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Abstract—This paper investigates the benefit of network coding
for TCP traffic in a wireless mesh network. We implement
network coding in a real 802.11a wireless mesh network and
measure TCP throughput in such a network. Unlike previous
implementations of network coding in mesh networks, we use
off-the-shelf hardware and software and do not modify TCP
or the underlying MAC protocol. Therefore, our implementa-
tion can be easily exported to any operational wireless mesh
network with minimal modifications. Furthermore, the TCP
throughput improvement reported in this paper is due solely
to network coding and is orthogonal to other improvements that
can be achieved by optimizing other system components such
as the MAC protocol. We conduct extensive measurements to
understand the relation between TCP throughput and network
coding in different mesh topologies. We show that network
coding not only reduces the number of transmissions by sending
multiple packets via a single transmission but also results in
a smaller loss probability due to reduced contention on the
wireless medium. Unfortunately, due to asynchronous packet
transmissions, there is often little opportunity to code resulting in
small throughput gains. Coding opportunity can be increased by
inducing small delays at intermediate nodes. However, this extra
delay at intermediate nodes results in longer round-trip-times
that adversely affect TCP throughput. Through experimentation,
we find a delay in the range of 1 ms to 2 ms to maximize TCP
throughput. For the topologies considered in this paper, network
coding improves TCP throughput by 10% to 85%.

I. INTRODUCTION

In traditional networks, data packets are carried by store-
and-forward mechanisms in which the intermediate nodes
(relays or routers) only repeat data packets that they have
received. The concept of network coding was introduced for
satellite communications in [1] and then fully developed in [2]
for general networks. With network coding, a network node
is allowed to combine several packets that it has generated or
received into one or several outgoing packets.

The original paper of Ahlswede et al. [2] showed the utility
of network coding for multicast in wireline networks. Recently,
network coding has been applied to wireless networks and
received significant popularity as a means of improving net-
work capacity and coping with unreliable wireless links [3]–
[7]. In fact, the unreliability and broadcast nature of wireless
links make wireless networks a natural setting for network
coding. Moreover, network protocols in wireless networks,
e.g., wireless mesh networks and mobile ad hoc networks,
are not fully developed yet and hence there is more freedom
to apply network coding in such environments compared to

wireline networks such as the Internet [5].
In spite of many research papers on the application of

network coding in wireless networks, surprisingly, there are
not many real implementations. Because of the need for
tractability, theoretical results on network coding do not ac-
count for the detailed behavior of a wireless network, e.g.,
asynchronous transmissions due to random delays. Therefore,
it is not well understood to what extent network coding
improves the throughput capacity of a wireless network in
a real implementation. This paper aims at characterizing and
quantifying such throughput improvements in the context of
wireless mesh networks (WMNs) employing network coding.
We focus on TCP traffic, and hence TCP throughput improve-
ment due to network coding, because TCP is expected to be
the dominant transport protocol in WMNs. Surprisingly, TCP
performance in coded wireless networks is a largely unknown
area (in fact, network coding with multiple unicast flows has
been just recently studied in [8]).

A few papers that have implemented network coding in a
wireless setting do not specifically consider TCP (see [3] for
example). The only exception is the so-called COPE [6] which
implements an opportunistic network coding scheme. In [6],
the authors performed TCP experiments to understand how
network coding impacts TCP throughput in a mesh setting.
However, they did not fully explore the interactions between
TCP and network coding. In this paper, we perform extensive
experiments in our COTS1 implementation to understand how
network coding interacts with TCP and exploit these interac-
tions to maximize TCP throughput.

TCP traffic is naturally bidirectional, i.e., data packets in one
direction and ACK packets in the opposite direction, and hence
network coding can be applied at intermediate nodes along the
path even for a single TCP flow. Unfortunately, due to random
delays in networks, coding opportunities at intermediate nodes
may be too small to benefit TCP. We show that inducing a
small delay at each intermediate node can increase coding
opportunity for TCP traffic, especially when there are only
a few TCP flows in the network. However, there is a trade-
off between increased coding opportunity and increased TCP
round-trip-time by increasing delay at intermediate nodes.
Using real measurements from our test-bed, we characterize
the proper amount of delay in different mesh topologies and

1Commercial Off-The-Shelf hardware and software.
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show how the induced delay affects coding opportunity, packet
loss probability and round-trip-time.

We also develop a simple model for TCP throughput with
network coding in a line topology, and use the model to
study how network coding impacts packet loss probability
and TCP throughput. We show that network coding improves
TCP throughput in two ways: 1) by increasing the wireless
channel capacity due to coding packets together, and 2) by
reducing packet loss probability due to reduced contention on
the wireless channel.

The contributions of this paper can be summarized as
follows:

1) It presents an implementation of network coding in a
wireless mesh network using commercial off-the-shelf
hardware and software.

2) It develops a simple model for TCP throughput and
studies the impact of network coding on end-to-end loss
probability and TCP throughput.

3) It proposes a delay-based approach to increase coding
opportunities at intermediate nodes in a network and
studies the impact of induced delay on coding oppor-
tunity, packet loss and TCP round-trip-time. Finally, it
empirically characterizes the proper amount of delay that
maximizes TCP throughput.

The rest of the paper is organized as follows. In Section II,
we briefly describe the fundamental ideas behind network
coding and review related work in the context of wireless
mesh networks. Section III studies the impact of network
coding on TCP throughput by developing a simple model for
TCP throughput in a line topology. In Section IV, we provide
detailed description of our implementation of network coding
in a WMN. We summarize our experiments in Section V.
Our conclusions as well as future work are discussed in
Section VI.

II. NETWORK CODING

Consider a network composed of a set of source-destinations
and a set of intermediate nodes acting as relays, e.g., routers
in Internet. Traditionally, relays simply repeat the packets they
have received. With network coding, relays are allowed to
combine packets that they have received into one or more
packets before sending the packets over outgoing links.
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Fig. 1. Butterfly example.

The concept of network coding is easiest explained using
the famous butterfly example depicted in Fig. 1. All links have
unit capacity, e.g., one packet per time unit, and senders S1
and S2 want to send two packets X and Y to both receivers R1
and R2. Clearly, link A-B is the bottleneck link, and hence,
four units of time are required to transmit X and Y to R1 and
R2 using a store-and-forward mechanism. However, using the
transmissions outlined in the figure, the multicast problem can
be solved using only three units of time. In this example, node
A combines X and Y using XOR operation (denoted by ⊕)
and transmits X ⊕ Y in a single transmission.

In general, nodes can use different coding techniques to
combine packets, however, Li et al. [9] showed that linear
coding suffices to achieve the max-flow, i.e., the optimum,
in single source multicast networks. Then, the problem of
network coding is how to select the linear combinations that
each node of the network performs. In practice, most network
coding approaches are based on the concept of random linear
coding proposed by Ho et al. [10]. With random linear coding,
each node in the network selects the linear coding coefficients
uniformly at random over a finite field in a completely
independent and decentralized manner.

In wireless environments, network coding has been applied
to various problems including broadcasting in ad hoc net-
works [7], data collection in sensor networks [7], file sharing
in mesh networks [11] and reliability in lossy networks [4].
In the context of mesh networks, in particular, Wu et al. [3]
investigated the use of network coding for the mutual exchange
of independent information between two nodes in a wireless
network. They showed that network coding can be used to
increase the capacity of a wireless network with bidirectional
traffic. Consider the network depicted in Fig. 2. Node A wants
to send packet X to node C and node C wants to send packet
Y to node A. With traditional store-and-forward routing, X
and Y belong to two different unicast flows, one from A to C
and the other from C to A. Hence, two routes are created to
exchange packets between A and C. In this case, to exchange
X and Y, four time slots are required.

A B C
X Y

YX YX

Fig. 2. Network coding for bidirectional traffic.

However, by using network coding and broadcasting, as
shown in the figure, the exchange can be performed in only
three time slots. In the first two time slots, X and Y are
transmitted to node B, and then in the third time slot, node B
broadcasts X ⊕ Y to nodes A and C. Upon receiving X ⊕ Y
from B, node A (C) extracts Y(X) using its existing copy of
X(Y). Therefore, one transmission is saved, which effectively
increases the capacity by 25% compared to traditional store-
and-forward scheme.

In this paper, we extend and implement the scenario de-
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picted in Fig. 2 in a general wireless mesh network. In our
network, whenever an intermediate node has an opportunity
to transmit, it first checks to see if it is possible to code
packets together before transmission. When there is only one
TCP flow, the packets that are coded together include one
TCP data packet in forward direction and a TCP ACK packet
in the other direction. Nodes are not synchronized in our
network, and hence it may not be always possible to code
packets together. A challenging problem then is to increase the
coding opportunity at intermediate nodes without penalizing
TCP throughput.

III. IMPACT OF NETWORK CODING ON TCP

In this section, using a simple model, we study the impact of
network coding as described in the previous section on TCP
throughput. Despite the simplicity of the model, it provides
interesting insight about the interactions between TCP and
network coding that will be helpful when discussing our
experiment results in Section V.

We argue that TCP dynamics, specifically the AIMD con-
gestion control mechanism, have a significant impact on the
benefits of network coding. TCP congestion control mecha-
nism, continuously adapts TCP sending rate to network con-
ditions and available capacity. In particular, the AIMD mecha-
nism is extremely sensitive to packet losses and interprets them
as signs of congestion. Upon detecting a loss, TCP halves its
sending rate by reducing its congestion window size to half.
In a WMN based on a contention-based MAC protocol such
as IEEE 802.11, there are significant number of packet losses
due to wireless channel errors and contention on the wireless
medium. TCP reacts to all such packet losses by reducing its
transmission rate which results in poor throughput and low
wireless channel utilization. Consequently, TCP throughput
is primarily limited by the end-to-end loss probability rather
than the available end-to-end capacity. Hence, TCP may not
significantly benefit from the increased capacity due to coding
compared to a non-congestion-controlled traffic such as UDP
traffic (as considered in [3]).

In our test topology, due to close proximity of wireless
nodes, contention on the wireless medium is relatively high.
High contention results in high end-to-end packet loss prob-
ability which prevents TCP from fully utilizing the channel.
In fact, TCP is not even able to utilize the channel capacity
available to it without coding, and hence increasing channel
capacity with coding does not significantly benefit TCP. In-
stead, TCP benefits from coding indirectly. Coding reduces the
number of transmissions which results in lower contention on
the wireless medium. This helps TCP to increase its sending
rate because it faces packet loss less frequently compared to
no-coding case. However, the increased throughput, in turn,
leads to increased contention. In steady-state, there will be
a balance between increased TCP throughput and increased
contention. In the following, we develop a simple model to
compute TCP throughput and loss probability that are achieved
in steady-state.

A. Packet Loss Probability

To investigate how network coding impacts TCP throughput,
we consider a simple line topology with n hops. We assume
that there is a TCP flow from the first node (source) to the
last node (destination) in the line topology. We consider a
homogenous scenario and assume that packets (data packets
or ACK packets) are lost over each hop with probability pl.
We further assume that the receiver sends an ACK for every
successfully received data packet. If either the data packet
or the ACK packet is lost, a TCP loss occurs. Therefore, to
successfully send one packet from the source to the destina-
tion, 2n transmissions are required (n transmissions for the
data packet and another n transmissions for the ACK). Let p
denote the end-to-end packet loss probability seen by TCP. It
is obtained that

p = 1 − (1 − pl)2n, (1)

≈ 2npl, for small pl and large n . (2)

A packet is lost either due to channel errors or collision with
other transmissions. Channel errors depend on the inherent
characteristics of the wireless medium and are independent
of traffic load. However, collision induced losses depend on
traffic load, and hence can be different with and without
network coding. Let pe and pc denote packet loss probability
due to channel errors and contention respectively. We have

pl = 1 − (1 − pe)(1 − pc), (3)

≈ pc, for small pe/pc . (4)

The above approximation is valid when collision is the domi-
nant cause of packet loss. In our experiments, all transmissions
are broadcasts which are more resilient to channel errors
due to stronger physical-layer coding applied in broadcast
mode of IEEE 802.11 2, and hence this is a reasonable
approximation. Therefore, the end-to-end loss probability is
given by p = 2npc.

B. Collision Probability

To estimate the collision probability, we consider a time-
slotted system where every transmission takes one time slot.
In our line topology, at most three nodes interfere with each
other. Consider three such interfering nodes and assume that
packets arrive at a node according to a Bernoulli process with
mean X packets/slot (for a normalized channel capacity of
C = 1 packets/slot). Let λ1 and λ2 denote the transmission
probability in a time slot with and without coding respectively.
With network coding, for every other packet arrival there is
one transmission. Hence the transmission probability is given
by λ1 = X/2. Without coding, for each arrival there is one
transmission. Hence the transmission probability is equal to
the arrival rate λ2 = X .

Let pc1 and pc2 denote the collision probability with and
without network coding. A collision occurs if more than one

2Which also results in a lower channel rate.
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node transmit at the same time. Thus, pci (i = 1, 2) is:

pci =
(

3
2

)
(1 − λi)λ2

i +
(

3
3

)
λ3

i , (5)

≈ 3λ2
i , for small λi . (6)

It is straightforward to extend this analysis to more than three
contending nodes. In general, if m nodes contend with each
other for the wireless channel, we obtain that

pci ≤
(

m

2

)
λ2

i , (7)

=
m(m − 1)

2
λ2

i , for small λi . (8)

In our experiments, due to high packet loss probability, TCP
cannot efficiently utilize the wireless channel, and hence the
above approximation is reasonable.

C. TCP Throughput

Let p1 and p2 denote the end-to-end loss probability with
and without coding. We assume that losses due to channel
errors are negligible so that all losses are due to contention.
Let X1 and X2 denote the mean TCP throughput with and
without coding. Using (6), it is obtained that

pc1 = 3(
X1

2
)2, (9)

pc2 = 3X2
2 . (10)

By substituting in (2), we obtain that p1 = 6
4nX2

1 and p2 =
6nX2

2 .
Let L and R denote the TCP packet size and round-trip-

time respectively. Then, using the well-known square root
formula [12], TCP throughput can be approximated by

Xi ≈ L

R
√

pi/2
. (11)

In steady-state, TCP sending rate Xi and packet loss proba-
bility pi balance each other. Therefore, it is obtained that

X1 =
2L

RX1

√
3n

, (12)

X2 =
L

RX2

√
3n

, (13)

which yield,

X1 =
( 2L√

3nR

)1/2

, (14)

X2 =
( L√

3nR

)1/2

. (15)

Several observations can be made regarding the above expres-
sions:

1) Impact of path length: As n increases, TCP throughput
decreases to zero because end-to-end loss probability
approaches 1.

2) Impact of coding: It is easy to see that X1 =
√

2X2,
indicating a factor of

√
2 improvement in TCP through-

put when coding is implemented. Contrast this with a
factor of 2 improvement in throughput if UDP was used
instead of TCP.

IV. NETWORK CODING IMPLEMENTATION

In our test-bed, the network coding module works between
the link layer (layer 2) and the network layer (layer 3) based on
Mesh Connectivity Layer (MCL) toolkit [13] and is transpar-
ent to other layers. MCL is a loadable Microsoft Windows
driver that provides wireless mesh connectivity. It uses a
modified Dynamic Source Routing (DSR) called Link Quality
Source Routing (LQSR) to support link quality metrics. When
it receives packets from layer 3, MCL looks up its routing
tables and encapsulates the source routing information into a
LQSR header. Then the packet is passed to the link layer and
finally transmitted through the physical layer device.

A. Unicast and Broadcast in IEEE 802.11

We use off-the-shelf IEEE 802.11a network cards to build
our test-bed. As defined by 802.11 MAC, packets are trans-
mitted either in unicast mode or broadcast mode. In our
implementation, we had to make a decision on whether to
use unicast or broadcast mode. The unicast mode has some
special properties compared to the broadcast mode:

• Link Layer Acknowledgement: In unicast mode, the re-
ceiver node immediately sends an acknowledgement for
each radio block3 that is received correctly at the link
layer. Link layer acknowledgements are fast because they
are not subject to contention as IP layer packets are.

• Link Layer Retransmission: Until the link layer acknowl-
edgement is obtained, the sender assumes the radio block
is still in the air. The sender will retransmit the radio
block if a retransmission timer expires. Retransmissions
may be repeated until a maximum number of retransmis-
sions has been reached.

• Back-Off Window Adjustment: Before every retransmis-
sion, the sender doubles its back-off window. A node
randomly sets a back-off counter between 0 and the
current back-off window size before any transmission.
This counter is decremented by one time-slot every time
there is no medium activity during the back-off period.
The node sends the packet once the back-off counter
reaches 0. Clearly, the back-off mechanism reduces col-
lision probability significantly.

• Dedicated Receiver: In unicast mode, the destination is
unique and its physical address is placed in the Ethernet
header. If a node is not the receiver, it drops the packet
immediately at the physical layer unless it works in
promiscuous mode.

In comparison, the broadcast mode provides only a basic
communication channel. Specifically, the broadcast mode does
not support link layer acknowledgements and retransmissions.
As the result, there is no link layer retransmission and no
back-off window adjustment. This effectively results in higher
packet loss probability which adversely impact TCP through-
put. On the other hand, it uses a broadcast address which

3At link layer, each TCP segment may be broken up into a number of
radio blocks for transmission. In our implementation, a TCP segment fits into
a single radio block.
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allows all nodes in the transmission range to receive the packet,
and the physical layer at receiver side passes the payload to
upper layers for further processing. This is a necessary feature
for implementing network coding in our test-bed. Otherwise,
node B in Fig. 2 has no option but to send X and Y separately
to A and B, effectively eliminating the benefit of network
coding.

B. Pseudo-Broadcast or Pseudo-Unicast

As described earlier, coded packets must be transmitted
to multiple receivers to gain throughput improvement. One
way to do it is to put nodes into promiscuous mode; another
way is to use broadcast mode to transmit coded packets.
Katti et al. [6] use the first approach in their Linux-based
implementation of COPE. COPE uses the so-called pseudo-
broadcast approach in order to send coded packets using
unicast functionality of IEEE 802.11. The receivers work in
promiscuous mode and receive every packet in the air. Using
pseudo-broadcast, a coded packet can be delivered to multiple
receivers simultaneously.

However, only a few commercial wireless cards support
promiscuous mode. Even for those that support promiscuous
mode, it is impossible to switch them to promiscuous mode
in Windows platform without having access to the card’s
special driver API. Also, the pseudo-broadcast requires an
intelligent and complicated broadcast operation that requires
modifications in the MAC layer. To avoid such modifications
that are not in general supported by commercial hardware, our
implementation uses the second approach, i.e., the physical
broadcasting method, to implement network coding.

In our implementation, coded packets are always broad-
casted. To have a fair comparison of TCP throughput with and
without coding, and to eliminate the impact of different MAC-
layer functionalities, we use broadcast for non-coded packets
as well. Although this results in inferior TCP performance, it
does provide a fair comparison between coding and no-coding
performance, and any improvement achieved is solely due to
network coding. We refer to this approach, implementing uni-
cast with broadcast functionality of IEEE 802.11, as pseudo-
unicast. With pseudo-unicast, TCP operates on the same MAC
and link-layer with and without network coding.

C. Implementation

Network coding module generates either pseudo-unicast
packets or coded packets based on LQSR packets created
by the MCL module. We first show the packet structures
generated by different modules in Fig. 3, and then illustrate
the operation of our implementation in Fig. 4.

As shown in Fig. 3, the MCL module generates LQSR
packets by inserting an additional LQSR header into Ethernet
packets received from the network layer. Compared to LQSR
packets, a pseudo-unicast packet has an additional network
coding (NC) Header and its destination in the Ethernet header
is set to the broadcast address (0xffffff). The NC header
holds the packet identification information used in coding and
decoding operations. The identification information includes

the original destination address, the packet ID and the payload
length. Fig. 3 also shows the structure of a coded packet A⊕B.
The destination of the coded packet is also set to the broadcast
address. The NC header includes the triples (real destination
address, ID, payload length) of both packet A and packet B.
The rest of the coded packet consists of the LQSR headers of
packets A and B and the XOR-ed payload. As shown in the
figure, coded packets have a longer header than non-coded
packets. A better design of the header, e.g., XOR-ing the
LQSR headers of A and B, can reduce this overhead.
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Fig. 4. Network coding implementation.

Fig. 4 depicts the operations of our network coding im-
plementation. The module consists of sending and receiving
procedures. Two First-In-First-Out (FIFO) queues are used to
store the packets. The first, called NC Cache, is used to keep
copies of all outgoing and incoming packets for decoding
purpose. Another FIFO queue is the NC Buffer. It holds the
outgoing packets that have not found a coding opportunity yet.

The sending procedure seeks coding opportunities for all
outgoing packets. First, a local copy of an outgoing packet
is stored in the NC Cache for decoding purpose. Then, if
there is another packet in the NC Buffer going in the opposite
direction, the two packets are encoded immediately. Finally,
the coded packet is passed to the link layer to be transmitted.

If there is no coding opportunity when the packet arrives,
it waits in the NC Buffer for a future coding opportunity.
Every packet in the NC Buffer has an associated timer with
an initial value of NCBufTimeout. If this timer expires,
the packet will be pseudo-unicasted. NCBufTimeout is an
important parameter. Note that NCBufTimeout may increase
TCP throughput by creating more coding opportunity, but
may decrease TCP throughput by increasing the round-trip-
time. Hence, there is a trade-off between the increased coding
opportunity and increased round-trip-time. We will dwell on
this trade-off later in Section V.

When receiving a packet, as shown in Fig. 4, a receiver first
checks whether its address is included in the NC Header of the
received packet. If not, the packet is discarded immediately.
Otherwise, if the packet is a coded packet, the receiver tries
to decode it. To decode a packet, e.g., packet A from a coded
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Fig. 3. Packet generated by different modules: Ethernet packets are from IP layer, LQSR packets are generated by MCL, and network coding module
generates either pseudo-unicast packets or coded packets that are passed to MAC layer for transmission.

packet A⊕B, the receiver will look for packet B in its NC
Cache. If packet B is found then packet A can be successfully
decoded, and a local copy of packet A will be stored in the
NC Cache. Otherwise, packet A⊕B is simply discarded. On
the other hand, if the received packet is pseudo-unicasted (i.e.,
it is a none-coded packet), the receiver only needs to store a
local copy of the received packet into its NC Cache. Finally,
the processed packet is passed to the upper layer via the MCL
module.

V. PERFORMANCE EVALUATION

In this section, we present measurement results for TCP
performance in our test-bed with different topologies. The
first set of experiments are conducted over two controlled
topologies consisting of 7 nodes. These topologies, depicted in
Figs. 5(a) and Fig. 5(b), represent standard line and dumbbell
topologies commonly used for TCP performance evaluation.
These simple topologies are easy to analyze and clearly show
the interactions between network coding and TCP. The second
set of our experiments are conducted over an unplanned
mesh topology deployed in the second floor of the Electrical
Engineering Department at UMass. This topology, depicted
in Fig. 7, consists of 20 nodes and is used to highlight TCP
performance in more realistic scenarios.

A B C D E F GS1
(R2)

R1
(S2)

(a) Line topology.

A

B

C D E

G

F

Wireless Node

Wireless Link

S1
R2

R1
S2

S3
R4

R3
S4

(b) Dumbbell topology.

Fig. 5. Controlled network topologies: Si and Ri are the sender and receiver
of TCP flow i, respectively.

The test-bed consists of 12 Dell laptops and 8 Dell desktop
computers running Windows XP SP2. They are located in
the second floor of Knowles Engineering Building on UMass
campus. Three types of 802.11a/b/g dual-band wireless cards
are used, including Dell 1450 USB, Dell 1470 MiniPCI and

Linksys WPC55AG PCMCIA cards. Note that diversity of
nodes and wireless cards provides a more realistic test environ-
ment. To avoid interference with existing 802.11b/g networks,
the test-bed uses 802.11a. In all experiments, TCP sources
generate ftp-like traffic with fixed-length packet size (1020
bytes) for 90 seconds periods. To control routing and hop
distances, static routing is used as well. For each experiment
we report the average of 10 experiments with the same test-bed
configuration.

A. Performance Metrics

We are interested in the throughput gain achieved by net-
work coding. Throughput gain is defined as:

Gain =
ThroughputCoding − ThroughputNoCoding

ThroughputNoCoding
×100% (16)

where ThroughputCoding and ThroughputNoCoding denote aver-
age TCP throughput when network coding is turned on and
off respectively.

The following observations are made with respect to TCP
throughput in our experiments:

• Network coding may decrease loss probability, hence
increase TCP throughput: TCP can achieve a higher
throughput with a lower TCP loss rate. Network coding
uses fewer transmissions to carry packets between a
source-destination pair, and hence reduces the contention
on wireless medium. Consequently, the overall packet
loss probability is reduced and TCP throughput increases.
TCP usually cannot fully utilize channel capacity. Also,
the coding opportunity can be very low because the data
and ACK packets may not arrive at a node at the same
time. Using timers at intermediate nodes can create more
coding opportunity. To show the impact of coding on end-
to-end loss probability, we measure the percentage of loss
reduction in our experiments. Define loss reduction as
follows:

Loss Reduction =
LossNoCoding − LossCoding

LossNoCoding
× 100% .

(17)
• Network coding may increase round-trip-time, hence

reduce TCP throughput: TCP has a lower throughput
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with a larger round-trip-time. The extra waiting at in-
termediate nodes caused by the use of timers increases
the average round-trip-time. In particular, large value of
NCBufTimeout results in a longer round-trip-time, and
consequently decreases TCP throughput. To show the
impact of coding on round-trip-time, we measure the
percentage of RTT increase in our experiments. Define
RTT increase as follows:

RTT increase =
RTTCoding − RTTNoCoding

RTTNoCoding
× 100% .

(18)

Clearly, there is a trade-off between reduced loss probability
and increased round-trip-time. In general, TCP is more sensi-
tive to loss probability than to round-trip-time (see the square-
root formula). Thus, we expect to see throughput gain for
small values of NCBufTimeout. To investigate the impact of
NCBufTimeout on coding opportunity in the network, we
measure coding ratio in our experiments. Define the average
coding ratio (CR) as the number of coded packet transmissions
over the total number of packet transmissions. In our imple-
mentation, CR depends on the parameter NCBufTimeout.
On one hand, larger NCBufTimeout increases CR, and
hence reduces the loss probability. On the other hand, larger
NCBufTimeout results in longer round-trip-time.

In our experiments, we measure the following metrics:

1) TCP throughput gain,
2) Average coding ratio (CR),
3) Average TCP loss probability (p),
4) Average round-trip-time (RTT).

To highlight the impact of coding on loss probability and
round-trip-time, we present the loss reduction and RTT in-
crease in the next subsection. We also show the throughput
gain achieved by network coding, and experimentally charac-
terize the proper values of NCBufTimeout that maximizes
TCP throughput in different topologies.

B. Experiments on Planned Topologies

Three experiments are conducted on planned topologies
depicted in Fig. 5. The first experiment has one TCP flow
in the line topology shown in Fig. 5(a) from node A to G.
Nodes B, C, D, E, and F act as relays. The second experiment
has two TCP flows in the same topology, one flow from A to
G and another flow from G to A with symmetric traffic. The
last experiment has four TCP flows in the dumbbell topology
depicted in Fig. 5(b), from A to G, G to A, B to F, and F to
B, respectively. Nodes C, D and E are relays.

Fig. 6(a) presents the TCP throughput 4 gain achieved by
network coding in different topologies with different values
of NCBufTimeout. The figure shows that 1.5 milliseconds
is the best NCBufTimeout in all experiments. In the line
topology with one TCP flow, the largest throughput gain is
70%. We observe that as the number of TCP flows increases,
the throughput gain decreases. The reason is that multiple

4The throughput computed in our experiments is based on the successfully
received packets, and hence can be interpreted as the goodput.

TCP flows increase channel utilization which results in high
volume of packet losses due to contention on the medium. TCP
is very sensitive to high loss probability and achieves very
low throughput. Although, network coding reduces the loss
probability, it is still high enough to degrade TCP throughput
significantly. From our model in Section III, we know that as
pl approaches 1, the end-to-end loss probability approaches
1 exponentially causing poor performance with and without
coding. Although our model considers a single TCP flow, the
impact of packet loss due to contention with other flows in the
network can be captured with pe in the model. In this case,
pe dominates so that the improvement in pc due to coding
becomes less significant on TCP throughput.

To have a better understanding of how NCBufTimeout
affects TCP performance, Figs. 6(b) and 6(c) present loss
probability increase and RTT decrease for the three dif-
ferent experiments respectively. As NCBufTimeout in-
creases, CR increases and the number of transmissions de-
creases as well. Thus the average loss probability mono-
tonically decreases as NCBufTimeout increases. Although
larger NCBufTimeout results in smaller loss probability,
Fig. 6(c) show that (as expected) RTT increases linearly as
NCBufTimeout increases. The average RTT depends on
the hop distance of TCP path. The first two experiments
have similar average RTT but the third experiment has a
smaller average RTT with a smaller hop distance. In summary,
we observed throughput gains from 20% to 70% in our
experiments.

It is worth mentioning that, in our experiments, we no-
ticed that coding ratio (CR) increases at every relay as
NCBufTimeout increases. Also different relays experience
different amount of coding ratio, and the behavior is different
for line and dumbbell topologies. In line topology, those nodes
that are closer to the source and destination, i.e., nodes F and
B, have higher coding ratios than the other nodes. The node
in the middle, i.e., node D, has the lowest CR (please refer
to [14] for details). However, for the dumbbell topology, node
D (the middle node) has higher CR than nodes C and E as
NCBufTimeout increases. The reason is that nodes C and E
can only encode the packets belonging to two TCP flows but
node D can encode packets of all four TCP flows. Therefore,
CR at a relay depends not only on the location of the relay
but also on the number of flows that go through that relay.

C. Experiments on Unplanned Topology

We implemented our network coding module in an un-
planned mesh network with 20 nodes as depicted in Fig. 7. We
are interested in throughput gain with different hop distances
and different number of flows in this realistic topology.

1) Performance with Different Hop Distances: We arbitrar-
ily select source and destination pairs from the network nodes
with different hop distances i = 2, . . . , 5. In order to highlight
the impact of path length (hop distance) on coding ratio and
TCP throughput, there is only one TCP flow in the network.
Fig. 8 shows average throughput gain, loss reduction and RTT
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Fig. 6. Experiments with multiple flows on planned topologies.

increase for different NCBufTimeout values when the hop
distance changes from 2 to 5.

It is observed from Fig. 8(a) that there exist a
NCBufTimeout value that maximizes TCP throughput gain.
However, the proper value of NCBufTimeout may vary for
different hop distances. The maximum throughput gain ranges
from 40% to 85% with respect to path length. Figs. 8(b) and
8(c) illustrate the measurement results for loss reduction and
RTT increase. Specifically, Fig. 8(b) shows that the average
loss probability decreases as NCBufTimeout increases. The
reason is that by increasing NCBufTimeout coding ratio
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Fig. 7. Topology of the unplanned mesh network with 5 TCP flows.

increases as well which results in lower loss probability.
Fig. 8(c) shows RTT increase with different hop distances. As
expected, the average round-trip-time increases by increasing
the path length and NCBufTimeout.

2) Performance with Multiple Flows: To investigate the
impact of multiple flows, we choose 5 TCP flows with different
hop distances as shown in Fig. 7. Table I shows the flows and
their corresponding routes.

TABLE I
ROUTING TABLE FOR FIG. 7.

Flow Path

1 34–21–36–31

2 39–35–34–22–27–26

3 22–21–30–23–24

4 33–34–32–38–23–28

5 29–25–28–40

Table II presents average throughput gain, average packet
loss probability and average round-trip-time with 5 concur-
rent flows. The maximum throughput gain is 22% when
NCBufimeout is 0.5 ms. When NCBufTimeout is larger
than 2.5 ms, some TCP connections are broken frequently.
Interestingly, throughput gain is almost insensitive to the
particular choice of NCBufTimeout. We conjecture that the
insensitivity is due to the heterogeneity of flows (in terms of
routes).

TABLE II
MULTIPLE FLOWS WITH DIFFERENT HOP DISTANCES.

NCBufTimeout Tput gain Loss reduction RTT increase
0.5 ms 22.34% 22.80% 3.64%
1.5 ms 21.26% 23.35% 7.68%
2.5 ms 21.23% 26.71% 26.47%

VI. CONCLUSIONS

In this paper, we presented an implementation of network
coding in a wireless mesh network and studied TCP through-
put using measurements from our implementation. The distin-
guishing feature of our implementation is that it uses off-the-
shelf hardware and software components and does not need
any modifications to TCP or the MAC layer protocol while
still being able to achieve significant throughput improvements
compared to non-coding scenarios. We developed a simple
model for TCP throughput in a coded wireless network, and
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Fig. 8. Unplanned mesh topology: Experiments with different path length.

argued that the main factor improving TCP throughput is
reduced packet loss thanks to network coding. To further
improve TCP throughput and combat time synchronization
issues, we implemented a timer at intermediate nodes to
postpone the immediate transmission of packets. We then pre-
sented measurement results characterizing the relation between
the timeout value and throughput improvement.

In the future, we hope to extend our analytical model to
capture the impact of network coding on TCP throughput
taking into consideration finer interactions between TCP and
network coding. Such a model can be used to characterize

the throughput benefit of network coding and study the effect
of various control parameters such as the timeout value at
intermediate nodes. We also plan to explore the use of multi-
path TCP in WMNs employing network coding.
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