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Abstract—To reduce the energy consumption of a smartphone,
multiple data transfer requests from applications can be bundled
together and granted at once in order to reduce the time
the radio interface is on. The side effect of bundling is the
increased delay experienced by mobile applications. While several
bundling algorithms have been proposed in the literature, a
general and systematic solution to balance the energy-delay
tradeoff is missing. In this paper, we formulate bundling as
a cost minimization problem, in which the tradeoff between
energy and delay is captured by a cost function. We then
propose an online algorithm for minimizing the bundling cost
and show that the algorithm is 4-competitive with respect to the
optimal offline algorithm that knows the entire sequence of data
transfer requests a priori. We evaluate the performance of the
proposed algorithm and the accuracy of our results in a range of
realistic scenarios using both model-driven simulations and real
experiments on a smartphone. Our results show that depending
on the delay tolerance level of a user, energy savings ranging
from zero (delay intolerant) to about 100% (delay tolerant) can
be achieved using our algorithm.

I. INTRODUCTION

A. Motivation

A major contributor to the total energy consumption of a
smartphone is the energy consumed by its radio interface [1].
Recent studies show that a significant portion of the radio
energy is spent when there is no active data transfer [2], [3].
The reason is that once a data transfer is completed, the radio
interface of the device lingers in the (high power) “on” state
for some tail time before switching to the (low power) “off”
state. The reason for this behavior is to avoid switching radio
states in case any data transfer request arrives during the tail
time, which in turn reduces network signaling overhead. In
3G/LTE networks, typical values for the tail time are around
several seconds depending on the carrier configuration [4], [5].

The implication of tail time for a smartphone is that periodic
and intermittent data transfer requests can keep the radio on for
a long period of time, leading to rapid depletion of its battery.
Such a traffic pattern is indeed the characteristic of many
mobile applications due to data syncs and status updates [6],
keep-alive messages [7], code offloading [8] and even web
browsing [9], [10]. A well-know technique to alleviate the
effect of tail time is request bundling [2], [3], [8], [11]–[13].
With bundling, rather than granting individual data transfer
requests as they arrive, multiple requests are bundled together
and granted at once. Thus, the tail energy is amortized over
multiple transfers in a bundle, which results in reduced radio
energy consumption.

A critical question when implementing request bundling is
how long to wait to create a bundle. By waiting too long,
potentially more requests can be bundled together leading to
more energy savings. This comes, however, at the expense of
increased delay, which may negatively affect the performance
of mobile applications, and consequently the user experience.
The difficulty in designing an optimal bundling algorithm is
that the bundling decisions have to be made online without
knowing the timing of future data transfer requests.

B. Related Work

The following is a brief review of several works on request
bundling that are more relevant to this paper.

1) Packet Bundling: Packet bundling can be implemented
at the link layer irrespective of the applications running on the
device. Deng et al. [3] proposed a learning algorithm to predict
the traffic pattern in order to decide when a packet bundle
should be granted. In another work, Dogar et al. [14] showed
that the bandwidth discrepancy between wired and wireless
segments of a connection can create small idle gaps between
successive packets. They then designed a proxy-based system
that bundles multiple packets together in order to maximize the
idle time between bundle grants. Alonso et al. [11] proposed
bundling packets in order to improve the energy efficiency of
the DRX mechanism in LTE networks. Assuming a Poisson
packet arrival process, they computed the optimal size of
bundles that minimizes the radio energy consumption, while
ensuring a bounded average packet delay.

2) Mobile Web Browsing: Hoque et al. [15] showed that
when viewing web pages, there are idle gaps between consec-
utive web object downloads. This is due to the fact that inter-
object dependencies in web pages require some processing,
for example to evaluate Java scripts, which can create delays
between object downloads [9]. To reduce the radio energy con-
sumption of mobile web browsing, a proxy-based architecture
was proposed in [12], [13], in which a network-hosted proxy
fetches web objects from remote servers and then sends them
to the client device in bundles. In particular, using the heuristic
assumption of equal-sized bundles, Sivakumar et al. [12]
computed the optimal number of bundles that minimizes the
radio energy usage of visiting a web page.

3) Delayed Data Offloading: While not directly related to
minimizing the radio on time on smartphones, the problem in
delayed data offloading has a similar structure to the bundling
problem considered in this paper, and hence any solution for
the bundling problem will be of benefit to the data offloading
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problem as well. In delayed data offloading, the problem is
to decide how long to wait until a WiFi network becomes
available to offload data transfer requests from the cellular
network to the WiFi network [16], [17].

4) Delay-Tolerant Applications: Balasubramanian et al. [2]
proposed a threshold-based bundling algorithm called TailEn-
der which achieves a competitive ratio of 2. The idea is that
data transfer requests from delay-tolerant applications can be
postponed up to a deadline without any penalty. The TailEnder
requires modification of applications so that they can inform
the bundling algorithm of their deadlines.

5) Mobile Code Offloading: In practice, it is difficult to
know the deadlines for data transfer requests particularly
for non-delay-tolerant applications. Instead, Xiang et al. [8]
formulated the bundling problem in the context of mobile code
offloading as a cost minimization problem, where the cost of
bundling is given as a function of both energy and delay. Thus,
a bundling algorithm may delay bundles arbitrarily in order to
reduce its energy cost as long as it is willing to accept the
increased delay cost. Then, based on [18], they devised an
online algorithm to minimize the cost of bundling.

Clearly, with bundling, there is a tradeoff between en-
ergy saving and increased delay. In general, the energy-
delay tradeoff depends on various contextual and technological
factors [19]. For example, a user possessing a smartphone with
full battery may prefer earlier task completion over energy
saving. With the exception of [8], the aforementioned works
do not have the flexibility to achieve different energy-delay
tradeoffs. Indeed, the problem setting considered in our work
is similar to the one considered in [8]. There are, however,
significant differences between the two works, as discussed
next.

C. Our Work

For a bundling algorithm A, define the cost of the algorithm
as a weighted combination of its energy and delay cost,
denoted by EA and DA, respectively. That is,

CA = EA + αDA, (1)

where, CA denotes the total cost of algorithm A. The energy
cost EA is defined as the time the radio spends in the on state
under algorithm A. The exact definition of the delay cost DA

is clarified later. The weight factor α ≥ 0 is used to achieve a
desired tradeoff between energy and delay. A smaller value of
α indicates the willingness of the user to tolerate a higher delay
for the sake of reducing the radio energy consumption. By
controlling α, different energy-delay tradeoffs can be achieved
ranging from maximum energy reduction (with α = 0) to zero
energy saving (with α� 1).

The problem considered in this paper is how to minimize
the cost CA without knowing the future data transfer requests
a priori. We call this problem the Energy-Aware Bundling
problem (EnerB) in the rest of the paper. Inspired by the classic
Ski Rental problem [20], we design a deterministic online
algorithm for EnerB called the Break-Even algorithm (BE). In
BE, a grant is made when the energy cost and weighted delay
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Fig. 1: Energy cost is variable: Scenarios (a) and (b) have the same
energy cost even though they have different number of grants.

cost of a bundle become equal. Our algorithm and its analysis
are considerably general and can accommodate different defi-
nitions of the delay cost. We prove that the competitive ratio of
BE with respect to the optimal offline algorithm that knows
the future data transfer requests in advance is 4. Moreover,
we show that the ratio 4 is tight. Extensive simulation and
experimental results are also provided to study the behavior
of BE in a range of scenarios. Our results show that in realistic
scenarios, the performance of BE is significantly better than
what is implied by the worst-case competitive ratio 4.

One would appreciate the resemblance between our prob-
lem and the dynamic TCP acknowledgment problem (Dy-
nAck) [21]. In DynAck, the goal is to minimize the number
of acks sent by bundling multiple acks together and sending
a single cumulative acknowledgment. The problem can then
be cast as a variation of EnerB, in which the energy cost EA
is replaced by the acknowledgment cost, i.e., the number of
acks sent. Indeed, this relation was exploited in [8] to design
a bundling algorithm for mobile code offloading. There is,
however, a subtle difference between problems EnerB and
DynAck, which completely changes the problem. Whereas the
cost of sending an ack is constant, the energy cost of making
a grant is variable. Specifically, the cost of sending an ack
is always 1 (no matter how long the algorithm waits to send
the ack), and thus, the acknowledgment cost incurred by the
algorithm is simply given by the total number of acks sent.

In contrast, in EnerB, the energy cost of making a grant is
variable as it represents the amount of time the radio has been
on. In this case, the energy cost EA is the summation of radio
on times over the duration of the algorithm, and hence the
number of grants may not have any relation to EA. Consider
the scenarios depicted in Fig. 1, where T denotes the tail time.
Grants are specified by g on the figure. In Fig. 1(a), there is one
grant at the beginning and one grant at the end of an interval of
length X . In Fig. 1(b), in addition to the grants at the beginning
and end of the interval of length X , there are three other
grants during the interval. Since X < T , in both scenarios,
the radio is on for the entire duration X . Thus, the energy cost
of the bundling algorithm in both scenarios is equal to X , even
though there are different number of grants during the same
interval. Thus, as opposed to the analysis presented in [8],
[18], [21], if algorithm A makes more grants than algorithm
B, we cannot conclude that EA > EB , as shown in Fig. 1.
This relation is at the heart of the analysis presented for the
performance of the online algorithms proposed in [8], [18],
[21]. As shown later, we design a completely new approach
to analyze the performance of our algorithm as the approach
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Fig. 2: Relation between arrivals, grants and intervals.

taken in the above mentioned works does not apply.

D. Paper Organization

We start by formally describing the problem in Section II.
In Section III we present an optimal offline algorithm. Our
proposed online algorithm is presented in Section IV, which
is then followed by a detailed analysis of the algorithm in
Section V. Performance evaluation results are discussed in
Section VI. Section VII concludes the paper.

II. PROBLEM STATEMENT

Consider a sequence of data transfer request arrivals
A = 〈a1, . . . , an〉, where ai denotes the arrival time of request
i. The sequence A is not known in advance. Without loss
of generality, we assume that the radio is off when the first
request arrives. The goal is to design an online algorithm to
bundle multiple requests together and grant them at once as
opposed to individually granting each request. Depending on
the application context, a data transfer request may involve
uploading and/or downloading data over the radio interface.

Let GA = 〈g1, . . . , gk〉 denote the sequence of grants made
by some algorithm A, for the arrival sequence A, where gi
denotes the time of grant i. Let XA = {X1, . . . , Xk} denote
the set of all grant intervals of algorithm A, where X1 =
[a1, g1] and Xi = (gi−1, gi], for i ≥ 2. All requests that arrive
during the interval Xi are bundled together and granted at time
gi. Throughout the paper, we use the notation Xi to refer to
the i-th grant interval as well as the length of that interval,
when there is no ambiguity.

Fig. 2 shows the relation between arrivals and grants. The
objective of the bundling algorithm is to determine the grant
times gi that minimize the cost CA = EA + αDA.

A. Energy Cost

The energy cost EA is defined as the time the radio spends
in the on state under algorithm A. Let T denote the tail
time. Then, the energy cost of grant interval Xi is given by
EA(Xi) = min {Xi, T}. It then follows that,

EA =
∑

Xi∈XA

EA(Xi) + T =
∑

Xi∈XA

min {Xi, T}+ T, (2)

where the additional term T is added to account for a tail time
after the last grant. To simplify the analysis, similar to [8],
[18], [21], we have ignored the transfer time of bundles as
this time is the same for every bundling algorithm.

B. Delay Cost

The delay cost is defined as the sum of delays of all requests
handled by the algorithm. We use the notation DA(Xi) to

denote the delay cost of bundle i, which includes all requests
that arrive during interval Xi. Consider a request aj ∈ Xi. The
delay cost of request aj is given by (gi − aj). The delay cost
of bundle i is then expressed as DA(Xi) =

∑
aj∈Xi

(gi−aj).
Thus, it follows that,

DA =
∑

Xi∈XA

DA(Xi) =
∑

Xi∈XA

∑
aj∈Xi

(gi − aj) . (3)

It will become clear later, in Section IV, that our online
algorithm as well as its upper bound analysis are independent
of the specific delay cost function considered and can be
applied to a variety of other delay cost definitions.

III. OPTIMAL OFFLINE ALGORITHM

The optimal offline algorithm, referred to as OPT, knows
the entire request arrival sequence a priori. While unrealistic,
OPT can be used as a benchmark when evaluating the
performance of our online algorithm. We design OPT based
on the observation that every grant of the optimal algorithm
happens right at the time of some request arrival, i.e., for all
gi ∈ GOPT, we have gi = ak, for some ak ∈ A. That is,
the optimal algorithm never makes a grant in-between two
arrivals because doing so would only increase its cost. As a
result, we can consider the problem of finding the optimal
grant sequence as a discrete time optimization problem. Thus,
upon each request arrival, the optimal algorithm should decide
whether to make a grant for the current bundle or wait for the
next request arrival.

Algorithm 1 OPT: Optimal Offline Algorithm

Input: A = 〈a1, a2, . . . , an〉
Output: Cmin, Seq

1: Initialize: Cmin[1] = 0
2: Initialize: Seq[1] = 〈1〉
3: for i ∈ [2, n] do
4: Cmin[i] = αfdelay(1, i)
5: Seq[i] = I〈i〉
6: for j ∈ [1, i− 1] do
7: C = Cmin[i− j] + αfdelay(i− j + 1, i)
8: +min

{
ai − ai−j , T

}
9: if C < Cmin[i] then

10: Cmin[i] = C
11: Seq[i] = 〈Seq[i− j], I〈j〉〉
12: end if
13: end for
14: end for

Specifically, we present a dynamic programming solution
with the runtime of O(n2), where n is the length of the
arrival sequence A. The input to the algorithm is the arrival
sequence A. The output of the algorithm are arrays Cmin and
Seq. Here, Cmin[i] represents the optimal cost of the sub-
sequence Ai = 〈a1, . . . , ai〉, and Seq[i] is a binary sequence
representing the decisions of OPT for the subsequence Ai. If
Seq[i] = 1, then OPT makes a grant at ai, otherwise it waits
for the next arrival. Also, COPT is given by Cmin[n] + T .

Algorithm 1 shows the steps in OPT. As can be seen, it
constructs the optimal grant sequence in a bottom-up fashion.
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The main idea of the algorithm is that, for any arrival sequence,
there is a grant right when the last request arrives, and the
second to last grant can happen when any of the previous
requests arrives. Specifically, OPT consists of a nested loop
where each iteration of the outer loop finds the optimal
solution for the smaller subsequence Ai and stores it in
Cmin[i] and Seq[i]. Finally, the last iteration of the outer loop
computes the optimal grant decisions for the arrival sequence
A = An using the results achieved in previous iterations. The
notation fdelay(j, i), for j < i, denotes the delay cost incurred
by requests 〈aj , . . . , ai〉 when they are granted at time ai,
which is given by fdelay(j, i) =

∑i
k=j(ai − ak). Also, I〈l〉

denotes a binary sequence of length l in which all elements
are 0 except the last one, which is set to 1.

Lemma 1. When α > 1, OPT makes a grant for every request
arrival.

Proof. Assume that there exists an arrival at time aj for
which OPT does not make a grant and instead decides to
wait for future request arrivals. Let gi denote the last grant
of OPT before aj . Also, let gi+1 denote the first grant
of OPT after aj (see Fig. 3). If we modify the optimal
grant sequence by adding a grant at aj , the latency cost
of the new sequence decreases by at least α(gi+1 − aj).
However, adding a grant at aj changes the energy cost
contribution of the interval (gi, gi+1] from min{gi+1 − gi, T}
to min{gi+1 − aj , T}+min{aj − gi, T}. As a result, the net
increase in the energy cost can be characterized as follows:

min{gi+1 − aj , T}+min{aj − gi, T} −min{gi+1 − gi, T}
≤ min{gi+1 − aj , T} ≤ gi+1 − aj .

The first inequality holds simply because aj < gi+1. Given
that α > 1, the increase in energy cost is less than the
decrease in latency cost, i.e., α(gi+1 − aj). Thus, the cost
of the modified grant sequence is less than the cost of the
optimal grant sequence, which is a contradiction.

Interestingly, using a similar argument, it can be established
that when α = 1, there exist multiple optimal grant sequences
and that granting at each arrival is one of them.

IV. ONLINE BREAK-EVEN ALGORITHM

The Break-Even algorithm (BE) works as follows. Assume
that the last grant was at time gi and the algorithm has to
decide when to make its next grant gi+1. Let EBE(t) and
DBE(t) denote the energy and delay cost incurred since the
previous grant gi up to time t. Then, BE makes a grant at time
t for which EBE(t) = αDBE(t). Fig. 4 depicts an example
illustrating the behavior of BE. The staircase curve shows the

t− gi tgi
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Fig. 4: An example depicting the delay cost of BE.

arrival of requests over time. It is easy to see that for any
choice of t, the area of the resulted shaded region will be
equal to the latency cost associated with a grant at time t. Let
D denote the numerical value of this area. BE will choose the
grant time t that satisfies the following equation:

min{t− gi, T} = αD . (4)

The first grant is treated differently, i.e., when there is no gi.
The algorithm makes its first grant at some time t that satisfies
the equation T = αDBE(t).

The algorithm BE can be implemented using timers. Specif-
ically, upon the arrival of the l-th request at time al, a timer
is set to time out at time al + t, where the value of t is
computed based on (4). If the next request arrives before the
expiry of this timer, the timer value will reset to a new value
t by solving (4) with a new value of D. Otherwise, a time out
at time gi+1 = al+ t will provoke a grant event in which case
all the pending requests will be granted.

V. ANALYSIS OF THE BREAK-EVEN ALGORITHM

As mentioned earlier, the main difficulty in determining the
competitive ratio of BE is that the algorithm can make several
grants in a short period of time and incur only a small energy
cost. This implies that, an algorithm can make many grants
and incur smaller energy cost compared to another algorithm
that makes only a few grants. This is completely different from
the problem setting considered in [8], [18], [21], where it is
assumed that if an algorithm makes more grants then it incurs
a higher energy cost.

In the reminder of this section, we focus on proving the
following theorems.

Theorem 1. The Break-Even algorithm achieves a competitive
ratio of 4, that is, CBE ≤ 4COPT.

Theorem 2. The competitive ratio of 4 is tight, that is, there
is an arrival sequence for which CBE = 4COPT.

A. Preliminaries

The main idea is to lower-bound the cost of OPT with
respect to the cost of BE.

Lemma 2. The cost of grant interval Xi is given by
CBE(Xi) = 2min {Xi, T}.
Proof. Recall that BE makes a grant when EBE(Xi) =
αDBE(Xi). Thus, the cost of interval i is given by CBE(Xi) =
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Fig. 6: Grant intervals of BE overlaid on radio states of OPT.

2EBE(Xi). Based on the definition of the energy cost, we have
EBE(Xi) = min {Xi, T}. This completes the proof.

Observation 1. At least one request arrives during an interval
Xi = (gi−1, gi]. If there is no arrival, then the algorithm does
not make any grant at gi as there is no request to grant.

Observation 2. Using Lemma 2, the cost of interval Xi

satisfies the relations CBE(Xi) ≤ 2Xi and CBE(Xi) ≤ 2T .

B. Radio State Transitions

Let GOPT = 〈g1, . . . , gl〉 denote the sequence of grants
made by OPT. Recall that OPT knows the sequence A in
advance, and hence can optimally space its grants in order to
minimize its cost. We make no assumption about the relation
between the number of grants of BE and OPT.

Fig. 5 depicts the grants of OPT and the corresponding state
of the radio interface under this algorithm. At the beginning,
the radio is off. During the execution of the algorithm, the
radio may switch between the on and off states several times.
Once the last grant is made, which happens when the last
request arrives at time an, after a tail time T , the radio goes
to the off state again.

Fig. 6 depicts the grant intervals of BE overlaid on the radio
states under OPT. Two types of intervals can be identified:

1) Intervals that do not include any radio state transitions.
2) Intervals that include one or more radio state transitions.

The following subsections, analyze these two types of interval.

C. Intervals with No Radio Transition

Let X denote such an interval. There are two types of such
intervals:

1) Radio is on during interval X: In this case, no matter how
many grants OPT makes, it incurs at least the energy cost
as its radio is on. Its delay cost could be zero, but it keeps
the radio on for at least X amount of time. Thus,

COPT(X) ≥ X . (5)

Based on Observation 2, it is obtained that,

CBE(X) = 2min {X,T} ≤ 2X ≤ 2COPT(X) . (6)

2) Radio is off during interval X: Following Observation 1,
since BE makes a grant at the end of interval X , it means
that at least one request has arrived during X . As the radio

X

T

g

(a) First grant of OPT happens when
the radio is on.

g

X

(b) First grant of OPT happens when
the radio is off.

Fig. 7: Intervals with one or more radio transitions.

is off for OPT, we conclude that OPT incurs at least a
delay cost equal to DBE(X), as does BE. Therefore,

COPT(X) ≥ αDBE(X) . (7)

As discussed in the proof of Lemma 2, we have
CBE(X) = 2EBE(X) = 2αDBE(X). Thus, the follow-
ing relation is obtained,

CBE(X) = 2αDBE(X) ≤ 2COPT(X) . (8)

D. Intervals with One or More Radio Transitions

Let X denote such an interval. Consider the grants of OPT
during the interval X . If there are no grants, then clearly
CBE(X) ≤ 2COPT(X) as OPT suffers from at least a delay
cost equal to DBE(X) because it does not make any grants
during X . Thus, in the remainder of this subsection, we
consider the case that OPT makes at least one grant during
interval X .

Consider the first grant of OPT in X . As depicted in Fig. 7,
there are two cases to be considered:

1) The first grant happens when the radio is already on:
This case is depicted in Fig. 7(a). Since OPT has a grant
when the radio is on, the radio remains on for at least a
tail time T . Thus, COPT(X) ≥ T . It then follows that,

CBE(X) ≤ 2min {X,T} ≤ 2T ≤ 2COPT(X) . (9)

2) The first grant happens when the radio is off: This case
is depicted in Fig. 7(b). In this case, the cost of OPT
could be as low as zero if its first grant (denoted by g on
the figure) happens right at the same time as the grant of
X . Thus, the only relation that can be established in this
case is,

CBE(X) ≤ 2min {X,T} ≤ 2T, (10)

and the ratio CBE(X)/COPT(X) is indeed unbounded.
Let X 0

BE ⊆ XBE denote the set of all such intervals of
BE.

The key idea is then to bound the cost of OPT over the
interval set X 0

BE rather than bounding its cost over individual
intervals (where its cost could be zero). This is established
during the proof of Theorem 1 presented next.

E. Proof of Theorem 1

Proof. We have the following relations for the cost of BE and
OPT with respect to grant intervals XBE,

COPT =
∑

Xi∈XBE

COPT(Xi) + T, (11)
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CBE =
∑

Xi∈XBE

CBE(Xi) + T . (12)

It was shown in the previous subsections that for every interval
Xi ∈ XBE/X 0

BE, we have, CBE(Xi) ≤ 2COPT(Xi). Also, for
every interval Xi ∈ X 0

BE, we have, CBE(Xi) ≤ 2T . Therefore,
it is obtained that,

CBE =
∑

Xi∈XBE

CBE(Xi) + T

=
∑

Xi∈XBE\X 0
BE

CBE(Xi) +
∑

Xi∈X 0
BE

CBE(Xi) + T

≤ 2
∑

Xi∈XBE\X 0
BE

COPT(Xi) +
∑

Xi∈X 0
BE

(2T ) + T

≤ 2COPT + 2T |X 0
BE|,

(13)

where |X 0
BE| denotes the cardinality of set X 0

BE. Thus, it is left
to compute an upper bound for the term |X 0

BE|. Clearly, in the
worst case, this term is upper bounded by |XBE| as depicted
in Fig. 8. In this case, for every radio transition from the off
to on state, there is an interval Xi. In this worst-case scenario,
for every interval Xi ∈ X 0

BE, OPT incurs at least an energy
cost equal to one tail time as it turns on the radio during the
interval. It then follows that,

COPT ≥ |X 0
BE|T, (14)

and, consequently,

|X 0
BE| ≤

COPT

T
. (15)

Substituting the above inequality in (13) yields the following
result,

CBE ≤ 2COPT + 2T |X 0
BE|

≤ 2COPT + 2COPT

≤ 4COPT .

(16)

F. Proof of Theorem 2

Proof. To show that the competitive ratio 4 is tight, it is
sufficient to provide an example that attains this ratio. To this
end, consider the scenario depicted in Fig. 9. Assume that
α < 1, i.e., energy is more important than delay.

In this example, every time the radio is off, a large number
of requests (depicted by a thick arrow) arrive in a short period
of time, i.e., a batch arrival, so that the online algorithm
makes a grant immediately after the batch arrival. Recall that
individual request delays are added together. Therefore, even
though individual delays are small, a large number of them
are added together to become equal to T , at which point BE
makes its first grant. Since the radio is off, the cost of the first
grant is given by its delay cost, which is equal to T .

A

BE

ALG

Z

ε
> T> T

Fig. 9: Example for the lower bound.

A short time ε after this grant, another request arrives
(depicted by a thin arrow) and then nothing arrives for a
while. Algorithm BE waits for some time before making
a grant for the second arrival. Since α < 1, the wait
time will be longer than T in order to satisfy the equation
EBE(ε+ t) = min {ε+ t, T} = αt. For the second grant, the
cost is the summation of the energy cost T and its weighted
delay cost, which is also equal to T , for a total cost of 2T .
Once time T has passed after the second grant, the radio goes
to the off state, which incurs the energy cost T due to the tail
time. At this time, the same scenario is repeated again (i.e., a
large batch arrival immediately followed by a single arrival).

Next, consider the cost of OPT for the same scenario. We
do not know how OPT behaves in this case, but we do know
that its cost is less than or equal to the cost of the algorithm
that makes a grant as soon as any request arrives. This
algorithm is denoted by ALG on Fig.9. For this algorithm,
its delay cost will be zero, and thus its total cost is given by
the radio on time ε plus a tail time.

Let Z denote the time interval from when the first request
in a batch arrives until the arrival of the first request of the
next batch as depicted in Fig.9. Based on the above argument,
it is obtained that,

CBE(Z) = T + 2T + T, (17)
COPT(Z) ≤ CALG(Z) = ε+ T . (18)

The proof is established by noting that,

lim
ε→0

CBE

COPT
= 4 . (19)

G. Remarks On the Competitive Ratio

Notice that the competitive ratio of 4 for BE is in the
worst case. On average, the algorithm performs much better
as shown in Section VI. In practice, it is unlikely that a
large number of requests arrive in a short period of time. For
example, let us assume that the minimum inter-arrival time is
τ . Consider the lower bound scenario described in the previous
subsection. Let n denote the number of back-to-back request
arrivals in a batch until BE makes a grant. Thus, the i-th
request waits for time (n − i)τ until BE makes a grant. At
the time of the first grant at time t, we have T = αDBE(t),
which yields,

T = α(0 + 1 + 2 + · · ·+ n− 1)τ, (20)
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and, consequently, n ≈
√

2T
ατ . In this scenario, the algorithm

OPT incurs either a delay cost equal to T (if it does not
make a grant), or an energy cost equal to nτ (if it grants every
request), as there is some time between successive arrivals. As
T ≥ nτ , we obtain that, COPT ≥ nτ+T . It then follows that,
limτ→T/(2α)

CBE

COPT
= 2.

VI. PERFORMANCE EVALUATION

In this section, we first present model-driven simulation
results to verify the accuracy of our results. Then, we present
experimental results based on measurements on a smartphone
to demonstrate the utility and performance of the proposed
algorithm in realistic scenarios. In addition to BE and OPT,
we have also implemented the Default algorithm, in which
requests are granted as soon as they arrive.

A. Model-Driven Evaluation

In this part, we use a custom-developed discrete-event
simulator to compute energy and delay costs under different
algorithms. The input to the simulator consists of the weight
factor α, the value of the tail time and the arrival sequence.
Unless otherwise stated, the tail time is set to 200 ms, which is
the value for the tail time of the Continuous Reception substate
in LTE’s Radio Resource Control (RRC) state machine [5].

1) Exploring Energy-Delay Tradeoff: The first experiment
is performed using a sequence of 100 request arrivals, where
the inter-arrivals are sampled from a normal distribution with
mean 200 ms and standard deviation 80 ms. In this sequence,
about 41% (59%) of the inter-arrival times are less (greater)
than the tail time.

Figs. 10(a) and 10(b) represent the delay and energy cost
for different values of α, respectively. It can be seen that
by exploring the large parameter space of α, BE is able to
provide different levels of energy savings depending on the
user preference. Specifically, by increasing the weight α, BE
achieves lower delay values at the expense of higher energy
consumption. In our experiments, α = 10−4 and α = 103

mark two ends of the spectrum where maximum energy saving
(and delay reduction) are achieved at the expense of increased
delay (and energy consumption). For example, α = 103 results
in 100% delay reduction compared to α = 10−4, while
α = 10−4 brings about 98.9% energy saving compared to
α = 103.

Fig. 10(c) combines the previous two plots by showing
the pairwise values of energy and delay along with their
corresponding weight factors. We see a negligible influence
of the weight change on the energy cost in the regimes where
delay is more important than energy (α > 1). Fig. 10(d) shows
the average size of the bundles created by BE. It is observed
that BE ia able to adjust its behavior based on the weight
given to the delay cost. Specifically, the average bundle size
decreases from 100 to 1 by increasing the delay weight from
10−4 to 103. For lower values of α, greater energy savings
require a more aggressive aggregation policy, thus creating
larger bundles. On the other hand, in scenarios where delay

has higher weight, BE tends to avoid bundling and grants
requests as soon as they arrive.

Table I compares the performance of BE and OPT in terms
of the empirical competitive ratio achieved for different values
of α. It can be seen that in this experiment, BE performs
considerably better than the predicted worst-case competitive
ratio of 4. Also notice that for α = 103, the total cost of BE
becomes equal to the cost of OPT. The reason is that in the
extreme case of maximum delay reduction, both BE and OPT
have identical behaviors as they grant requests as they arrive.

TABLE I: Empirical competitive ratio of BE.
α CBE/COPT α CBE/COPT

10−4 1.32 1 1.64
10−3 1.30 101 1.97
10−2 1.18 102 1.86
10−1 1.17 103 1

2) Performance under Different Arrival Patterns: To study
the behavior of BE under different arrival patterns, we con-
sider the fluctuation level of the inter-arrival times. Similar
to [22], we use the coefficient of variation (CV) to classify
sequences of arrival times into groups of low, medium and
high fluctuations. We conduct simulations with sequences
characterized by CV = 0.5 (low fluctuation), CV = 1.5
(medium fluctuation) and CV = 5 (high fluctuation). In
all sequences, inter-arrival times are sampled from a normal
distribution with mean 200 ms.

Fig. 11 compares the total cost of the three algorithms under
varying fluctuation levels and weight values. It is observed that
for a specific delay weight, the performance of BE changes
depending on the characteristics of the arrival sequence. For
example in Fig. 11(a) (α = 10−4), the cost of BE is 1.15
and 1.37 times the cost of OPT for sequences with medium
and high fluctuation, respectively. Among all the considered
scenarios, the ratio CBE/COPT ranges from 1.15 to 1.82,
which is consistent with our analysis. We can also see that, in
scenarios with higher weight for energy (α = 10−2, 10−4),
BE outperforms the Default algorithm. For example, in a
setting with α = 10−2 and high fluctuation, BE results in
69.8% reduction in the total cost compared to Default. As
Fig. 11 illustrates, across all α values, the lowest performance
of BE is achieved when delay and energy have an equal weight
(α = 1). This conforms with Lemma 1 that in those regimes,
it is optimal to schedule requests immediately on their arrival.
As a result, deferring a request will only contribute to both
energy and delay cost, and thus leading to a higher competitive
ratio. It is, however, straightforward to modify BE to follow
the behavior of OPT when α ≥ 1.

3) A Bursty Arrival Pattern: In this section, we verify that
the competitive ratio of BE is indeed greater than 2. To this
end, we generate an arrival sequence inspired by the example
described in Subsection V-F. As Fig. 12 shows, this sequence
is a repetition of a specific pattern, where a burst of requests
(marked by a thick arrow) arrives and then after a short period
of time, denoted by ts, a single request arrives (marked by a
thin arrow). Thereafter, a long interval, denoted by tl, passes
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Fig. 10: Performance of BE: By controlling α, different energy-delay tradeoffs can be achieved.
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Fig. 11: Comparing the performance of BE with OPT and Default under different fluctuation levels of request inter-arrival times.

tlts
Fig. 12: A bursty arrival sequence: The thick and thin arrows indicate
burst and single arrivals, respectively

before the arrival of the next burst. By following this pattern,
we construct a sequence of 500 requests, where the size of
each burst is uniformly distributed between 1 and 14. The short
and long time intervals (ts and tl) are exponentially distributed
with means 40 ms and 400 ms, respectively.

TABLE II: Empirical competitive ratio with bursty arrival pattern.
α CBE/COPT α CBE/COPT

0.7 2.24 1.1 2.45
0.8 2.36 1.2 2.34
0.9 2.51 1.3 2.24
1 2.63 1.4 2.19

Table II tabulates the empirical competitive ratio of BE
for values of α that result in a cost ratio greater than 2.
We note that, while the cost ratio is greater than 2 in these
scenarios, it is still consistent with the ratio 4. Interestingly,
in our simulations with α = 1, the cost ratio increases from
1.82 to 2.63 by changing the arrival pattern from the high
fluctuation (described earlier) to the bursty pattern.

4) Effect of Tail Time: To study the effect of the tail
time on the performance of BE, we use a sequence of 100
requests, where the inter-arrival times are sampled from a
normal distribution with mean 300 ms and standard deviation
80 ms. We perform a set of experiments with three different
values for the tail time (100, 200 and 300 ms). Fig. 13 depicts

10
−4

10
−3

10
−2

10
−1

10
0

10
3

0

0.5

1

1.5

2

2.5

3
x 10

4

Weight (α)

E
n
e
rg

y
 c

o
s
t 
(m

s
e
c
)

 

 

T = 100

T = 200

T = 300

Fig. 13: Energy cost of BE with different tail times.

the energy cost for different values of the tail time as a function
of the delay weight (α). It is observed that the energy-delay
tradeoff and hence the energy cost is dependent on the value
of the tail time. Specifically, decreasing the tail time leads to a
lower energy cost in almost all cases (α values). For example,
in the case of α = 103, an energy cost improvement of about
62% can be achieved when changing the tail time from 300 ms
to 100 ms. This is due to the fact that larger values of tail time
tend to keep the network interface on for longer, which can
cause higher energy consumption.

Fig. 13 also shows that the benefit of shorter tail times grows
with increasing the delay weight. The reason is that, to reduce
delay, a higher number of grants are needed, which in turn
generates a higher number of inter-grant idle gaps. Therefore,
the role played by the tail time becomes more significant when
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Fig. 14: LTE experiments on a Nexus smartphone.

delay has higher importance to the user. A similar argument
can be made to justify the marginal benefits of shortening the
tail time in settings with higher energy weight (α < 1).

B. Smartphone Experiments on LTE

To assess the performance of BE under more realistic condi-
tions, we also performed experiments on a Nexus smartphone.
To measure the energy consumption of the radio interface,
we used the AT&T ARO tool [1], which is configured with
AT&T LTE network parameters. To conduct experiments on a
smartphone, we developed an Android app that turns off the
screen and performs HTTP transfers at user-specified times.
Each run of this app uses a grant sequence file and a URL
as input. It then repeatedly downloads the object referred to
by the URL at the times specified in the grant file. We also
installed a firewall app (AFWall+) on the phone to block all
background traffic from OS services and other apps.

For the input sequence, we created a sequence of 100
requests with normal inter-arrival times of mean 10 seconds
and standard deviation 5 seconds, based on the measurement
results reported in [2] for popular news feed updates. Also,
given that the operation of BE depends on the value of the tail
time, we used 10 seconds as the tail value which is the default
value in ARO’s AT&T LTE profile for the inactivity timer
of the RRC CONNECTED state. Using the input sequence,
and for different values of α, we run BE and Default and
record their resulting grant times in separate files. We then
feed those files to our Android app and measure the radio
energy consumption of the device during each run.

Fig. 14(a) plots the pairwise energy-delay values of BE
along with their corresponding α values. Notice that both
Fig. 14(a) and Fig. 10(c) in previous section use the same
delay measure which is the cumulative delay (in ms) incurred
by all requests in the sequence. However, while Fig. 10(c)
expresses energy in terms of the milliseconds spent in the
high power state, here we present energy in terms of Joules.
Fig. 14(a) illustrates a consistent behavior between simulation
and real-world experiments as BE spans the broad spectrum
of the energy-delay tradeoff. Also, our experiment with the
Default algorithm (which only achieves a fixed tradeoff point)
resulted in zero delay and an energy expenditure of 905.7
Joules. Fig. 14(b) plots the energy savings of BE compared
to the Default algorithm for different values of α. We can see
growing energy savings by increasing the relative importance

of energy. Across all the values of α, the energy savings of
BE can range between 0.4% and 98%. As an example, BE
results in 20.3% energy reduction when delay and energy are
equally important to the user.

VII. CONCLUSION

In this paper, we studied the problem of energy-aware
request bundling on smartphones. We proposed an online
algorithm for the problem and proved that it is 4-competitive.
Our algorithm does not make any assumption about the traffic
pattern or nature of applications. We then evaluated our algo-
rithm using simulations and live experiments, which showed
that, in realistic scenarios, the performance of the proposed
algorithm is close to that of the optimal offline algorithm that
knows the arrival sequence in advance. A possible extension of
this work is to design a randomized version of our algorithm.
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