for this purpose.

2) Use (17) to allocate an optimal eavesdropping probability to each
link of the computed path.

3) Use (18) to allocate power to jammers on each link with respect
to the allocated eavesdropping probabilities in step (2).

C. Results and Discussion

Effect of Eavesdropper Location on Link Cost. Fig. 1 shows

the cost of establishing a secure link between source S (placed at

the center) and destination D for different eavesdropper locations

and π = 0.001. In the figure, the color intensity at each point

is proportional to the amount of energy required to establish the

link if the eavesdropper is placed at that point. Clearly, by some

maneuvering around an eavesdropper, a significant reduction in

energy cost can be achieved as the eavesdropper becomes almost

ineffective in some locations.

Effect of Optimal Secrecy Allocation on Path Cost. Instead

of optimal allocation of eavesdropping probability and jamming

power (using (17) and (18)) to each link of a path, a simple

heuristic is to divide π equally across the links. That is, if
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Fig. 1: Effect of eavesdropper location on link cost.

the path contains h links, then each link ℓk is allocated suf-

ficient jamming power to satisfy the eavesdropping probability

πk = π/h. In Fig. 2, we have depicted energy savings that can

be achieved “solely” by optimal secrecy allocation compared to

equal allocation for a fixed path that is computed by SASP. Inter-

estingly, as the number of eavesdroppers increases or the signal

propagation becomes more restricted, optimal secrecy allocation

becomes even more important, achieving energy savings of up

to 72% (47%) for α = 4 (α = 2) in the simulated network.
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Fig. 2: Energy savings achieved by optimal secrecy allocation.

Non-uniform Eavesdropper Placement. To gain more insight

about the behavior of different routing algorithms, in this experi-

ment, rather than randomly distributing eavesdroppers in the net-

work, we strategically place them close to the line that connects

the source and destination. Ideally, SMER and ǫ-SMER should

avoid the shortest path that crosses the network diagonally. This

is indeed the behavior observed in the simulations as depicted in

Fig. 3 (x and y axes show network coordinates, while ‘⋆’ and ‘·’
denote, respectively, eavesdroppers and regular network nodes).

As expected, SASP blasts right through the eavesdroppers, while

SMER, 0.1-SMER and 1.0-SMER route around them resulting

in 88%, 86% and 85% energy savings, respectively.
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Fig. 3: Snapshot of paths computed by different algorithms.

Uniform Eavesdropper Placement. In this experiment, eaves-

droppers are placed in the network uniformly at random. As



seen in Fig. 4, our algorithms consistently outperform SASP

for a wide range of eavesdropper densities and eavesdropping

probabilities. In particular, energy savings of up to 99% and

98% (for α = 4) can be achieved by SMER and 0.1-SMER,

respectively.
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Fig. 4: Energy savings with uniform eavesdropper placement.

Effect of Network Size. Fig. 5 shows the energy savings

achieved by different algorithms in networks with varying sizes.

The “network dimension” refers to the length of one side of the

square area that contains the network nodes. As observed from

the figure, the energy saving is an increasing function of the

network size. The reason is that, as the network size increases

so does the average length of the path (in terms of the number

of hops) between the source and destination nodes. The longer

paths provide more opportunities for energy savings on each link

of the path resulting in increased overall energy savings.

Effect of Jamming Set. The cardinality of the jamming

set affects the power allocation to jammers. Fig. 6 show the

energy savings achieved by varying the number of jammers that

participate in secure transmissions on each link. Interestingly, our

experiments show that a small number of jammers, namely 2, is

sufficient to obtain most of the benefits of cooperative jamming,

which should greatly simplify any practical implementation.

VII. CONCLUSION

This paper studied the problem of secure minimum energy

routing in wireless networks. It was shown that while the

problem is NP-hard, it admits exact pseudo-polynomial and

fully polynomial time ǫ-approximation algorithmic solutions.

Furthermore, using simulations, we showed that our algorithms

significantly outperform security-agnostic algorithms based on

minimum energy routing. Finally, we note that our work can be

potentially extended to incorporate other secrecy models. Such

extensions are left for future work.
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