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Abstract—Successive Interference Cancellation (SIC) is a
physical-layer technique that enables reception of multiple over-
lapping transmissions. While SIC has the potential to boost
the network throughput, if the MAC protocol employed in the
network is agnostic to such a capability at the physical-layer, the
full potential of SIC can not be utilized in the network. There
have been a number of studies to design new SIC-aware MAC
protocols or adjust the existing protocols to exploit SIC. Despite
that, the exact effect of MAC protocols on the throughput of
SIC-enabled networks is unknown. In this paper, we propose a
novel SIC-aware MAC protocol based on the disparity of user
channels in a wireless network and analyze its performance. We
consider a simple random access protocol with no SIC as the
base configuration and compare it with three other configurations
with different levels of SIC-awareness. We show that while a SIC-
enabled physical layer without a SIC-aware MAC protocol can
increase the throughput of the network by 1.5x, a specifically
designed MAC protocol is far more efficient achieving up to 3.3x
improvement in throughput. Our SIC-aware MAC protocol is
fully distributed and hence subject to selfish behavior of users.
Thus, we also consider the case where the users behave selfishly.
We model our proposed protocol as a one-shot simultaneous move
game and derive a mixed strategy Nash equilibrium. We also
show that we can set the cost of packet transmission in such
a way that we get the optimal system throughput at the Nash
equilibrium.

I. INTRODUCTION

In traditional multiple access control (MAC) protocols, the
underlying assumption is that concurrent transmission of more
than one packet at a time results in a collision, and all of the
packets need to be re-transmitted. However, advancements in
wireless networks have introduced new multipacket reception
(MPR) techniques which enable reception of multiple over-
lapping packets transmitted concurrently. Due to the advent
of MPR capability in wireless networks, traditional wireless
MAC protocols with the single-user-at-a-time assumption are
no longer optimal. This calls for the design of new wireless
MAC protocols which are tailored for the MPR capability.
In this paper, we specifically focus on random access MAC
protocols designed for a special MPR technique known as
successive interference cancellation.

Successive interference cancellation (SIC) is an MPR tech-
nique that uses the structured nature of interference to de-
code multiple overlapping transmissions [1], [2]. Assume a
composite signal resulting from concurrent transmission of
some packets is received at a receiver. Employing SIC, one
of the overlapping packets (e.g., the one corresponding to the
strongest signal) is decoded first, considering the rest of the

signals as noise. After the first packet is decoded, the receiver
reconstructs the corresponding analog signal and removes it
from the original composite signal. At this stage, the remainder
of the composite signal is free from the interference of the first
overlapping signal. The same technique is applied successively
to decode the remaining signals. Since at each stage, the
remaining signals are treated as noise, the maximum rate
achievable by a user depends not only on its received signal
power but also on the order in which the signals are decoded.
For the overlapping signals to be decodable at the receiver,
other than the order of the decoding, the transmission rate
should also be carefully controlled [3].

SIC-enabled receivers are much simpler than other MPR-
enabled hardwares [1]. This is because they use the same
decoder to decode the composite received signal at different
stages. Therefore, using SIC, neither a complicated decoder
nor multiple antennas is required to enable MPR capability
[3], [4]. It also makes SIC more practical than other MPR
techniques such as joint detection [5]. In addition, it is known
that other multiple access techniques such as CDMA and
OFDMA are no more efficient than SIC [2, Ch. 6]. As a
consequence, SIC has been recently considered in commercial
wireless systems as a way to increase system throughput [6],
[7].

There have been a number of studies in the area of SIC-
aware MAC protocols. It has been shown that SIC can achieve
near Shannon capacity in cellular networks in which communi-
cations are closed-loop and accurate channel estimations exist
(see [1] and references therein). It is also known that SIC
can improve the throughput of wireless LANs. For instance,
Halperin et al. [4] experimentally studied the effect of SIC
in unmanaged wireless networks with carrier sensing. They
concluded that SIC can effectively improve the bandwidth
utilization in wireless networks. In contrast, Sen et al. [8]
reported that SIC may not be a promising approach to improve
the throughput of wireless networks. This arises the question
“By how much can SIC improve the throughput of wireless
networks?”. The question motivates us to perform a careful an-
alytical comparison between different configurations of MAC
and the physical layer, with and without SIC, to find out the
effect of SIC on the performance of wireless networks.

In this paper, we consider a SIC-enabled receiver at the
physical layer. We study a case in which the users in the
network are split into two groups; one group with a high
received power and the other group with a low received power.
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We assume the decoder is capable of decoding at most two
concurrent transmissions1, one from a low-power user and the
other one from a high-power user. However, transmission of
more than one packet from each group will result in a failure
in decoding all packets (see subsection III-B for more details).
Based on this model, we propose a random access MAC
protocol, called RAS-MAC (Random Access SIC-enabled
MAC). We analyze the protocol in two different cases. In
the first case we assume the users have perfect information
about the number of users in each group (i.e., high-power
and low-power users). In this case, we show that the derived
throughput formula has a unique optimal solution and the point
is analytically computable. In the second case we assume the
exact number of the users in each group is not known but they
follow a Poisson distribution with a known average.

Our goal is to focus on the throughput improvements
achieved by utilizing SIC in a network. Therefore, rather
than considering a complicated MAC protocol, we opt for a
simple random access protocol in order to develop a tractable
analytical model that captures the effects of SIC rather than
the complex dynamics of MAC/PHY interaction. Furthermore,
we note that random access MAC protocols offer a simple
and fully decentralized method to control access to a shared
wireless channel. In these protocols each node transmits a
packet with a specific probability in each time slot. Collisions
are detected by missed acknowledges [9], [10].

With some simplifying assumptions, we compare the effect
of different MAC protocols on the throughput of the network.
We consider a simple random access MAC protocol with no
SIC at the physical layer as the base configuration and compare
with it three other cases. We show: (I) Having the same MAC
protocol as the base model and replacing the physical layer
with a SIC-enabled one increases the throughput by 1.5x.
(II) Having a SIC-enabled physical layer and tuning the base
model’s MAC protocol gives a 1.6x increase in the network
throughput. (III) Using our proposed protocol RAS-MAC on
top of a SIC-enabled physical layer increases the throughput
by 3.23x to 3.30x in compare to the base model.

Furthermore, we analyze the RAS-MAC protocol from a
game theoretic perspective. We model the protocol as a one-
shot simultaneous move game and find a symmetric mixed
strategy Nash equilibrium for the game. We also show that one
can adjust the costs of transmissions such that the equilibrium
happens at the optimal system throughput. This is extremely
important because it shows that we can specify the costs so
that selfish behavior of the users result in the optimal system
throughput.

The rest of the paper is organized as follows. Section II
explains some of the related work. Section III presents the
system model and describes the proposed MAC protocol. Sec-
tion IV describes the effect of SIC-aware MAC protocol on the
network throughput by comparing a number of configurations.
Section V analyses the proposed protocol for the case that the

1Note that many practices such as [4], [8] consider only two levels of
decoding for SIC.

exact number of users is not known. A game theoretic analysis
of the proposed MAC protocol is explained in section VI.
Section VII concludes the paper.

II. RELATED WORK

A large body of research in this area studies the MAC
protocol design in the presence of capture effect. Capture effect
is essentially the ability to decode the most powerful signal in
the case of multiple concurrent transmissions. For instances
of works studying the impact of the capture effect on the
random access protocols, see [11]–[14]. Metzner first observed
that splitting the users into two groups of high-power users
and low-power users and using the capture effect can increase
the maximum utilization of the slotted ALOHA protocol from
36.8 to about 53 percent.

Ghez et al.’s seminal work [15] is considered a landmark
in the MPR research area. They studied the stability of slotted
ALOHA based on a model known as the reception matrix.
The reception matrix specifies the probabilities of k successful
receptions out of n transmitted packets. Many of the later
studies are based on the reception matrix model. For instance,
Zhao and Tong’s multiqueue [16] and dynamic queue [17]
protocols use the same model to design a MAC protocol with
MPR capability. While the reception matrix is a powerful
model to abstract the high-level behavior of an MPR-enabled
physical layer, it does not accurately capture the dynamics of a
SIC-enabled physical layer such as variable rate transmission
and power control. Thus, in this paper, we directly use the
received signal-to-interference-plus-noise ratio to accurately
capture the effect of SIC at the physical layer.

In [18], Wang and Li proposed the hybrid ALOHA pro-
tocol. In this protocol, different users transmit their training
sequences at non-overlapping manner. The training sequences
are then used to obtain a good estimation of the channel to
decode the overlapping bits of the packets.

There are only a few works specifically considering SIC at
the MAC layer. Other than the papers already mentioned in
section I, in [7] Hou et al. described how to employ SIC in
the EV-DO Rev A reverse link to achieve the multiple access
channel sum rate capacity. They showed how interference
cancellation can readily be applied to commercial EV-DO base
stations without modifications to user terminals or standards.
In [19] Yu and Giannakis proposed an algorithm called SICTA
which uses SIC in a tree algorithm. SICTA retains the received
signal vector resulting from a collision in a time slot. It then
uses the received signal vector of the subsequently decoded
packets to cancel the interference in the collided signal and
decode it.

In the area of game theoretic modeling of random access
networks, MacKenzie and Wicker’s work [20] is the closest
one to our paper. They first modeled the multipacket slotted
ALOHA protocol and obtained the Nash equilibrium and
stability region in the presence of selfish users. However,
they used a reception matrix as their underlying model, which
makes their work different from ours.
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Fig. 1: The access point is placed at the center. Users in the range
(0, d1) are considered high-power users. Users in the range (d1, d2)
are considered low-power users.

III. SYSTEM MODEL AND ASSUMPTIONS

A. Network Model and Notations

We consider a network consisting of an access point and n
users scattered around it. The time is slotted and the size of
the packets are selected so that the packet transmission time
fits into a time slot. As depicted in Fig. 1, users are split into
two groups; the set of high-power users N1 (within distance
d1) and the set of low-power users N2 (within distance d2
but not d1). In subsection III-B, we justify the rational behind
splitting the users into two groups and further describe the
details. Let N denote the set of all users, i.e., N = N1 ∪N2.
The number of users in N , N1 and N2 are represented by n,
n1 and n2 respectively (i.e., n = n1 + n2). We assume all
nodes have infinite backlog. Therefore, in each time slot there
are n users ready to transmit. We also denote by p1, and p2 the
probability that a node in N1 and N2 transmits a packet. Note
that we only consider symmetric cases in which all the nodes
in a group transmit with equal probability. Let λ1 = p1n1 and
λ2 = p2n2 show the expected number of transmissions from
each group in each time slot. We use the ‘∗’ mark to denote the
optimal value (in terms of system throughput) of a variable.
For instance, while λ denotes the average number of packets
in a time slot, λ∗ indicates the optimal average number of
packets which results in the optimal system throughput.

B. SIC Model

To use the full advantage of a SIC receiver, the rates at
which the packets are transmitted and the order in which
the signals are decoded as well as the received powers must
be carefully specified [21]. In a random access network, in
addition to the aforementioned parameters, the probability of
transmission should also be determined. We first describe the
relation between rate, order and received power in the presence
of SIC. Then we explain our proposed protocol called RAS-
MAC.

For simplicity, we limit SIC to only two levels of decoding.
Note that due to SIC limitations such as error propagation
and linear decoding time [2, Ch. 6], in practice, only a few

levels of decoding are used [4], [8]. However, with some
modifications, our model can be extended to more than two
levels of decoding.

The achievable rate of a user depends on its received power
as well as the decoding order. Assume the composite signal
S = S1+S2+Z is received by the access point wherein S1, S2

are overlapping signals received from two distinct users and
Z is the noise signal at the access point. Let P1, P2, and N0

denote the powers of S1, S2, and Z respectively. Suppose S1

is decoded first. Therefore, by the Shannon capacity theorem,
the achievable rate of the high-power user, denoted by r1, is
bounded by the following inequality,

r1 ≤ log

(
1 +

P1

P2 +N0

)
bits/s/Hz . (1)

Assuming perfect removal of S1 from S, the achievable rate
of the low-power user, denoted by r2, is bounded by,

r2 ≤ log

(
1 +

P2

N0

)
bits/s/Hz . (2)

From (1) and (2) it is obvious that swapping the order
of the decoding changes the achievable rates. In addition,
modification of P1 and P2 alters the rates too.

To overcome the complicated order/rate/power/probability
selection problem, we could allow the users to choose arbitrary
rates, powers, and transmission probabilities and try to decode
the signals in an opportunistic manner from the most powerful
to the least powerful signal (as was done in [3], [4]). However,
as long as the order of decoding is not specified, the users
are forced to choose conservatively low rates, otherwise their
packets may not be decodable at all.

To put SIC into practice, RAS-MAC enforces a set of
constraints on transmissions. It always decodes the stronger
signal first and the weaker signal next. Optimal r1 and r2 are
selected based on the available rates, and received powers P1

and P2 are controlled so that (1) and (2) are satisfied. Note
that as long as (1) and (2) hold, our protocol works fine. Thus,
r1 and r2 may be selected so that an exact power control is
not required. In addition, we assume the following inequality
holds,

log

(
1 +

P1

P + P2 +N0

)
< r1 bits/s/Hz , (3)

for all P > ε where 0 < ε < min(P1, P2) is a constant.
Inequality (3) means that the concurrent transmission of any
additional signal other that S2 results in failure to decode S1.
For any given P1 and P2, this ensures the rates are as high
as possible. Additionally, failure to decode S1 leads to failure
to decode S2 because in this case S1 cannot be subtracted
from the composite signal S. In other words, with the given
conditions, we assume the received signal is decodable if and
only if at most two concurrent transmissions, one from N1

and the other one from N2 have occurred.
Note that in practice, most of the transceivers support only

a few different data rates [22]. Thus, choosing the best r1 and
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Fig. 2: Comparison of the throughput plot, equation (4) (left) vs
Monte-Carlo simulation (right) for r1 = 10, r2 = 1 and 0 ≤
λ1, λ2 ≤ 3. The model is very close to the simulation result.

r2 can be simply done by enumerating over the available rates.
The probability of transmission in each group is chosen so

that the sum throughput of the system is maximized. We study
this problem in subsection IV-A.

IV. EFFECT OF SIC-AWARE MAC ON THROUGHPUT

We compare a number of different PHY/MAC combinations
to obtain some insight into the effect of a properly designed
MAC protocol on the throughput of the network for a SIC-
enabled physical layer.

A. Analysis of RAS-MAC

In this subsection we analyze the RAS-MAC protocol
described in subsection III-B. Recall that we assume one
node from N1 and one node from N2 can send their packets
simultaneously by implementing SIC at the receiver. However,
if more than one node from each group sends a packet, we
cannot decode any of the packets from any of the groups. In
addition, we assume packet transmissions inN1 andN2 follow
a Poisson distribution2 with averages λ1 and λ2. Considering
this model, there are only three cases that give us a non-zero
throughput:

1) One packet from N1 and one packet from N2 are
sent. The probability of occurrence of this case is
λ1e
−λ1λ2e

−λ2 and the achievable throughput is r1+r2.
2) One packet from N1 and zero packet from N2 is sent.

In this case the probability of occurrence is λ1e−λ1e−λ2

and achievable throughput equals r1.
3) Zero packet from N1 and one packet from N2 is sent.

In this case the probability of occurrence is λ2e−λ1e−λ2

and achievable throughput equals r2.
Summing up the three cases and replacing λ1 by n1p1 and λ2
by n2p2, we can write the expected throughput of the network
as follows,

τRAS-MAC(p1, p2) = e−n1p1−n2p2(
(r1 + r2)n1p1n2p2+r1n1p1 + r2n2p2

)
.

(4)

Equation (4) has a single optimal point which is (see
Appendix 1 for the proof),

2This is a technical assumption to simplify the analysis. Other distributions
can be incorporated albeit with more mathematical difficulties. We note that in
the regime of large number of users, Poisson assumption provides a reasonable
approximation for the average behavior of the system, i.e., a mean-value
analysis.

TABLE I: List of configurations used for comparison
SIC-enabled

Config. Name PHY MAC

PHY−/MAC− No No

PHY+/MAC− Yes No

PHY+/MAC+1p Yes Yes, uses the same probability p∗ for
all users

PHY+/MAC+2p Yes Yes, uses different probabilities p∗1 and
p∗2 for users in high-power and low-
power groups

〈p∗1, p∗2〉 = 〈 1

n1

− (r2 − r1) +
√

∆

2 (r1 + r2)
,

1

n2

(r2 − r1) +
√

∆

2 (r1 + r2)
〉 ,

(5)
where, ∆ = (r2 − r1)

2
+ 8r1r2.

At this point, the value of the throughput function is given by,

τRAS-MAC(p∗1, p
∗
2) =

1

2
e
−
√

∆
2(r1+r2)

(
(r1 + r2) +

√
∆
)
. (6)

In addition, for r1 ≥ r2, it can be proved that λ∗2 ≤ λ∗1 ≤
1 (see the appendix). Fig. 2 compares the throughput of the
network for both Monte-Carlo simulation and equation (4) for
r1 = 10, r2 = 1 and 0 ≤ λ1, λ2 ≤ 3. It is observed that both
plots are very close to each other, meaning that (4) indeed
closely matches the real world scenario. We have performed
extensive simulation experiments which consistently confirm
this conclusion.

B. Considered System Configurations

In this subsection, we describe the MAC protocol plus phys-
ical layer configurations considered for comparison. We look
at 4 different configurations of PHY/MAC. A simple random
access protocol with no SIC at the physical layer is considered
as the base configuration. The three other configurations are
compared to the base one; they are all SIC-enabled at the
physical layer, but they have different levels of SIC utilization
at the MAC layer. Table I shows the list of configurations
used for comparison. Detailed description of the configurations
follows.

1) PHY−/MAC−: This is the simplest configuration used
for comparison. In this configuration, the physical layer is not
SIC-enabled; therefore, the MAC layer knows nothing about
SIC as well (i.e., it uses the classical single-user-at-a-time
semantic). We use a simple ALOHA like [9] protocol at the
MAC layer. However, in ALOHA, no rate differentiation is
considered among the users, while our model considers two
different rates. Given n = n1 + n2 and two rates r1 and
r2, the expected network throughput using PHY−/MAC− is
given by n1r1+n2r2

n1+n2
np e−np, where n1r1+n2r2

n1+n2
is the average

throughput conditioned on exactly one transmission in a time
slot and, np e−np is the probability of transmission of exactly
one packet in a time slot. The optimal throughput happens at
p∗ = 1

n and is equal to,

τPHY− /MAC− =
n1r1 + n2r2
n1 + n2

1

e
. (7)



5

2) PHY+/MAC−: This configuration considers exactly the
same MAC protocol as the one used in PHY−/MAC−, i.e., a
simple random access protocol with p = 1

n . However, here we
use a SIC-enabled physical layer. Since the MAC protocol is
not SIC-aware, it can only use the SIC capability provided by
the physical layer “opportunistically”. Since p = 1

n , and the
physical layer is SIC-enabled, the throughput of PHY+/MAC−

is given by,

τPHY+ /MAC− = τRAS-MAC(
1

n
,

1

n
) , (8)

where τRAS-MAC(.) is specified by (4).
3) PHY+/MAC+1p: We consider a SIC-enabled physical

layer for this configuration. In addition, we assume a random
access MAC protocol which is SIC-aware but assigns the same
probability p to all users. Although PHY+/MAC+1p selects the
best p, in general, it is not the optimal configuration. This is
because a configuration which assigns different probabilities
to the two groups of users, in the worst case, reduces to this
configuration. The throughput of PHY+/MAC+1p is given by,

τPHY+ /MAC+1p = τRAS-MAC(p∗, p∗) , (9)

where τRAS-MAC(.) is specified by (4). To obtain the value of
p∗ for (9), we need to find the positive root of the following
equation,

d

dp
τRAS-MAC(p, p) = 0 . (10)

While the above equation can be solved analytically, the
solution is omitted due to space limitations.

4) PHY+/MAC+2p: A SIC-enabled physical layer plus the
RAS-MAC protocol described in subsection III-B is used in
this configuration. Therefore the throughput of this configura-
tion is given by,

τPHY+ /MAC+2p = τRAS-MAC(p∗1, p
∗
2) . (11)

C. Efficiency of the Configurations

While RAS-MAC differentiates between the two groups
of users, the rest of the MAC protocols considered for the
comparison assume the same probability for all users. This
makes the sum throughput of those protocols dependent on
n1 and n2 while the sum throughput of RAS-MAC is not
dependent on n1 and n2. Because of that, for the comparison,
first (in subsections IV-C1, IV-C2, and IV-C3) we assume
n1 = n2 = n/2 (i.e., there are equal number of low-power and
high-power users). Later, in subsection IV-C4, we consider the
case n1 6= n2 and comment on the possible throughput gains.

1) Efficiency of PHY+/MAC− vs PHY−/MAC−: We define
the performance gain function G1(.) as follows,

G1(r1, r2) =
τPHY+ /MAC−

τPHY− /MAC−
. (12)

Using (7) and (8) and letting n1 = n2 = n
2 for all r1, r2 > 0

we have,

G1(r1, r2) =
3
4
r1+r2
e

1
2
r1+r2
e

=
3

2
, n1 = n2 =

n

2
, (13)

which means that having a SIC-enabled physical layer without
touching the MAC protocol obtains a 1.5x throughput gain.

2) Efficiency of PHY+/MAC+1p vs PHY−/MAC−: We de-
fine the performance gain function G2(.) as follows,

G2(r1, r2) =
τPHY+ /MAC+1p

τPHY− /MAC−
. (14)

Using (9) and letting n1 = n2 = n
2 we obtain the optimal

value p∗ =
√
2
n . The value of τPHY+ /MAC+1p at this point is given

by,

τPHY+ /MAC+1p = τRAS-MAC(

√
2

n
,

√
2

n
) =

(
2 +
√

2
)
e−
√
2 (r1 + r2)

2
√

2
.

(15)
Using (14), (7), and (15) we have,

G2(r1, r2) =

(2+
√
2)(r1+r2)

2
√
2 e
√

2

r1+r2
2e

=
1 +
√

2

e
√
2−1

≈ 1.6 . (16)

This means that with the same probability for all users, we
cannot obtain a throughput gain better than 1.6x in the case
of n1 = n2.

3) Efficiency of PHY+/MAC+2p vs PHY−/MAC−: Let
G3(r1, r2) denote the throughput gain of PHY+/MAC+2p over
PHY−/MAC−, i.e.,

G3(r1, r2) =
τPHY+ /MAC+2p

τPHY− /MAC−
. (17)

We derive lower and upper bounds on G3(.) for n1 = n2 =
n/2. Using (7) and (11) we have,

G3(r1, r2) =

1
2e

−
√

∆
2(r1+r2)

(
(r1 + r2) +

√
∆
)

r1+r2
2e

, (18)

where ∆ = r21 + r22 + 6r1r2. We show 3.23 ≤ G3(.) ≤ 3.30,
i.e., despite the complex appearance of (18) it is approximately
a constant. Let,

α =

√
∆

(r1 + r2)
. (19)

We can rewrite (18) as,

G3(r1, r2) = h(α) = e1−α/2(1 + α) . (20)

For r1, r2 ≥ 0, we have , r21 + r22 + 6r1r2 ≤ 2(r1 + r2)2

and r21 + r22 + 6r1r2 ≥ (r1 + r2)2. Therefore , 1 ≤ α ≤
√

2.
Additionally, for α ≥ 1 we have,

d

dα
h(α) = −1

2
e1−

α
2 (α− 1) < 0, α ≥ 1 . (21)

That is for α ≥ 1, h(α) is a decreasing function. This
means, for r1, r2 ≥ 0, the maximum of h(α) happens at α = 1
and the minimum is at α = 2. More formally,

(1 +
√

2)e1−
√
2/2 ≤ G3(r1, r2) ≤ 2

√
e . (22)

It means that the proposed MAC protocol (RAS-MAC) on
top of a SIC-enabled physical layer, obtains at least 3.23x
and at most 3.30x throughput gain over PHY−/MAC− when
n1 = n2.
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4) Efficiency of PHY+/MAC+1p vs PHY+/MAC+2p for
n1 6= n2: In subsections IV-C1, IV-C2, and IV-C3, we showed
that for n1 = n2 the performance of PHY+/MAC+2p is
superior to the other configurations. We also showed that
PHY+/MAC+1p stands at the second place.

It is obvious that PHY+/MAC+1p cannot outperform
PHY+/MAC+2p in terms of throughput since the former is
a special case of the latter configuration. The best case of
PHY+/MAC+1p, in comparison to PHY+/MAC+2p, happens
at the point p∗ = p∗1 = p∗2. As a result, both of the
configurations perform the same in this case.

Now, consider a case where n1 is a small positive integer
and n2 is a very large number. Also assume r1 > r2. In
this case, since PHY+/MAC+1p assigns the same probability
to the users, we can neglect the very small throughput of
N1 in comparison to the large throughput of users in N2.
Therefore, in this case, PHY+/MAC+1p achieves almost the
same throughput as that of PHY+/MAC−.

D. Further Discussion

One may argue that due to concurrent transmission of
packets in PHY+/MAC+2p, the rates might be lower than
the rates in PHY−/MAC−. It can be shown that for any
α > 0, replacing r1 and r2 by αr1 and αr2 in τRAS-MAC(p∗1, p

∗
2),

changes the throughput by a factor of α. Let assume that
α = 0.5, i.e., the concurrent transmission of two packets
halves the rates. It is still beneficial to use RAS-MAC since
based on the result of subsection IV-C3, we still get at least
0.5× 3.23 ≈ 1.61x throughput improvement.

V. PROBABILISTIC ANALYSIS OF RAS-MAC

In previous sections, we assumed the exact values of n1 and
n2 are known to the users. In this case, users can compute the
optimal transmission probabilities as described in subsection
IV-A. In this section, we extend the analysis to the case where
exact values of n1 and n2 are not known but the distribution
of the number of users in each group is known. Specifically,
we assume that the number of users in each group follows a
Poisson distribution with a known average. We use the notation
ñ1 and ñ2 for random variables and n1 and n2 for the average
of the variables. We also denote by τ̃RAS-MAC(.) the throughput
of the network in the probabilistic case.

Note that sum of two Poisson random variables with param-
eters n1 and n2 is a Poisson random variable with parameter
n1 +n2 . Therefore, our assumption is the same as to consider
the total number of nodes in the network as a Poisson variable
ñ and split them into two groups of size sñ and (1−s)ñ where
s = n1

n1 +n2
.

For i = 1, 2, let Pr(ñi = k) denote the probability of ñi
being equal to k (i.e., probability of exactly k transmissions
from the group Ni).

The expected throughput τ̃RAS-MAC(.) is shown in (26). Equa-
tion (26) is too complicated to be solved analytically. We
conjecture that (26) is a quasi-concave function over 0 <
p1, p2 ≤ 1 (see Fig. 3(a)). Therefore, we believe it is efficiently
solvable using numerical methods. Fig. 3(b) shows the contour

plot along with the steps of finding the maximum of (26) using
a Quasi-Newton method [23]. Starting from p1 = 0.01 and
p2 = 0.01, we were able to find the maximum of the function
up to 18 digits after the decimal point in only 11 iterations.
Since p1 and p2 are probabilities close to zero, very small
positive values are good starting values to find the optimal
point. Next, we show that for large n1 and n2 the analytical
solution obtained for the exact case (i.e., τRAS-MAC(.)) is a
good approximation for the probabilistic case (i.e., τ̃RAS-MAC(.)),
when using the averages instead of the exact number of users
(i.e., n1 = n1 and n2 = n2 ).

(a) τ̃RAS-MAC(p1, p2) is a quasi-concave
function over 0 < p1, p2 ≤ 1.

(b) Starting from 〈0.01, 0.01〉 us-
ing a Quasi-Newton method, the
maximum of τ̃RAS-MAC(.) is found
in 11 steps.

Fig. 3: The expected throughput of the network from (26) for r1 = 5,
r2 = 10, n1 = 10, and n2 = 5.

A. Comparison of τRAS-MAC(.) and τ̃RAS-MAC(.)

We use numerical results to show that the difference be-
tween exact and probabilistic case of RAS-MAC is relatively
small. In addition, the optimal point of each of the two cases
(i.e., 〈p∗1, p∗2〉 and 〈p̃1∗, p̃2∗〉) happen to be very close to each
other. Because of that, the answer given by (5) (i.e., 〈p∗1, p∗2〉),
obtained by n1 = n1 and n2 = n2 , can be used as a good
approximate answer for (26) (i.e., 〈p̃1∗, p̃2∗〉).

We define the error function E1(.) as the percentage of
difference between the throughputs of the probabilistic and
exact cases normalized by the optimal throughput of the
probabilistic case for 0 ≤ p1, p2 ≤ 1, i.e.,

E1(p1, p2) = 100× τ̃RAS-MAC(p1, p2)− τRAS-MAC(p1, p2)

τ̃RAS-MAC(p∗1, p
∗
2)

. (23)

Fig. 4(a) shows the plot of E1(.) for n1 = 20, n2 = 20,
r1 = 10, and r2 = 5. The value of the index is within 2% for
all 0 ≤ p1, p2 ≤ 1. It shows that (4) and (26) are very close
to each other.

Fig. 4(b) shows the contour plot of (26) along with the
optimal points of τRAS-MAC(.) and τ̃RAS-MAC(.). It is observed that
even for small n1 and n2’s the optimal point of the two cases
are very close to each other.

The next plot shows that when n1 and n2 are large, the
optimal point of (4) (which is computable analytically using
(5)) may be used, with a good accuracy, as the answer of (26).
Let’s define E2(.) as,
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τ̃RAS-MAC(p1, p2) =

∞∑
i=0

∞∑
j=0

Pr(ñ1 = i)Pr(ñ2 = j)τRAS-MAC(p1, p2)

=

∞∑
i=0

∞∑
j=0

n1
ie−n1

i!

n2
je−n2

j!
e−ip1−jp2((r1 + r2)ip1jp2 + r1ip1 + r2jp2)

= en1 (e−p1−1)+n2 (e−p2−1)−p1−p2(n2 p2r2e
p1 + n1 p1(r1(n2 p2 + ep2) + n2 p2r2)) .

(26)

E2(n1, n2) = 100× τ̃RAS-MAC(p̃1
∗, p̃2

∗)− τ̃RAS-MAC(p∗1, p
∗
2)

τ̃RAS-MAC(p̃1
∗, p̃2

∗)
,

(25)
where 〈p∗1, p∗2〉 is the optimal answer to (4) and 〈p̃1∗, p̃2∗〉 is
the optimal answer to (26). Fig. 4(c) shows the value of E2(.)
for r1 = 10, r2 = 5, and 1 ≤ n1, n2 ≤ 20. For n1, n2 ≥ 5, the
value of the index is almost zero. This verifies our claim that
for large n1 and n2, the optimal point of τRAS-MAC(.) can be used
as a good approximation of the optimal point of τ̃RAS-MAC(.).

VI. GAME THEORETIC ANALYSIS OF RAS-MAC

In previous sections, we looked at the RAS-MAC protocol
from a system designer perspective and obtained the optimal
system throughput. We already assume that users follow the
rules specified by the system designer, i.e., they send the
packets with the optimal system probability given by (5). What
happens if the uses behave selfishly and send their packets
with a higher probability to obtain a higher rate? In this case,
the system might not be able to reach its optimal throughput.
In other words, the optimal throughput for the users does not
necessarily result in the optimal system throughput.

In this section, we present a game theoretic analysis of
RAS-MAC with selfish behavior of users. We model the
protocol as a one-shot simultaneous move game and derive
a mixed strategy Nash equilibrium for the game (see [24] for
the definitions). We also show that the system designer can
“charge” the users so that the Nash equilibrium coincides with
the optimal system throughput.

Consider the set of nodesN = N1∪N2 as the set of players.
The action set of each player is to either send a packet or wait.
Without loss of generality, we assume that sending a packet
will cost 0 < ci < 1 for a node in Ni (i ∈ {1, 2}) and a
successful transmission will have a benefit of 1 for any node.

Note that we are only interested in a symmetric equilibrium,
i.e., an equilibrium in which all the nodes in Ni follow
the same strategy. It is clear that a symmetric pure Nash
equilibrium does not exist for the game since an always-
send or an always-wait strategy will not result in equilibrium3.
Therefore, we look for a mixed strategy equilibrium.

Let a node in Ni choose to send with probability pi and
wait with probability 1− pi. Since all the nodes in Ni choose

3The only pure Nash equilibrium is the one in which one node from N1

and one node from N2 send and the rest of the nodes wait. Clearly, this is
not a symmetric equilibrium.

the same strategy, the rate of packet transmission in Ni would
be λi = pini. Therefore, the utility functions are defined as,

u1(λ1, λ2) =
1

n1

(
λ1e
−λ1((1 + λ2)e−λ2)− λ1c1

)
u2(λ1, λ2) =

1

n2

(
λ2e
−λ2((1 + λ1)e−λ1)− λ2c2

) (26a)

(26b)

Where u1(.) and u2(.) are the utility functions of the group
N1 and N2, respectively. Note that we assume a Poisson
distribution for the packet transmissions in each group. Based
on this assumption, the probability of transmitting zero and
one packet from the group Ni is e−λi and λie−λi respectively.
Thus, λ1e−λ1((1+λ2)e−λ2) and λ1c1 are the expected benefit
and expected cost for all of the nodes in N1. The same
argument applies to N2 too. At the equilibrium point, the
following equations should be satisfied,

∂u1
∂λ1

=
1

n1

(
(1− λ1)e−λ1(1 + λ2)e−λ2 − c1

)
= 0

∂u2
∂λ2

=
1

n2

(
(1− λ2)e−λ2(1 + λ1)e−λ1 − c2

)
= 0

(27a)

(27b)

In fact, the Nash equilibrium is at the intersection of ∂u1

∂λ1
=

0 and ∂u2

∂λ2
= 0 (see Fig. 5). By simplifying (27), we obtain

that, 
λ1 = 1−W0(

ec1
(1 + λ2)e−λ2

)

λ2 = 1−W0(
ec2

(1 + λ1)e−λ1
) ,

(28a)

(28b)

where W0(.) is the upper branch of Lambert’s Wn function.
The Lambert’s Wn is a set of functions (i.e., W0 and W1) con-
sisting of the branches of the inverse relation of f(w) = wew.
The upper branch (i.e., W0) is in the domain (−1,+∞), while
the lower branch (i.e., W1) is in the domain (−∞,−1). Since
W0 cannot be expressed in terms of elementary functions, it
is unlikely that one can solve the system (27) analytically.

A. Algorithm for Computing the Equilibrium

Fortunately, the W0 function can be approximated using
Newton’s method by the following formula at some point z,

wj+1 = wj −
wje

wj − z
ewj + wjewj

, (29)

where wj is the estimated value of the function at iteration
j. Based on (29), we propose a simple algorithm (see Algo-
rithm 1) to numerically solve the system of equations (28).
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(a) Plot of E1(.) (see (23)) for n1 = 20, n2 =
20, r1 = 10, r2 = 5, and 0 ≤ p1, p2 ≤ 1. The
value is within 2%.

(b) The optimal point of (26) (the ’+’
sign) vs. the optimal point of (4) (the
’*’ sign) for n1 = 3, n2 = 3, r1 =
10, r2 = 5. The Euclidean distance of
the points is less than 0.025.

(c) Plot of E2(.) for r1 = 10, r2 = 5, and 1 ≤
n1, n2 ≤ 20. For n1, n2 ≥ 5 the value is very close
to zero.

Fig. 4: Comparison of the throughput functions τRAS-MAC(.) and τ̃RAS-MAC(.). Note that to draw the plots whenever required we used the values
n1 and n2 as the average of the random variables (i.e., n1 and n2 ) in (26).

The algorithm starts with an initial value 〈λinit1 , λinit2 〉. At
each iteration, first it fixes λ2 and computes λ1 using (29).
Then, it fixes λ1 and computes the value of λ2 using (29). The
algorithm repeats these steps until it converges with respect
to the desired numerical precision. Fig. 5 shows the steps
of Algorithm 1 for a sample run. Based on our numerical
simulations, only a few (less than 5) iterations of Algorithm 1
result in solutions that are accurate to within 10 decimal point.

The steps involved in computing the Nash equilibrium for
the probabilistic case is similar to the steps described for the
exact case of the protocol, and hence omitted for brevity. To
derive the utility functions, the same technique as the one
used in (26) can be applied. To find the Nash equilibrium
having the utility functions, one may use an algorithm similar
to Algorithm 1.

Algorithm 1 Estimating the solution of the system (28)

λ01 = λinit1

λ02 = λinit2

E0 =∞
i = 0
while Ei > ε do

λi+1
1 = 1−W0( ec1

(1+λi2)e
−λi2

) . using (29)

λi+1
2 = 1−W0( ec2

(1+λi+1
1 )e−λ

i+1
1

) . using (29)

i = i+ 1

Ei =
√

(λi1 − λ
i−1
1 )2 + (λi2 − λ

i−1
2 )2

end while

B. Setting a Cost for Transmission
Using (27), we obtain the following relation at the equilib-

rium point, {
c1 = (1− λ1)e−λ1(1 + λ2)e−λ2

c2 = (1− λ2)e−λ2(1 + λ1)e−λ1

(30a)

(30b)

That is, for any given rates 0 < λ1, λ2 < 1, we can
find c1 and c2 so that the equilibrium happens at that rate.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Λ1

Λ
2

Start

Nash Equilibrium

Fig. 5: A sample run of Algorithm 1 for c1 = 0.4 and c2 = 0.7,
starting from 〈0.5, 0.7〉. The horizontal curve shows the plot of
∂u1
∂λ1

= 0. The vertical curve shows the plot of ∂u2
∂λ2

= 0. The dotted
line shows the path from the starting point 〈λinit1 , λinit2 〉 to the Nash
equilibrium.

Furthermore, it can be shown that 0 < c1, c2 < 1 at that
point. That is, at the optimal system throughput the costs are
always non-negative and less than the benefit (= 1). Note that
a portion of the costs is inherent in the packet transmission,
e.g., we need to consume energy to send a packet. However,
the designer of the network may charge the nodes with extra
cost to force nodes to transmit at the desired probability. To
charge the users, a lightweight payment method such as the
micropayment of [25] may be used.

VII. CONCLUSION

We considered a SIC-enabled wireless network and pro-
posed a new SIC-aware MAC protocol called RAS-MAC for
the network. We compared our MAC protocol to a number of
other protocols in terms of throughput. The result of compar-
ison is that while opportunistic usage of SIC or adjustment
of the existing protocols can increase the throughput of the
network, designing new MAC protocols tailored for SIC is far
more effective. In addition, when network users are selfish, we
modeled RAS-MAC as a one-shot simultaneous move game
and derived a mixed strategy Nash equilibrium for the game.
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We also showed that for any given pair of rates for the high-
power and low-power users, we can charge the users so that at
the equilibrium point we have the optimal system throughput.

APPENDIX 1

We replace n1p1 by λ1 and n2p2 by λ2 in (4). At the optimal
point of (4), we have (31a) and (31b),

∂τRAS-MAC

∂λ1
= −e−λ1−λ2

(
(r1 + r2)λ1λ2 + r1λ1

+r2λ2) + e−λ1−λ2((r1 + r2)λ2 + r1

)
= 0

∂τRAS-MAC

∂λ2
= −e−λ1−λ2

(
(r1 + r2)λ1λ2 + r1λ1

+r2λ2) + e−λ1−λ2((r1 + r2)λ1 + r2

)
= 0

(31a)

(31b)

Since for bounded λ1 and λ2, we have e−λ1−λ2 6= 0, it is
obtained that,

λ2 = λ1 −
r1 − r2
r1 + r2

. (32)

Using (32) and (31b) we have,

(r1 + r2)λ21 + (r2 − r1)λ1 +
−2r1r2
r1 + r2

= 0 , (33)

which is a quadratic equation in λ1. Since ∆ = (r2 − r1)
2

+
8r1r2 > 0, we obtain two distinct solutions for λ1, which are,

λ∗1
1, λ∗1

2 =
− (r2 − r1)±

√
(r2 − r1)

2
+ 8r1r2

2 (r1 + r2)
. (34)

However, since |(r2 − r1)| <
∣∣∣∣√(r2 − r1)

2
+ 8r1r2

∣∣∣∣,
λ∗1 =

− (r2 − r1) +

√
(r2 − r1)

2
+ 8r1r2

2 (r1 + r2)
, (35)

is the only positive answer for λ1. Using (32) and (35), we
obtain the following value for λ2, which is apparently positive,

λ∗2 =
(r2 − r1) +

√
(r2 − r1)

2
+ 8r1r2

2 (r1 + r2)
. (36)

For r1 ≥ r2, we show that λ2 ≤ λ1 ≤ 1. Rewrite (35) as,

λ∗1 =

√
(r1 + r2)2 − 4r1r2 +

√
(r1 + r2)2 + 4r1r2

2 (r1 + r2)
. (37)

then,

(λ∗1)
2

=
2(r1 + r2)2 + 2

√
(r1 + r2)4 − (4r1r2)2

4 (r1 + r2)
2 ≤

2(r1 + r2)2 + 2
√

(r1 + r2)4

4 (r1 + r2)
2 = 1

(38)

I is clear that λ2 ≤ λ1, thus the proof is complete.
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