
Low-Overhead Packet Loss Diagnosis for Virtual
Private Clouds using P4-Programmable NICs

Soroush Aalibagi†, Mahdi Dolati‡, Sogand Sadrhaghighi†, Majid Ghaderi†
†Department of Computer Science, University of Calgary, Calgary, Canada.

‡School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
Emails:{soroush.aalibagi, sogand.sadrhaghighi, mghaderi}@ucalgary.ca, m.dolati@ipm.ir

Abstract—Virtual private clouds have become a huge trend
because of their cost-efficiency. However, the complex and vir-
tualized nature of clouds limits the ability of cloud tenants to
pinpoint and amend performance degradation problems, such as
packet drops. Existing monitoring systems are either designed for
the physical network or insufficient to present the concrete reason
for packet loss with low overhead. In this paper, we present a
Packet Loss Diagnosis (PLD) system, a specific monitoring service
designed to detect packet drops on cloud networks and report
diagnosis information to tenants. PLD is based on the modern
capabilities of P4 data plane programmable NICs and has a
limited footprint in the network. It provides detailed information
that enables tenants to locate and resolve their issues with respect
to the abstraction of the services. It also meets the requirements of
a monitoring system designed for large-scale multi-tenant clouds.
We implemented the proposed scheme in P4 to demonstrate its
viability and investigate its performance and overhead through
extensive experiments and Mininet simulation. Our results show
that PLD ensures full packet drop detection coverage and can
notify tenants in real-time while imposing low overhead.

Index Terms—Network monitoring, Packet loss,
Programmable data plane, P4, Virtual networks, SmartNIC.

I. INTRODUCTION

Background and Motivation. Cloud providers share their
physical network among tenants to increase utilization and
profit. They employ virtualization mechanisms to create ab-
stracted and isolated virtual networks on top of the physical
network for tenants based on their specifications of resource
capacities, configurations, and policies. Tenants, in turn, can
only access their allocated virtual resources, as infrastructure-
related data, such as the physical network topology, is consid-
ered a corporate secret and guarded by cloud providers [1].
This abstraction of the physical network complicates debug-
ging and diagnosis of network connectivity issues by tenants,
as they can not inspect physical resources and do not know
the mapping of their virtual to the physical network. Studies
show that identifying the cause of connectivity issues is the
bottleneck in mitigating network performance anomalies [2].

Packet drops are among the most severe events degrading
the performance of cloud-based services. Recent surveys show
that tenants’ misconfigurations contribute significantly to the
occurrence of these drops; for example, tenants are responsible
for common causes of packet drops such as exceeding virtual
link capacity and inserting incorrect access control rules [3].
However, tenants do not have the ability to quickly detect and
resolve packet drops affecting their networks due to abstraction
and virtualization mechanisms deployed by cloud providers.
As a result, they may need to spend hours diagnosing the
root cause of packet drops [4]. Therefore, a real-time end-
to-end packet drop diagnosis service for cloud tenants can

significantly improve tenants’ ability to manage and operate
their services efficiently.

The existing network monitoring and diagnosis tools can
be divided into two general categories of network-based
and host-based solutions. Most network-based solutions do
not account for the virtualization of the environment (e.g.,
SNAP [5] and SNMP [6]). Consequently, using them may
weaken isolation across tenants and lead to scalability is-
sues by imposing significant throughput overhead on virtual
networks [7]. Nevertheless, deploying customized network-
based tools is challenging, as network operators hesitate to
use in-network applications that may affect the basic network
functionality and lower the reliability [8]. On the other hand,
most host-based solutions either insert probes to the network
(e.g., [9]) or store all the data on end-hosts and aggregate
data on demand to answer network-wide monitoring queries
(e.g., [7]). The former suffers from bandwidth overhead, while
the latter consumes the processing power that other tenants
could have bought, reducing the profitability of the cloud’s
computing resources. More specifically, VND [7] is one of
the pioneers and most relevant services to provide a diagnosis
system for cloud tenants. As an host-based solution, VND
mirrors and analyses traffic on end-hosts which consumes
memory throughput and processing power that could have
been allocated to tenants. Thus, using existing solutions in
virtualized systems imposes a significant overhead that hinders
their usage for a long duration to detect packet drops and
collect supplementary root-cause information.

Recently, cloud providers have started deploying more ca-
pable programmable network interface cards (NICs), often
called SmartNICs, to alleviate networking overheads that strain
computing resources (e.g., Microsoft Azure Cloud [10]).
SmartNICs can implement custom packet processing functions
with higher performance than software-based in-hypervisor
solutions. In such deployments, tenants’ virtual machines
bypass the hypervisor’s network stack via the Single Root I/O
Virtualization (SR-IOV) [11] to directly access SmartNIC’s
functions, thereby alleviating the need for CPU processing. As
most SmartNICs support the data plane programming language
P4 [12], the availability of SmartNICs and the flexibility of the
P4 language provide an opportunity to create host-based mon-
itoring tools that neither consume servers’ processing power
nor add complexity to the core of the network underlying the
cloud [13]. Our objective is to develop a packet drop detection
and notification system as a service for cloud tenants based
on the capabilities of SmartNICs at the edge of the network.



Our Work. In this paper, we present the design and evaluation
of a monitoring tool capable of detecting packet drops in
virtual private clouds and providing root-cause information
to virtual network administrators. Our Packet Loss Diagnosis
(PLD) system leverages the capabilities provided by Smart-
NICs on hosts to perform efficient packet drop detection and
notification. Thus, unlike existing host-based tools, such as
VND [7] and VTrace [3], PLD does not impose a monitoring
burden on the processing capacity of hosts and avoids intro-
ducing complex functionalities into the cloud’s core network.

PLD is implemented in P4 and adopts the match-action-
based packet processing model for the implementation of a
drop detection mechanism that covers the transient and per-
manent packet drops. As a result of employing P4, PLD is de-
ployable in many targets, notably BMv2 software switch [14],
Netronome SmartNIC [15], and TOFINO ASIC Switch [16].

Since tenants’ configurations directly affect packet process-
ing in SmartNICs, PLD separates the detection of drops that
occur in the SmartNICs from the physical network consisting
of physical switches. Accordingly, PLD generates different
notification reports for these two drop categories, as tenants
should only have an abstract view of the physical network.
To detect packet drops in SmartNICs, PLD uses match-action
tables [12] with specific match criteria and specialized actions
to insert functionalities into the ingress and egress pipelines
of the SmartNIC, which allows tracing packets and detecting
drops as soon as they occur. When PLD detects a packet
drop, the SmartNIC’s egress sends a report message to a pre-
specified collector server providing information about the lost
packet and the drop reason. It is difficult to identify physical
network packet losses since we do not have visibility into
the links, and we cannot easily reconstruct original packet
flows from the dropped packets. Thus, PLD leverages the
programmability at both sides of a flow to diagnose packet
losses that happened in the physical infrastructure. In other
words, PLD keeps track of all packets of the flow in the
destination SmartNIC using the sequential IDs assigned to
the flow packets by the SmartNIC at the origin. This en-
ables PLD to provide real-time reports about packet drops
containing information that tenants can use to identify and
troubleshoot the problem. These reports do not violate cloud
principles such as tenants isolation. We conducted experiments
to evaluate the impact of PLD on the tenants virtual networks.
Our experiments consistently confirm that PLD meets the
requirements of a monitoring system in multi-tenant clouds.
The main contributions of this paper are:

• We present the design of PLD to detect all packet drops
that occur due to tenants faults in their virtual networks
or faults that are out of the control of tenants happening
in the cloud’s physical network.

• We design mechanisms for root-cause information col-
lection and immediate notification about packet drops
in virtualized environments.

• We implement PLD, a low-overhead P4-compatible
solution, that is deployable on SmartNICs in hosts and
is target independent (independent of the specifics of

TABLE I: Common packet drops caused by tenants [3].
Cause of drop Proportion (%)

Incorrect access control list 62.4
Incorrect routing-related configuration 26.4
Insufficient bandwidth capacity 11.2

the underlying hardware).
• We conduct extensive hardware experiments and

Mininet simulation to study the feasibility and effi-
ciency of PLD in a variety of realistic scenarios.

Organization. Section II provides the necessary background
on virtual networks, packet drops, and requirements of packet
drop diagnosis systems. Section III describes the architecture
and drop detection mechanisms of PLD. We evaluate PLD in
Section IV. Related works are reviewed in Section V, while
Section VI concludes the paper.

II. BACKGROUND

In this section, we provide an overview of cloud infrastruc-
ture and cloud tenants’ virtual networks. Then, we present a
discussion about packet drops that affect the performance of
tenants. Finally, we list the principal requirements of packet
drop detection and notification tools for cloud tenants.

A. Cloud Infrastructure

In the most basic form, cloud infrastructure consists of
physical servers connected through a physical network. Servers
provide computing resources such as CPU and RAM that can
be rented to tenants to generate revenue. Thus, cloud providers
employ hypervisors to run multiple virtual machines on physi-
cal servers, sharing their resources in isolation. Conversely, the
physical network focuses on the fundamental data movement
task among servers. Traditionally, hypervisors consumed CPU
cycles to provide the networking services demanded by each
tenant’s network of virtual machines running on different
physical servers (e.g., load balancing). However, data plane
programmability is helping to replace simple network interface
cards with SmartNICs, which can provide those networking
services without consuming extra CPU cycles. We consider a
cloud infrastructure where all physical servers possess Smart-
NICs to connect to the physical network, as is the case with
major cloud providers such as Amazon [17].

B. Virtual Networks

Cloud tenants use the “big switch abstraction” to specify
the virtual network that connects their virtual machines. In this
abstraction, all virtual machines have a direct link to a single
virtual switch that forwards traffic according to the corre-
sponding tenant’s networking plan. As a result, cloud providers
can implement tenants’ networking policies and requirements
(e.g., access control and rate limiting) entirely at the edge of
their physical network. We consider a cloud provider that uses
SmartNICs to implement tenants’ networking requirements.

C. Packet Drop in Virtual Clouds

Cloud tenants experience packet drops caused by several
reasons that negatively affect the performance of their appli-
cations. Previous studies reveal that most experienced drops



are due to tenants’ misconfigurations and mismanagement [2].
Table I shows tenant-induced causes for packet drops [3].
Furthermore, the physical network may drop tenants’ packets
for reasons such as faulty network equipment and congestion.
Although these drops are rare compared to tenant-induced
drops, sensitive tenants may desire to know such packet drops
to understand the performance behavior of their applications.
D. Requirements of Drop Monitoring Tools

A packet drop monitoring system must meet several criteria
to be effective when deployed in a large-scale multi-tenant
cloud. These requirements include:

R1: Tenant Isolation. Tenants should be isolated from other
tenants and details of underlying physical infrastructure. Thus,
reports of packet drops in one tenant’s virtual network should
not expose any information about other tenants’ networks.
Furthermore, these reports should not disclose physical infras-
tructure details to tenants.

R2: Low Overhead. A drop monitoring system should not
impose overheads that hinder its usage in large-scale systems.
The most critical overheads are (1) computing resources (e.g.,
CPU, RAM, storage) overhead, (2) bandwidth overhead, and
(3) latency overhead imposed to existing flows in the network.

R3: Responsiveness. Responsiveness measures the time from
a packet drop incidence until the corresponding tenant receives
the report about that drop. According to previous studies such
as [2], responsiveness is a vital feature that most existing
monitoring tools lack.

R4: Root causes information. Pinpointing the root cause of
packet drops is one of the most time-consuming steps in the
drop diagnosis process [2]. Thus, drop monitoring tools must
generate reports containing information to help tenants resolve
the drop problem on time. Consequently, generated reports
may enclose the location, time, and reason for packet drops.

III. PLD DESIGN

In this section, we present the design of PLD, our packet
loss diagnosis mechanism to detect and report packet drops
discussed in Subsection II-C. First, we present the architecture
of PLD in Subsection III-A. Then, we discuss the procedure
of detecting packet drops in Subsection III-B. We present the
detection of drops in SmartNICs and the physical networks
in two separate parts, as these types of drops are fundamen-
tally different and require specialized approaches. Finally, we
propose a mechanism to reduce the throughput overhead of
reporting in Subsection III-C.

A. Architecture

We explain PLD’s four major architectural components
(illustrated in Fig. 1) in the following.

Dashboard. Dashboards provide two functionality for tenants.
First, tenants use the dashboard to submit monitoring tasks.
Each task involves defining a set of filters that determine a
subset of traffic in the virtual network for closer inspection.

Fig. 1: The architecture of PLD.

Fig. 2: Components of PLD in a SmartNIC.

Each filter is a condition on a subset of packet header fields.
For example, the tenant can inspect the traffic of a web
server. Second, tenants use the dashboard to see the monitoring
reports. Specifically, the report shows the time, reason, and
location of the drop along with the dropped packet’s 5-tuple.

Orchestrator. The orchestrator uses its global network view
to determine the set of SmartNIC functionalities to carry out
the submitted monitoring tasks. Then, the orchestrator sends
instructions to those SmartNICs to achieve its goal. Each
instruction specifies a set of match rules and a set of actions.

SmartNIC. Each SmartNIC uses customized match-action
tables and extern objects to detect and report packet drops,
which happen in virtual networks, while enforcing security
policies, switching packets, and limiting rates. These opera-
tions correspond to the listed causes of packet drop in Table I.
Also, SmartNICs run an end-to-end mechanism inspired by the
inter-switch packet drop discovery idea of [2] to detect packet
drops in the physical network. Then, the SmartNIC reports
any packet drops in the virtual network to the collector server
along with their root cause information for tenants. Reports of
packet drops in the physical network contain less information
than those occurring in SmartNICs.

Collector. Collectors ingest monitoring data from SmartNICs.
Note that the orchestrator carefully selects the destination
collector of each SmartNIC to lower the overall overhead
and increase the responsiveness, facilitating Requirement R3.
Then, the collector can build and send appropriate reports to
tenants.

B. Mechanisms
We present the design of PLD’s components for detecting

and reporting packet drops in this subsection. Fig. 2 rep-



Fig. 3: Physical network packet drop detection model.

resents a schematic of these components inside a generic
programmable SmartNIC.

Drops in Virtual Network. We use three components to han-
dle the detection of packet drops based on three most important
causes of packet drops in a virtual network (Table I). When
a packet arrives at the SmartNIC, it goes through components
RL (Rate Limit), SPB (Security Policy Blocking), and CE/FR
(Configuration Error and Forwarding Rules). Each SmartNIC
first uses a table to check whether or not a packet belongs to
a flow that is monitored for a tenant. The SmartNIC stores
the result of this step as a metadata and uses it throughout the
processing of the packet. Then, the packet is processed by the
RL component, employs trTCM [18] extern as a Rate Limiter
in the same manner as [19], [20]. Externs are architecture-
specific constructs that can be manipulated by P4 programs
via standard APIs, but whose internal behavior is hardwired.
If trTCM decides to drop the packet due to rate limit violation,
the RL creates a metadata for the packet to show that the
packet need to be dropped as the result of rate limiting
mechanism. The behavior of SPB and CE/FR components
are similar to RL, except that they use regular P4 tables
to implement their logic instead of using an extern object.
For example, in order to apply ACL rules, PLD incorporates
the table-based ACL function in the SPB component similar
to [21]–[23]. Specifically, if any of the three aforementioned
components decides the packet cannot reach its destination, the
corresponding component calls the relevant action to remove
the packet from the regular network packet flow (blue line in
Fig. 2) by changing the destination address and redirecting
the packet to the collector. Then, the RG (Report Generator)
component is triggered with the appropriate drop reason code.
Subsequently, the egress pipeline sends a report to the collector
for packets with the special metadata.

Drops in Physical Network. Fig. 3 demonstrates a schematic
of the procedure of the PNDD (Physical Network Drop Detec-
tion) component. In this figure, packets are sent from the origin
SmartNIC and reach the destination SmartNIC after going
through the physical data center network. To reduce bandwidth
overhead and satisfy R2, PNDD only generates traffic when
a drop occurs in the physical network. Specifically, first, the
egress PNDD in origin SmartNIC stores the packet 5-tuple
and a 2-byte sequential number, as the packet ID, in a ring
buffer, which is stored in the SmartNIC on-chip memory. The
sequential packet ID and the index of the packet’s location
in the ring buffer increment by one for each consecutive
packet. Then, the egress PNDD attaches 4 bytes of data to the

Fig. 4: PLD’s report packet header.

packet. This data includes the 2-byte packet ID and the 2-byte
index number corresponding to the packet’s location in the
SmartNIC’s ring buffer. To attach these 4 bytes of data, we can
take advantage of existing unused bits in packets, such as IP
options [2], or use a custom header. Then, the ingress PNDD in
the destination SmartNIC detaches the packet ID and the index
number and forwards it to its destination. Meanwhile, if PNDD
in the ingress pipeline of the destination SmartNIC realizes a
nonconsecutive packet ID, it sends a packet containing the
missed packet ID and index number to the origin SmartNIC.
The ingress PNDD in origin SmartNIC redirects the packet
to the collector and triggers the RG component. The RG
fetches the corresponding 5-tuple using the index number of
the dropped packet and generates a report similar to reports
for the virtual network drops, except that it does not include
the exact location of the drop in the physical network.

Due to the size of the ring buffer, this mechanism has
a certain capacity to detect packet drops. More accurately,
when the destination SmartNIC reports a dropped packet to
the origin SmartNIC, the dropped packet in origin SmartNIC’s
ring buffer may have already been replaced with a new packet
that arrived at the origin SmartNIC due to insufficient ring
buffer size. In this case, the origin SmartNIC is not able to
report the dropped packet. Note that PLD does not mistakenly
report the new packet that has overwritten the dropped packet
since we can distinguish the two packets using their packet
IDs. Actually, a 2-bytes Packet ID as well as the 2-bytes index
number provide over 4 billion (24×8) different combinations
that our mechanism can distinguish. Therefore, the ring buffer
should at least accommodate each packet for twice the propa-
gation time between the origin and the destination SmartNICs.
Today, a typical data centre network has a high traffic rate, and
propagation delay is in the order of microseconds [24], [25].
Considering a 100Gbps traffic speed, 100µs as propagation
delay, 175B as the average data center packet sizes [26], and
the fact that we only store 15 bytes for each packet, the ring
buffer needs at least 215KB memory to accommodate at least
14286 packets. Hence, this memory requirement plus a 2-byte
variable as a buffer index is feasible for a SmartNIC.

Drop Reports. The RG (Report Generator) in the egress
pipeline is responsible for producing the report for the col-
lector. These reports contain the dropped packet’s 5-tuple
along with the reason and location of the dropping incident,
satisfying R4. Since reports are sent to the collector immedi-
ately after detection, there is no need to include a timestamp
in the reports. Instead, collectors timestamp incoming report
packets to save the network bandwidth. RG generates reports



Fig. 5: Testbed Topology.

by first truncating the packet’s payload and adding an 18
bytes custom header to store the complementary information.
Fig. 4 shows the template of the custom header. Note that
protocol-independent forwarding enabled network devices can
forward packets with custom headers [12]. The first 13 bytes
in the header are the dropped packet 5-tuple. The next byte
indicates the type of drop obtained from the metadata set by
a component in the ingress pipeline. Then, the header holds a
2-bytes tenant ID (to facilitate R1) and a 2-bytes SmartNIC
ID. Note that although we use 2-byte IDs for both SmartNICs
and tenants since we do not have more than 65000 SmartNICs
and tenants in our experiments, PLD is configurable for larger
fields. Collectors use the tenant IDs and SmartNIC IDs to infer
the location of the packet drop with respect to the tenant’s
virtual network. Finally, RG can send multiple copies of the
same report packet to handle the loss of reports in the physical
network [2].

C. Bandwidth Optimization

Since the minimum Ethernet packet size is 64 bytes, PLD
sends one 64 bytes report packet for every dropped packet.
However, the content of each report is only 18 bytes, leading
to more than 70% more bandwidth overhead than the report’s
content. It is possible to reduce the bandwidth consumption of
PLD by using a configurable report batching method. To this
end, we attach the reports at the end of a packet continuously
circulating the SmartNIC pipeline via a separate internal port.
Then, the collected reports are forwarded to the collector in
one packet after a temporal or spatial threshold.

IV. PERFORMANCE EVALUATION

We present the evaluation of PLD in this section using a
hardware testbed as well as a larger scale Mininet emulation.
Subsection IV-A describes the testbed and Mininet setups.
Then, in Subsection IV-B, we validate the functionality of
the proposed scheme by showing its ability to detect drops
in physical and virtual networks. Next, we evaluate the per-
formance of PLD in terms of bandwidth, throughput, and delay
overhead in Subsection IV-C. Finally, in Subsection IV-D, we
compare PLD’s effectiveness with the packet loss diagnosis
method in VND [7], one of the most relevant virtual network
diagnosis systems.

A. Environment Setup

Testbed Setup. We prototyped PLD on a small hardware
testbed consisting of two Dell workstations running Ubuntu
18.04 LTS with kernel version 4.15 (Fig. 5). Each workstation
has an Intel Core i7-6700 3.40GHz CPU and a 8GiB memory.
The first workstation is equipped with a Netronome Agilio
CX Dual-Port 10 Gigabit Ethernet SmartNIC, and the second

workstation has two generic 1000Mbps NICs. We connected
both physical ports of the SmatrNIC on the first workstation to
the two NICs on the second workstation using 1000Mbps Eth-
ernet cables. In our experiments, the source and destination of
the traffic flows are always the dual-port SmartNIC. Actually,
the SmartNIC can be configured to expose two virtual inter-
faces. The second workstation is used to generate packet loss
in the physical network. Specifically, we use the python Scapy
and Random libraries in the second workstation to forward the
traffic and drop packets uniformly. The two workstations are
synchronized using Chrony, an implementation of Network
Time Protocol.

We have implemented the PLD system on the Netronome
SmartNIC with ∼200 lines of code in addition to the Smart-
NIC P4 program without a packet drop detection system. We
used Programmer Studio, the Windows-based SDK IDE, to de-
velop the P4-16 [27] code and run the generated Network Flow
Processor (NFP) firmware on the SmartNIC’s microengines.
The match+action tables are developed in JSON format. The
runtime environment accepts commands to modify the tables.
Our complete P4 application consists of less than 450 lines of
code. It consumes 32 bytes of SmartNIC memory for virtual
network drop detection and less than 250KB ring buffer for
detecting physical network drop detection. We implemented
orchestrator, dashboard, and collector in python as a virtual
machine image.

Flow sizes in our experiments are less than 10KB, following
common traffic statistics in the Facebook data center [26].
We chose the packet sizes to be 175B and 850B, which
are the average data center packet sizes reported by [26]
and [28], respectively. Also, as studied by [9], the packet
drop rate in our experiments falls between 10−4 and 10−5

unless otherwise stated. Also, the report batching mechanism
(see Subsection III-C) is disabled to show PLD’s maximum
overhead. Moreover, a combination of numerical and literal
IDs is assigned to the packets to make tracking easier.

Mininet Setup. For the larger scale simulation, we imple-
mented a 4-pod fattree topology with 20 switches and 16
servers in Mininet. We compiled our P4 code with the p4c
compiler [29] for the behavioral model (bmv2) [14] to emulate
SmartNICs in our data center network. The default queue
size in bmv2 switches is 64 packets. We also set the links’
bandwidth to 100MB/s. The details about flows, packets, and
drops are the same as the hardware setup.

B. Functional Validation

In this subsection, we validate the functionality of PLD
by investigating its coverage of packet drops in the physical
network and virtual network:

Packet Loss Detection in Physical Networks.
Setup: In this scenario, we show the functionality of PLD

in detecting physical network packet losses. We consider three
tenants in the simulated data center. Two tenants generate
an excessive amount of traffic to congest a core switch and
simulate congestion-induced packet drops [2]. Specifically, we
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decrease the core switch queue rate (rate of sending packets
through the egress queue) to 30 packets per second in order
to saturate the bmv2 switch. Then, two tenants send packets
at 56Kbps passing through the specific core switch. The third
tenant also sends traffic from an IDS to a web server via the
congested core switch. This tenant does not see any packet
drop because of his fault (i.e., packet drops listed in Table I)
on his dashboard. In the following, we present the result of
using PLD between the IDS and the web server.

Results: Fig. 6 shows the number of packet drop reports
corresponding to the packets sent from the IDS to the web
server that the victim tenant received. Specifically, Fig. 6 illus-
trates a thirty seconds traffic monitoring session between the
tenant’s IDS and Web Server. This report indicates an average
of 6 packet drops after the fourth second from the start of the
simulation when the mentioned core switch gets congested.
The fluctuations that appeared in this time interval are because
of the non-deterministic behavior of the tenants’ traffic and
the sequence of receiving different tenants’ packets by the
switches in the physical network. Overall, the tenant finding
out the physical network suffers from a significant packet loss
can report the abnormality to the cloud administrator.

Packet Loss Detection in Virtual Networks.
Setup: In this scenario, the coverage of PLD is examined

(on the hardware testbed) when various kinds of virtual net-
work packet drops are injected into the network. We compare
the coverage against the VND [7] mechanism when sampling
is in effect (VND+sampling) to control the performance.
Briefly, VND mirrors problematic traffic flows in the network.
Afterwards, mirrored traffic stored on dedicated servers is
examined to identify packet losses between hops. In this
experiment, we consider two tenants sending traffic through
the SmartNIC. The first tenant does some misoperations,
resulting in the three types of packet drops mentioned in
Table I. The tenant’s dashboard running on the source machine
should receive the monitoring reports. The second tenant traffic
is background traffic to investigate isolation between tenants.
For VND+sampling approach, we select packets uniformly in
the source machine. Then, we check if they arrived at the
destination machine using packet IDs.

Results: Fig. 7 demonstrates PLD coverage against
VND+sampling. Our proposed mechanism successfully de-

tects 100% of the injected packet drops, while VND+sampling
fails to detect most of the drops. Although sampling 10%
of the traffic requires data movement such that it consumes
considerable bandwidth and processing power [7], it could not
detect more than 15% of the packet drops.

Fig. 8 represents two of the reports shown to the first tenant.
These reports are shown in the tenant’s dashboard in real-
time and without needing the tenant’s action. Such behavior
demonstrates PLD addresses R3. This is because our model
does not need to mirror the traffic to detect such packet drops,
unlike traditional systems (e.g., VND). Moreover, the second
tenant does not get any reports since there is no packet drops
happening in his virtual network. Thus, PLD satisfies R1.
The first line in the reports, presented in Fig. 8, shows the
exact location of the packet drop, which is the ID number
of one of the tenant’s machines. This Device ID is integrated
with the logical view of the tenant’s virtual network and does
not reveal any details about the cloud physical infrastructure.
Note that by combining network topology information with
the SmartNIC ID, the collector can infer the mapped location
of the culprit device in the tenant’s network. The reports also
show that the reason for the packet drops are that the tenant
exceeded his bandwidth limit and the tenant made a mistake
in the addressing, respectively. Providing such information, as
well as the dropped packet’s 5-tuple information, confirms that
PLD can provide root cause information mandated by R4.

C. Overhead Analysis

Here, regarding R2, we perform multiple benchmarks in our
testbed to investigate the performance of PLD from multiple
aspects, such as bandwidth, throughput, and end-to-end delay.

Bandwidth.
Setup: In this experiment, we connect the two physical ports

of the dual-port SmartNIC to each other using a 10GiB SFP,
creating a loopback, to test bandwidth overhead at a high
rate. We also assume that 5% of the packets are dropped
due to the tenant’s misoperations. In real-world scenarios, the
bandwidth overhead is negligible if the packet loss rate is rare.
We configured such high percentages to assess our system’s
bandwidth overhead in worst-case scenarios. The two sources
of overhead in PLD are due to the 4 bytes of data we attach to
packets to detect drops in the physical network and the report
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packets that get forwarded to the collector. Note that, for each
drop event, PLD sends a 64B report packet to the collector.

Results: Fig. 9 shows the bandwidth overhead of our system
for different average packet sizes and amounts of monitored
traffic. Due to the constant drop rate, the bandwidth overhead
increases as traffic rate increases. Likewise, it is evident
that with a fixed traffic volume, a smaller packet size (i.e.,
175B) means more packets are transmitted and dropped in
the network. Thus, more drop reports result in more traffic
overhead. Yet, even for such a high drop rate, the average
packet size of 175B, and 6Gbps traffic, PLD has 281Mbps
overhead, which is less than 4.7% bandwidth overhead.

We also evaluated PLD when the report batching mech-
anism is active. In this experiment, we use the same loss
rate described above and only focus on 200Mbps traffic rate
with 725B average packet length. We used different temporal
thresholds in Fig. 10 to compare the resulting overhead. The
zero batching time threshold is identical to the system with no
report batching mechanism in use. As shown, the overhead is
significantly reduced at any threshold within the range [0.5, 3]
(seconds). The results show a 500ms threshold leads to ∼30%
bandwidth overhead reduction. Also, a 3s threshold does not
make more than a 2% improvement over the 500ms threshold.
Hence, we can apply smaller temporal thresholds to maintain
real-time reporting while reducing overhead.

Throughput. Using P4 programming data plane provides line-
rate throughput [2], [30]. In this experiment, we want to show
that PLD does not affect the tenant traffic throughput. We
used iperf to generate traffic between our two workstations
and measure the throughput. We also configured one tenant
in the network to inject common packet loss mentioned in
Table I. The results show that the maximum throughput is
always 944Mbps in presence and absence of PLD, which
means our proposed system does not decrease the throughput.

End-to-end Delay. In addition to throughput, we expect that
end-to-end delay in the above experiment does not get affected
by our system. Fig. 11 also shows no significant difference
between end-to-end delays. This is because leveraging P4
data plane programming guarantees line-rate performance. The
partial difference between plots is due to different traffic

TABLE II: Comparison of PLD with ProActive VND.

Comparison criteria PLD ProActive VND

Coverage %100 %100
Report granularity root cause info. only detection
Memory overhead 4.61 GiB 3.73 GiB
Responding time 23ms 2379ms

generation behavior. Overall, the influence of PLD system is
negligible on the network.
D. Comparison with ProActive VND Packet Loss Detection

Setup: Both VND and PLD intend to provide a monitoring
system for cloud tenants. VND is a passive method. That
means tenants need to submit their diagnosis requests before
VND attempts to collect the flow traces. So, it cannot actively
detect packet drops. Hence, we modified VND to actively
collect traffic flows and inspect them for packet losses over
time intervals of length τ . The packet drop detection mech-
anism in the modified VND, referred to as ProActive VND,
dumps packet traces on the source and destination of a flow
and executes the packet loss query on the source machine. We
tested the ProActive VND with τ = 1s. We also used the
scapy library and iperf to generate an end-to-end flow with
900Mbps traffic rate between two hosts.

Results: As shown in Table II, although ProActive VND
could detect all packet drop events, it was not able to report
the root cause information by design. Moreover, the most
significant difference between ProActive VND’s packet drop
diagnosis approach and PLD is that ProActive VND employs
computing, storage, and memory resources in the tenant’s
virtual machine that hinders its performance and scalability,
considering the current growing cloud traffic. To clarify, VND
fails to respond to the tenants’ requests when there are not
enough resources left in the tenants’ machines. However,
we only utilize the programmability of the current widely-
used SmartNICs in data centers and do not consume any
resources in the tenants’ machines. More specifically, one
of the challenges regarding VND overhead is their memory
consumption. Although the physical servers are equipped with
more powerful processing units, all dumped traffic by VND
needs to go through the memory.

In our experiment, we run the Linux mbw benchmark on
the source side of the end-to-end flow, where the reports are



created and shown to the tenant. We set the mbw array size
to 2048MiB and call memcpy(). Results show that ProAc-
tive VND decreased the memory throughput from 4.61GiB
to 3.73GiB. The resulting reduction in memory throughput
creates a considerable bottleneck for large multi-tenant cloud
networks. Implemented on SmartNICs, PLD does not suffer
from such bottlenecks, but we only consume negligible re-
sources on the SmartNIC, leaving resources for other possible
applications (e.g., offloading network-traffic encryption). Fur-
thermore, the responding time comparison reveals that PLD
outperforms ProActive VND in reporting packet loss to the
tenants. The responding time shows the average time from a
packet dispatched from a source host until the tenant’s dash-
board displays the loss report to the tenant. The responding
time in ProAvtive VND includes not only the time packets
need to wait for inspection (which on average takes 500ms)
but also the time it takes for the traces in the destination to
be moved to the source host (23ms) and be joined to source
traces by packet ID (1856ms).

V. RELATED WORK

Although there are many works on network monitoring
in the networking literature, there are few works propos-
ing a virtual network diagnosis system dedicated to tenants.
We organize our discussion into two categories of network-
based and host-based monitoring. In general, network-based
monitoring solutions require infrastructure access, while host-
based monitoring solutions impose substantial computation
and communication overhead on host servers.

Network-based Monitoring. Anteater [31] diagnoses network
connectivity issues by checking static analysis of the data
plane. However, Anteater, and similar approaches such as [32],
[33], are not suitable for multi-tenant clouds since they can
violate isolation across tenants as they expose raw network
information about the infrastructure. NetSight [34] is a plat-
form that captures packet histories and enables applications
to retrieve packet histories of interest. In particular, it sends
a postcard containing information about every packet that
traverses network switches to a remote controller. The con-
troller then uses the collected postcards to diagnose different
network failures. While NetSight captures postcards about all
traversing packets, our approach only sends a message when
a drop occurs in the network. NetSeer [2], similar to our
work, detects and reports packet drops in a programmable
data plane. However, it tracks packet drops in physical links,
which makes it more suitable for monitoring the physical
infrastructure than tenants’ networks. LossRadar [4] detects
packet losses by employing bloom filters deployed on switches
and forwards the collected information to a central controller
without giving details regarding the drop reasons. It also
needs specialized hardware support. LightGuardian [35] is
a bandwidth-efficient network traffic measurement tool that
takes advantage of sketches to capture flow-level information.
SyNDB [36] stores packet-level information in the SRAM
of programmable switches to perform transient faults root-

cause analysis. LightGuardian and SyNDB require expensive
programmable switches to deploy their mechanisms.

Host-based Monitoring. Pingmesh [9] measures network
latency by injecting probes into the network. But, the trans-
mission and storage overheads of the probes limit its effec-
tiveness [37]. Similarly, SDN traceroute [38] uses a probing
mechanism to pinpoint the location of network anomalies.
However, neither of these works can diagnose the root cause
of packet losses. Other works, such as [39] and [40], utilize
information collected from end-host machines and virtual
devices to diagnose network failures. Unlike PLD, These
works require tenants to get involved in the diagnosis process.
SIMON [41] uses LASSO, a machine learning algorithm, to
infer the network state variables such as queuing times at
switches, link utilization, and queue and link compositions
at the flow level in data centers. VND [7] is a pioneering
work for monitoring virtual networks in clouds. VND allows
tenants to submit diagnosis requests to VND controller servers.
Then, VND mirrors traffic on host servers and stores it in
dedicated servers. The stored traffic is analyzed to answer
tenants’ requests. Mirroring and storing flows impose an
overhead that limits the applicability of VND in the face of
rapidly growing data center traffic. VTrace [3] automatically
diagnoses packet loss over the cloud-scale virtual networks. It
automates end-to-end traffic fluctuation analysis in the multi-
tenant cloud network and determines the root cause. VTrace
uses a series of “coloring, matching, and logging” rules in
virtual forwarding devices to selectively inspect packets of
interest. One drawback of VTrace is its incapability to detect
transient packet drops. Additionally, VTrace is unsuitable to
be applied as an always-on service because of performance
degradation issues. The reason is that VTrace relies on many
statistical logs to reconstruct the true forwarding path of lost
packets, which can result in performance bottlenecks [42].

VI. CONCLUSION

In this paper, we designed and evaluated PLD, a mon-
itoring service to detect and report packet drops in cloud
networks. PLD is a P4-programmable SmartNIC-based service
that differentiates drops based on their occurrence location,
i.e., physical infrastructure or virtual network. PLD provides
tenants with detailed root cause information about virtual
network drops by sending near-real-time reports. For drops
that happen in the physical network, PLD offers sufficient
information to tenants to help them share the problem with the
cloud provider without jeopardizing the isolation and abstrac-
tion requirements in cloud environments. We implemented
PLD in P4 and evaluated it through extensive testbed and
Mininet simulation measurements. The results show that the
proposed mechanism fulfills the requirements needed for a
virtual network monitoring system. Observations indicate our
solution is effective without imposing significant overhead.
An interesting extension of PLD is to allow tenants to define
queries to collect information about network events other than
packet drops, and to present PLD as a library.
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