
Learning Traffic Encoding Matrices for
Delay-Aware Traffic Engineering in SD-WANs

Majid Ghaderi∗, Wenjie Liu†, Shihan Xiao†, and Fenglin Li†
∗University of Calgary, Email: mghaderi@ucalgary.ca

†Huawei Technologies, Emails: {liuwenjie, xiaoshihan, lifenglin}@huawei.com

Abstract—This paper introduces Traffic Encoding Matrices
(TEMs) as an alternative to traditional Traffic Matrices (TMs) for
representing network traffic demands. While TMs only capture
average demand information, TEMs are designed to capture
distributional demand information by learning representations
whose variations capture most of the structure of the distribution
of demands. We present a practical approach based on off-the-
shelf neural autoencoders to efficiently construct TEMs at the
edge of the network. We then present the design and evaluation
of NeuroTE, a DRL-based framework for delay-aware traffic
engineering in SD-WANs using TEMs. Using real traffic traces,
we present experimental results to demonstrate the advantages
of using TEMs instead of TMs in traffic engineering. Our
results show that, when traffic demands are dynamic, TEM-
based control leads to: 1) improved network performance, and 2)
faster convergence to the optimal solution compared to TM-based
control using exactly the same DRL control algorithm.

I. INTRODUCTION

Motivation. Traffic engineering (TE) is a fundamental prob-
lem in network control, and has been extensively studied
in the literature [1]–[4], [4]–[8]. In abstract form, TE can
be framed as a combinatorial optimization problem: given a
capacitated network and a set of flows, find an assignment
of flows to network paths in order to optimize an objective
such as minimizing the maximum link utilization (MLU).
Each flow is specified by its origin, destination and traffic
demand. The set of flows can be succinctly represented by a
traffic matrix (TM) [9], whose elements specify the average
traffic demand between pairs of origin-destination nodes in
the network. When multi-path routing is supported in the
network, which is a common scenario, the TE problem can be
solved for a fixed TM in polynomial time, e.g., using linear
programming [10].

In real-world, however, traffic demands are dynamic and
fluctuate over time. To respond to changes in traffic demands,
in adaptive TE, flow assignments are dynamically updated
over time. Specifically, the assignment of flows changes in
discrete control epochs. At the beginning of each epoch, a flow
assignment is computed for that epoch to accommodate a nom-
inal traffic matrix that is predicted for that epoch [11]–[13].
Traditionally, optimization-based TE has been concerned with
optimizing for performance objectives that can be mathemati-
cally represented in such a way that the resulting optimization
problem can be solved efficiently. For example, minimizing
MLU is widely considered in the TE literature, as link utiliza-
tion is linearly proportional to the average traffic demand that
is readily provided by a TM. While performance objectives
such as MLU capture a desired network configuration from the

perspective of network operators, i.e., distributing traffic across
the network, they may not map directly to application QoS
requirements. Specifically, a growing portion of network traffic
is generated by applications that require very low end-to-end
delay to work efficiently [1], [3], [6], [14]–[16]. Despite this,
incorporating complex objectives such as end-to-end delay
in optimization-based TE is not feasible. First, there is no
analytically tractable model of end-to-end delay for a general
network without making simplifying assumptions about the
network and traffic (e.g., Poisson arrival process). Second,
modeling delay generally requires higher order traffic statistics
such as variance (e.g., average delay in a G/G/1 queue)
which are not captured in a TM. Recall that a TM only
contains information about the average traffic demand over
a control epoch. Such a basic representation fails to capture
higher order distributional information about traffic demands
that potentially affect the performance objective. This is a
fundamental limitation of all TM-based approaches for traffic
engineering in dynamic networks.

Clearly, if distributional information about demands could
be provided and incorporated into the traffic engineering
model, it would lead to more accurate flow assignments and
consequently improved network performance. Unfortunately,
most legacy network devices can only provide coarse-grained
flow counters (e.g., number of bytes passing through a port)
over a slow polling cycle [17]. As such, an average TM is
all that can be extracted from the network, but even that has
its own challenges [9]. Naturally, the question then is how
can we extract distributional demand information for use in
traffic engineering? Our motivation for this work is based
on two recent trends in the networking area: 1) extension of
software-defined networking (SDN) architecture into the wide-
area network (WAN), referred to as SD-WAN [18], and 2)
emergence of high-performance programmable switches with
line rate processing at data plane [19], [20], thanks to their
ability to offload packet processing to onboard accelerators
such as GPUs and DPUs. The SD-WAN architecture enables
centralized traffic engineering, while programmable switches
allow traffic processing at the edge of the network without
requiring any modification at the core.

Our Work. In this work, we present the design and evaluation
of NeuroTE, an ML-based framework for traffic engineering in
SD-WANs that can optimize for any objective, such as end-to-
end delay, that can be inferred from network measurements.
NeuroTE addresses two key challenges: (Q1) How to extract

and encode distributional demand information in an online
manner when traffic demands are dynamic and fluctuate over
time? (Q2) How to utilize such dynamic distributional infor-
mation about demands in traffic engineering specially when
the network objective includes complex performance metrics
such as end-to-end delay.

The NeuroTE approach to address (Q1) is the automatic
extraction and encoding of distributional demand information
at the edge of the network using deep neural autoencoders.
NeuroTE applies an end-to-end approach to train the autoen-
coders with respect to the objective being optimized. The
autoencoders are trained to generate encoding vectors whose
variations capture most of the structure of the distribution of
demands. Using the learned encoding vectors, we construct a
traffic encoding matrix (TEM), whose elements specify the
traffic encoding vectors of every flow in the network. To
address (Q2), the NeuroTE approach is based on reinforcement
learning (RL) [21], which can be naturally integrated with traf-
fic encoders in an end-to-end control framework. Specifically,
we will design a TE algorithm based on the deep reinforcement
learning (DRL) approach [22], which compared to traditional
RL, is more scalable and can deal with continuous state
spaces, making it suitable for TEM-based traffic engineering.
While NeuroTE can optimize for any objective that can be
inferred from the network, for concreteness and to demonstrate
the utility of our framework, we define the TE objective as
minimizing the maximum end-to-end delay experienced by any
flow in the network.

Contributions. While the idea of using DRL in TE has been
studied in the literature (see, e.g., [23]), our main contribution
in this work is an end-to-end learning framework for TE.
While existing DRL-based approaches are capable of optimiz-
ing for a richer set of performance metrics, e.g., delay, they are
designed within the constraints of traditional approaches in the
sense that they only replace the model-based controller with
a DRL agent. The input to the DRL controller is the legacy
traffic matrix. If we provide the DRL agent with distributional
traffic information, the agent will learn faster (i.e., converge
faster) and make better decisions (i.e., improved performance),
as it has more detailed information about the environment
with which it interacts. The NeuroTE framework demonstrates
how such information can be learned in the form of a traffic
encoding matrix at the edge of the network, and how it can
be used for TE in a centralized DRL algorithm.

To this end, our contributions can be summarized as follows:

• We present the design and evaluation of NeuroTE, a new
ML-based approach for delay-aware traffic engineering
in SD-WANs with dynamic traffic demands.

• We propose the concept of traffic encoding matrices,
and design a general technique for constructing traffic
encodings based on off-the-shelf neural autoencoders.

• We design a DRL-based controller based on Soft Actor-
Critic algorithm [24] that we customize with a novel pri-
oritization technique for enhanced training performance.

• We conduct experiments using real WAN traffic traces to

study the performance of NeuroTE and compare it with
existing approaches. In particular, we compare NeuroTE
with a DRL-based TE approach that uses TMs instead of
TEMs [3] to show the benefits of using TEMs.

Organization. We formally define the TE problem in Sec-
tion III and present NeuroTE in Section IV. Evaluation results
are presented in Section V. Related works are reviewed in
Section VI, while Section VII concludes the paper.

II. DEEP REINFORCEMENT LEARNING

Reinforcement learning (RL) is the area of machine learning
that deals with sequential decision-making [21]. A standard RL
setup consists of an agent that interacts with an environment
in discrete decision epochs. The environment state transitions
are stochastic and assumed to be governed by a Markov
process. At each decision epoch t, the agent observes some
environment state st and takes an action at. Following the
action, the state of the environment transitions to st+1 and
the agent receives a scalar reward rt = r(st, at). The agent’s
behavior is defined by a policy π(at|st), which maps states to
a probability distribution over the actions. Define the return
Rt =

∑∞
k=t γ

k−tr(sk, ak) as the total discounted future
reward at epoch t, where γ ∈ [0, 1] is called the discount
factor. The goal in reinforcement learning is to learn a policy
that maximizes the expected return over some distribution of
the initial states, as defined by

π∗ = argmax
π

Eπ [R0] . (1)

The action-value function Qπ(s, a) is used in many rein-
forcement learning algorithms to learn the optimal policy. It
describes the expected return starting from state s, taking the
action a and following policy π afterwards

Qπ(s, a) = Eπ [Rt|st = s, at = a] . (2)
Specifically, if the optimal action-value function, defined as
Q∗(s, a) = maxπ Q

π(s, a), is known, then in any given
state s, the optimal action a∗(s) can be found by solving for
a∗(s) = argmaxaQ

∗(s, a). One of the early breakthroughs in
reinforcement learning was the development of an algorithm
known as Q-learning. In Q-learning, the optimal action-value
function is directly learned using the Bellman equation:
Q(s, a) = E

[
r(st, at) + γmax

a′
Q(st+1, a

′)
∣∣st = s, at = a

]
. (3)

In most practical problems, the number of possible (state,
action) pairs is too large to store the action-value function in a
lookup table. It is therefore common to use a function approx-
imator [21] to represent the action-value function as Qθ(s, a),
where θ denotes the parameter set of the approximator. While
many forms of function approximators can be used, in deep
reinforcement learning (DRL), deep neural networks are used
for function approximation. The seminal work kick-starting
the revolution in DRL was the development of the Deep
Q-Network (DQN) algorithm that could learn to play Atari
video games directly from pixel images [22]. In DQN, the
deep neural network approximating the action-value function
is trained by minimizing the loss function, defined as

L(θ) = E
[(
yt −Qθ(st, at)

)2]
, (4)

where yt = r(st, at) + γmaxa′ Qθ(st+1, a
′) is the target

value for training the neural network. While using neural
networks as function approximators was not new, it was
generally believed that learning value functions using non-
linear function approximators (such as neural networks) was
difficult and unstable [25]. Two effective techniques were
proposed in DQN to improve learning stability: 1) the network
is trained with samples from a replay buffer to minimize
correlations between samples, and 2) the network is trained
with a separate target network to give consistent targets during
updates. Although DQN can be applied to problems with high-
dimensional state space, it can only handle low-dimensional
discrete action spaces. Many practical control problems such
as traffic engineering have continuous and high-dimensional
action spaces. It is not straightforward to apply DQN to contin-
uous control problems since it relies on finding the action that
maximizes the action-value function, which requires solving
a non-trivial optimization problem at each epoch. Instead, the
actor-critic approach [26] has often been used for continuous
control. For example, the DDPG algorithm [27] maintains a
parameterized actor function πφ(·|s) and a parameterized critic
function Qθ(s, a), where both actor and critic are implemented
using deep neural networks.

III. DELAY-AWARE TRAFFIC ENGINEERING

In this section, we describe the problem of delay-aware
traffic engineering in SD-WAN that is considered in our work.

A. Network Model

We consider a general model of an SD-WAN as depicted
in Fig. 1. In this model, the network consists of a set of edge
switches that are inter-connected via a set of paths. The WAN
interconnect may span multiple autonomous systems in which
case the physical composition of paths may not be known
to the traffic engineering controller, e.g., some links could
be implemented as MPLS tunnels whose substrate topology
would be unknown. We use the term “flow” to refer to the
traffic from one edge switch to another edge switch. Let
F = {f1, . . . , fK} denote the set of flows (i.e., switch pair
traffic) in the network. Each flow fi can be routed over a set
of paths Pi. While this can result in packet-level reordering,
we do not model its effects, assuming existing techniques can
be applied to resolve any reordering (e.g., [28]). This model is
widely considered in the traffic engineering literature [1]–[8].

B. Network Objective

One major objective of traffic engineering is to minimize
congestion in the network by optimally distributing traffic over
different network paths. While network congestion manifests
itself in increased packet loss and delay, it is difficult to
model such metrics mathematically as needed in optimization-
based TE approaches. Thus, most existing approaches try to
indirectly minimize congestion by controlling the utilization of
links in the network, which can be mathematically represented
by a closed-form expression. In contrast, one of the strengths

of NeuroTE is its ability to optimize for any performance met-
ric, such as end-to-end delay, that can be inferred from network
measurements. Specifically, we define the network objective as
minimizing the maximum delay experienced by any flow during
an epoch. The goal is to reduce the severity of network delay
spikes, which are detrimental to the performance of delay-
sensitive applications, but notoriously difficult to prevent due
to the dynamic nature of network traffic.

C. Problem Statement

The problem of delay-aware traffic engineering is to deter-
mine an optimal flow assignment for a given set of flows to
minimize the Maximum Flow Delay (MFD). Let wij denote
the fraction of flow fi traffic that is routed on path Pj ∈ Pi.
The goal is to determine a flow assignment, i.e., the set of wij’s
for each flow based on a given traffic encoding matrix T. The
computed flow fractions are used for routing traffic during
the current control epoch. In particular, if the rate of traffic
of flow fi is ri, then the edge switch routes wijri amount
of flow fi traffic over path Pj . Notice that ri is a random
variable and changes with time, but wij’s remain fixed during
each control epoch. Let w = (wij , Pj ∈ Pi, fi ∈ F) denote
a flow assignment. The problem can be formally described as
the following optimization problem:

Delay-Aware TE Problem:
min
w

MFD(w,T) (5a)

subject to
∑
Pj∈Pi

wij = 1, for all fi ∈ Fi (5b)

wij ≥ 0, for all Pj ∈ Pi, fi ∈ F (5c)
where, T denotes the estimated TEM for the epoch, and the
objective function MFD(w,T) denotes the maximum flow
delay for a given flow assignment w and traffic encoding
matrix T,

MFD(w,T) = max
fi∈F

max
Pj∈Pi

dij(w,T) . (6)

In this definition, dij(w,T) denotes the maximum one-way
delay of flow fi on its path Pj over the entire control epoch.
Thus, MFD captures the maximum one-way delay among all
flows in a control epoch.

It is worth mentioning that optimizing for such an end-
to-end network objective in model-based approaches is quite
challenging as there is no accurate and yet tractable math-
ematical model for end-to-end delay under generic traffic
demands. Most available results based on queuing theory rely
on very specific patterns of traffic (e.g., Poisson) and can often
be solved for average delay only. In NeuroTE, however, the
objective is directly inferred from the network. In our design,
edge nodes periodically send feedback to the TE controller,
which uses these feedbacks to infer MFD in each epoch.

D. Model Generality

We believe that our framework can be applied to other
control problems that rely on traffic demands to optimize
network performance. For example, in network utility max-
imization (NUM) framework for resource allocation [29],

TE
Controller

En
co

di
ng

s

Feedback

En
co

di
ng

s

SD-WAN

Edge
Agent

Feedback

Flo
w Assig

nment Flow Assignment

Edge
Agent

Fig. 1: NeuroTE conceptual architecture.

the objective is to maximize the total network utility. By
carefully modeling the utility of each flow, a broad range
of performance objectives in terms of network efficiency and
fairness can be achieved [3], [30]. However, not only the NUM
framework requires an accurate mathematical representation of
network utility, but also the utility function must posses certain
properties (e.g., a concave function of the rate). In contrast,
the NeuroTE framework does not impose any such restrictions
as it infers the network utility from network feedback.

IV. NEUROTE DESIGN

In this section, we present the design of NeuroTE for delay-
aware TE, and discuss how traffic encoding matrices are
constructed and utilized for decision making in NeuroTE.

A. Architecture

The high-level architecture of NeuroTE is depicted in Fig. 1.
The main components of the architecture as well as their
operations are described below.
Control Loop. The system works in control epochs. At the
end of each epoch, edge agents send their local traffic encoding
matrices and network feedback to the controller. The controller
computes a flow assignment for the subsequent control epoch
and sends it to edge agents to enforce in that epoch. The length
of the control epoch should be chosen to achieve a balance
between performance and control overhead. The system forms
a closed control loop, and as such the length of the control
epoch is lower bounded by the latency of the control loop.
This includes time required to compute traffic encodings and
collect feedback at edge, round-trip-time between edge agents
and the controller, and the time it takes for the controller to
compute a flow assignment.
TE Controller. The controller implements the DRL algorithm
for computing flow assignments. While a distributed algorithm
can be considered (as in [31]), the centralized model nicely
fits the architecture of SD-WAN [1], [2]. It also results in a
control architecture with lower complexity and faster control
loop feedback. The design of the DRL algorithm is described
in detail in Section IV-C
Edge Agents. The edge agents have three main functionalities:
1) to sample local traffic and generate traffic encoding vectors,
2) to split local flows according to the flow assignment for
the current control epoch, and 3) to send feedback about the
network objective (i.e., maximum flow delay) to the controller.
The rate of traffic sampling is dictated by the capabilities of the

edge switch hardware. The sampling itself involves computing
the rate of traffic over the sampling interval.
Delay Measurement. There are a number of software and
hardware-based solutions that can be used to accurately
measure one-way delay in a network [32]–[34]. While our
design is independent of the specific protocol used, a passive
measurement approach that utilizes the programmability of
edge switches to timestamp data packets at their origin is a
low-overhead solution that can be adopted in NeuroTE.
Flow Splitting. As commonly considered in literature on
traffic engineering (e.g., [1]–[8]), we assume packet level flow
splitting. Consider a flow assignment w, where wij denotes
the fraction of flow fi that should be sent over path Pj ∈ Pi.
The flow fraction wij is interpreted as the probability with
which each packet of flow fi is transmitted over path Pj .

B. Traffic Encoding

Design. We use a neural autoencoder [35] to extract and
encode traffic demand information. The autoencoder attempts
to characterize the unknown distribution from which the traffic
demands are sampled through learning a set of features whose
variations capture most of the structure of the distribution.
The autoencoder is composed of two stages, an encoder and
a decoder. The encoder and decoder networks, denoted by f
and g, are trained such that the encoder outputs a learned
representation e = f(x) of an input x, while the decoder
outputs g(f(x)) ≈ x. This is achieved by penalizing the model
according to the reconstruction error such that the model can
learn the most important features of the input data and how
to best reconstruct the original data from the encoded state e,
which we call the encoding vector. For each flow fi, a separate
encoding vector ei is computed by the autoencoder. The input
to the encoder is a series of traffic samples. Specifically, the
edge agent measures per-flow1 traffic demand periodically and
keeps a window of measurements of size τ . The encoding
vector for flow fi in next epoch is computed based on the
input vector xi = [xi(t− 1), . . . , xi(t− τ)], where xi(t− n)
denotes the sampled traffic rate of flow i in the n-th previous
sampling time, where the current time is denoted by t.
Training. Recall that encoders run on edge nodes. This raises
several questions with respect to training of the encoders.
First, how many encoders should be trained? Second, how to
train encoders end-to-end with the DRL algorithm? To answer
the first question, we note that a flow in NeuroTE represents
aggregate traffic between an origin and destination node. As
such, we hypothesis that different flows would have similar
statistical properties. This allows us to apply transfer learning
techniques to train only a single encoder model and then use
it for encodings on all edge nodes, which significantly reduces
the training time and complexity compared to training multiple
flow-specific models. While a single encoder is trained using
offline traffic traces, each edge agent runs its own encoder
based on the single trained model. To answer the second

1Recall that we defined a flow as the traffic between an origin-destination
pair and not a single 5-tuple IP flow.

State

Agent

Policy
Network

Environment

Objective

Reward (i.e., delay)

Traffic Measurements

action

𝑎! SD-WAN𝑺 =
𝒆"
⋮
𝒆#

𝒂

Encoder
Network

𝒙! =

𝑥!(𝑡 − 1)

⋮

𝑥!(𝑡 − 𝜏)

𝑒!"

𝑒!$

𝒆!

Traffic Encoder

TEM

Fig. 2: NeuroTE end-to-end design.

question, we can backpropagate the gradient information to
edge agents for online tuning of the encoder. An advantage of
our design is that the encoders and the controller are based on
DNNs, which are end-to-end differentiable for training.

Representation vs Prediction. We emphasize that our goal
is to show the importance of capturing distributional demand
information. As such, we have decided to use a basic autoen-
coder architecture in our design and train it only with respect
to reconstruction error, as opposed to, for example, prediction
error. However, we expect to see improved performance by
using more advanced architectures such as those based on long
short-term memory (LSTM) [36] encoder and decoders, which
are more suitable for sequence learning.

C. Controller Design

The controller in NeuroTE is implemented as a DRL agent.
Fig. 2 shows the end-to-end design of NeuroTE corresponding
to the conceptual architecture depicted in Fig. 1.

DRL Environment. First, we describe the design of the state
space, action apace and reward function.
• State Space: The state of the environment is composed

of the traffic encoding vectors of flows in the net-
work. Formally, the state is represented as the vector
S = [e1, . . . , en], where ei ∈ Rm denotes the encoding
vector of flow fi. Note that this defines a continuous state
space in Rm. The encoding vectors ei are provided to the
algorithm in a traffic encoding matrix for each epoch.

• Action Space: Each action is represented as a vector
a = [a1, . . . , ak], where ai ∈ [0, 1] is the score assigned
to path Pi. The action space is defined over [0, 1]k, where
k =

∑
fi∈F |Pi| denotes the number of paths in the

network. The flow assignment weights w are computed
from the action vector a as:

wij =
aij∑

Pj∈Pi aij
, ∀Pj ∈ Pi, fi ∈ F . (7)

• Reward: The objective of a DRL agent is to maximize the
expected cumulative reward. The objective of NeuroTE is
to minimize MFD. Thus, we define reward as the negative
of MFD. Formally, we have r = −MFD(w,T), where
w is computed from the action taken by the agent.

DRL Agent. In our current design, we use a state-of-the-art
DRL algorithm called soft actor-critic (SAC) [24]. However,
we modify the original SAC to enhance its performance in
NeuroTE by designing a customized method for experience
replay, as discussed in this section. SAC is an off-policy algo-
rithm based on maximum entropy reinforcement learning. The

experimental results show that SAC consistently outperforms
other DRL algorithms for continuous-action benchmarks, both
in terms of learning speed and robustness [24]. Having said
that, the design of NeuroTE is independent of the specific DRL
algorithm applied. In other words, SAC can be easily replaced
with any other DRL algorithm that can deal with continuous
state and action spaces.

In SAC, the agent receives a bonus reward at each epoch
proportional to the entropy of the policy at that epoch, which
changes the RL problem to

π∗ = argmax
π

E
[∑∞

t=0 γ
t
(
r(st, at) + αH(π(·|st)

)]
, (8)

where the hyper-parameter α ∈ [0, 1] balances exploitation and
exploration, and affects the stochasticity of the optimal policy.
SAC concurrently learns a policy πφ and two Q-functions
Qθ1 and Qθ2 . The Q-functions are learned by regressing to
a single shared target. To avoid stability issues, the algorithm
uses two target networks Qθ̄1 and Qθ̄2 , which are obtained as
exponentially moving averages of the Q-network parameters
over the course of training. As with other DRL algorithms
that use a deep neural network to approximate Q(s, a), SAC
stores observed transitions in a replay buffer D and uses
experience replay when updating the Q-networks with respect
to the following loss function

L(θj ,D) = E
(s,a,r,s′)∼D

[(
y(r, s′)−Qθj (s, a)

)2]
, (9)

where, j = 1, 2, and the target y(r, s′) is given by

y(r, s′) = r + γ
(
min
j=1,2

Qθ̄j (s
′, a′)− α log πφ(a

′|s′)
)
, (10)

where a′ is sampled from the current policy πφ(·|s′). The
policy should choose the action that maximizes the expected
future return plus expected future entropy in each state, which
results in maximizing the following function

Jπ(φ) = E
s∼D
ξ∼N

[
min
j=1,2

Qθj (s, fφ(ξ, s))− α log πφ(fφ(ξ, s)|s)
]
, (11)

where fφ(ξ, s) is a deterministic function obtained by
reparametrizing the policy using a neural network transforma-
tion a = fφ(ξ, s), where ξ is an input noise vector, sampled
from a fixed distribution such as a spherical Gaussian. Finally,
the optimal policy can be computed by performing gradient
ascent over Jπ(φ) with respect to policy parameter set φ.

Prioritized SAC. During training, model parameters are up-
dated in several iterations, where in each iteration the pa-
rameters are updated using a mini-batch of data drawn from
replay buffer D. When drawing a mini-batch, a straightforward
approach is to sample uniformly from the buffer, as in the
original SAC algorithm. However, it has been shown that using
a method called prioritized experience replay, which assigns a
priority to each experience, results in significant improvement
over uniform sampling [37]. This method has been used with
several DRL algorithms including DQN [37], DDPG [38] and
SAC [39]. In particular, the method proposed for SAC [39]
considers the TD-error as the measure of priority, similar to
the prioritization method proposed for DQN [37]. The TD-

error of Qθj for transition i sampled from D is given by
δij = y(ri, s

′
i)−Qθj (si, ai) . (12)

However, SAC is an actor-critic algorithm where in each
update iteration, both actor and critic parameters are updated
using transitions sampled from the replay buffer. The method
proposed in [38] uses both TD-error and gradient of policy,
but their method is specific to DDPG. We extend this method
to enable prioritized experience replay in SAC. To our knowl-
edge, this is the first paper that considers both critic and actor
for prioritized experience replay in SAC. To update the policy
network, a gradient step is taken with respect to Jπ(φ). We
can approximate the gradient of Jπ(φ) with

∇̂Jπ(φ) = −∇φ log πφ(a|s)
+
(
∇aQθ(s, a)− α∇a log πφ(a|s)

)
∇φfφ(ξ, s), (13)

where, we define Qθ(s, a) = minj=1,2Qθj (s, a). In priori-
tized experience replay, the probability of sampling a particular
transition i is proportional to its priority,

P (i) = pβi /
∑
k∈D p

β
k , (14)

where pi > 0 denotes the priority of transition i. The exponent
β determines how much prioritization is used. In particular,
setting β = 0 yields uniform sampling. Since SAC has two
Q-networks, we define the average TD-error of transition i as

δi =
1

2
(|δi1|+ |δi2|), (15)

and then compute the priority of transition i as
pi = δi + λ

∣∣∇aQθ(si, ai)− α∇a log πφ(ai|si)∣∣+ ε, (16)
where, ε is a small positive constant to ensure all transitions are
sampled with some probability and the second term represents
the loss applied to the actor. Parameter λ ∈ [0, 1] is used to
weight the contributions of each component. To account for
the bias introduced due to prioritized sampling, updates to the
network are weighted with importance sampling weight [37].
For each transition i, we first compute its importance sampling
weights ωi =

(
1
|D|

1
P (i)

)η
. Then, during the update of Qθj

network, we use ωiδij instead of δij . For stability reasons,
we normalize weights by 1/maxi ωi so that they only scale
the update downwards. Also, as suggested in [37], we linearly
anneal η from its initial value η0 to 1 (at the end of learning).
Typical suggested values for these parameters are as: β = 0.6,
ε = 0.01, and η0 = 0.4. We also set λ = 0.5.

V. EVALUATIONS

In this section, we present evaluation results using real
traffic traces to demonstrate the benefits of using TEMs instead
of TMs in traffic engineering. We also study the impact of
alternative design choices on the performance of NeuroTE.

A. Methodology

We developed a flow-level network simulator and used the
PyTorch platform [40] to implement neural networks and DRL
algorithms. We measure link utilizations from the simulator
and then use a neural network to map utilizations to delays.
The neural network is trained based on real measurements
obtained from our internal testbed, but otherwise is unknown

0 2000 4000 6000 8000
0.0

0.2

0 2000 4000 6000 8000
0.0

0.1

Tr
af

fic
 R

at
e

(n
or

m
al

iz
ed

 b
y

th
e

m
ax

im
um

)

0 2000 4000 6000 8000
Time (100ms per tick)

0.0

0.5

Fig. 3: Sample traffic traces used in evaluations. The figures show
traffic rates for 3 randomly chosen flows out of 20 flows.

to traffic engineering algorithms. This provides a fairly ac-
curate simulation platform for estimating end-to-end delay
using captured traffic traces. All the neural network models
are trained on a single server with an Intel Xeon Gold 6252N
2.30GHz CPU with 128GB memory and a Tesla P40 GPU.
Network Settings. We use two well-known network topolo-
gies for evaluations, namely the NSFNET (with 13 nodes)
and ARPANET (with 29 nodes), both available in the Inter-
net topology zoo [41]. For each topology, we assign traffic
demands to |F| = 20 randomly-selected origin-destination
pairs. For each origin-destination pair, we use 3 shortest paths
for routing traffic. The capacity of each link is set to 1 Gbps.
Traffic Traces. We use traffic traces collected from the WIDE
backbone network [42]. Specifically, we use 15-minute traffic
traces collected on April 12, 2017 to train all algorithms and
then test them on traffic traces collected at the same time on
the following day (i.e., April 13, 2017). To generate traffic
matrices, we randomly mapped the IP address of packets in the
traffic traces to node indices in the simulated network topolo-
gies. The same origin-destination pairs with the same mapping
are used consistently for evaluating different algorithms. To
show the overall variability in our traffic traces, we have
plotted the time series of traffic rates for three sample flows
(i.e., origin-destination pairs) in Fig. 3. As can be seen from
the figure, there is significant variability in traffic demands in
these traces, both within each flow and across different flows.
We use these traces to compute traffic matrices over time by
averaging flow rates over sampling time intervals. Each traffic
matrix is computed over a time interval of 100 ms. By default,
each control epoch is set to contain K = 100 traffic matrices.
Performance Metrics. We compare different approaches with
respect to their: 1) training performance and 2) testing perfor-
mance. For training performance, we are primarily considering
the convergence of DRL algorithms and the quality of the state
that the algorithm converges to. For testing performance, we
consider the MFD achieved under each approach. Specifically,
we plot the CDF of MFD to show the tail behavior of end-
to-end delay with each TE approach. All CDF plots are in
logarithmic scale to better show the differences.
Model Parameters. For the autoencoder, we have a three-
layer fully-connected neural network as the encoder, which

0 2000 4000 6000 8000 10000
Decision Epoch

1.2

1.0

0.8

0.6

0.4

N
or

m
al

iz
ed

 R
ew

ar
d

NeuroTE
DRL

(a) Training curve in NSFNET.

0 2000 4000 6000 8000 10000
Decision Epoch

0.20

0.15

0.10

0.05

N
or

m
al

iz
ed

 R
ew

ar
d

NeuroTE
DRL

(b) Training curve in ARPANET.

Fig. 4: Convergence behavior of NeuroTE and DRL during training.

includes K input neurons, 2K and K neurons in the first and
second layer, respectively, and utilizes the ReLU activation
function [43]. The size of the output of the encoder (i.e., the
encoding vector) is set to H = 50, by default. The decoder
is a three-layer neural network with the inverted structure of
the encoder. After pre-training the autoencoder, the encoding
vectors are fed into the DRL model. We use a two-layer neural
network to serve as the actor network in the DRL model,
which contains 256 neurons for both the first and second layer,
with ReLU for activation. The output layer uses the Softmax
activation function [35] to normalize the output actions. We
use a two-layer neural network to model the critic network,
which includes 256 neurons for both the first and second
layer with the ReLU activation function. For the TM-based
approaches, we use the mean of K sampled TMs over the
past control epoch to construct the traffic matrix, and share
the exact same DRL model as that of NeuroTE. The hyper
parameters of the SAC algorithm include the learning rate as
0.0003, the batch size as 256, the discount factor for rewards
as 0.99, and the entropy coefficient as 0.2. The reward is set as
the negative of MFD, as discussed earlier, and is normalized
by the maximum MFD in the figures.

Baseline Approach. In addition to NeuroTE, we have also
implemented an existing DRL-based approach for traffic en-
gineering recently proposed in [3]. This approach uses the
DDPG algorithm for continuous control. To have a fair
comparison, we modify their approach so that it uses the
exact same DRL algorithm used in NeuroTE. We refer to
this modified approach as DRL, which represents the state-
of-the-art in DRL-based traffic engineering. Extensive evalu-
ation results presented in [3] show that the DRL-based ap-
proach outperforms other approaches based on Shortest Path,
Load Balanced, and Network Utility Maximization approaches
(please refer to [3] for details). Given space limitations, here
we only present results comparing NeuroTE and DRL. Any
improvement achieved by NeuroTE compared to DRL are solely
due to utilizing TEMs instead of TMs, as the control algorithm
itself is exactly the same in both approaches.

B. Results and Discussion

Convergence Benchmark. Figs. 4(a) and 4(b) show the
training performance of NeuroTE and DRL in NSFNET and
ARPANET topologies, respectively. Recall that ARPANET is
a larger topology, as such the total reward will be higher in

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Delay

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

C
D

F

NeuroTE
DRL

(a) MFD distribution in NSFNET.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Delay

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

C
D

F

NeuroTE
DRL

(b) MFD distribution in ARPANET.

Fig. 5: Distribution of end-to-end delay under NeuroTE and DRL.

this topology because typical delay values will be smaller.
From the figures, we see that not only NeuroTE converges to
a stable state faster than DRL, but also the final converged
state in NeuroTE results in a higher total reward compared to
that of DRL. The faster convergence of NeuroTE is due to the
ability of TEMs to construct better representation of network
traffic compared to TMs. While there could be significant
short-term variability in traffic demands, the distribution of
demand does not change substantially over short periods of
time. This stability of the space state allows the SAC algorithm
to converge faster in NeuroTE.
Performance Benchmark. Figs. 5(a) and 5(b) show the
performance of NeuroTE and DRL during the testing phase. This
figure depicts the CDF of the normalized MFD achieved under
each approach in logarithmic scale. Notice that smaller MFD
values indicate smaller maximum flow delay, and thus better
network performance. Again, we observe that using TEMs, as
in NeuroTE, outperforms the TM-based approach for majority
of end-to-end delay values. Only in the smaller NSFNET
topology, DRL performs slightly better for small values of
delay. We think with a larger network for the autoencoder
part of the model, this gap could be closed. Nevertheless, we
see that the maximum delay in NSFNET could be higher by
almost 25% under DRL compared to NeuroTE.

How Beneficial is Dynamic Encoder Training? In NeuroTE,
by default, the autoencoder is continuously tuned at runtime
with respect to the reward achieved by the DRL algorithm, in
an end-to-end manner. Obviously, this adds to the complexity
of the system as well as the overall control overhead, as gra-
dient information needs to be backpropagated to the encoder
model at the edge of the network. In this experiment, our goal
is to verify if indeed such an end-to-end continuous training
is beneficial for our traffic engineering problem, at least in the
setup that we have considered. Recall that the autoencoder is
always pre-trained first, whether we tune it at runtime or not.
The results are presented in Fig. 6. The Fixed encoder refers
to the one that is only pre-trained, while Trained refers to the
one that is updated at runtime. We can observe from this figure
that there is no significant improvement in performance by
using end-to-end training. We believe that this merely indicates
that the DRL algorithm is not able to convey a sufficiently
sensitive signal to the encoder for training. It may be possible
to properly regularize the DRL objective to generate more
useful signals for the encoder.

0 2000 4000 6000 8000 10000
Decision Epoch

1.2

1.0

0.8

0.6

0.4

0.2
N

or
m

al
iz

ed
 R

ew
ar

d
NeuroTE-Fixed
NeuroTE-Trained

(a) Training curve in NSFNET.

0 2000 4000 6000 8000 10000
Decision Epoch

0.20

0.15

0.10

0.05

N
or

m
al

iz
ed

 R
ew

ar
d

NeuroTE-Fixed
NeuroTE-Trained

(b) Training curve in ARPANET.

Fig. 6: Effect of dynamic encoder training.

What is a Good size for Encoding Vectors? Fig. 7 shows
the performance of NeuroTE with different encoding vector
sizes for the Trained encoder on ARPANET topology. Results
for Fixed trainer and NSFNET topology showed a similar
trend, and thus omitted to save space. Interestingly, we only
see marginal change in the performance by changing the size
of the encoding vectors. Moreover, we can see that the best
performance is achieved with a medium-sized encoding vector.
Specifically, we see that setting the encoding vector size to
10 achieves the best performance, while setting the encoding
vector to small or large values, namely 3 and 50, leads to lower
performance. This indicates that a proper encoding vector
size can achieve the best performance rather than naively
using the largest encoding vector size, which results in higher
computational and communication overhead. Recall that the
encoding vectors are computed by the edge agents and then
transmitted to the controller. Therefore, using smaller encoding
vectors is desirable to minimize the communication overhead
in the control plane of the network. Moreover, larger encoding
vectors mean a larger state space for the DRL algorithm, which
slows down the training.

Summary. Our experiments show that not only NeuroTE
achieves better performance compared to DRL, thanks to using
traffic encoding matrices, but also it is reasonably robust to
various design choices. In particular, these results confirm that
a traffic encoder that has been trained offline can be reliably
used at runtime without requiring dynamic updates.

VI. RELATED WORK

There is a large body of literature on traffic engineering
and ML-based network control. Here, we only review some
representative works that are most relevant to our work.

Optimization-based TE. Existing optimization-based TE ap-
proaches can be broadly classified into adaptive and online
approaches. Adaptive approaches work in epochs and typically
use past measurements to estimate a TM for the next epoch [1],
[5]. These approaches have an open loop control and thus opti-
mize for performance metrics that can be accurately described
mathematically. In online approaches, traffic is monitored in
real-time and the control algorithm reacts to instantaneous
traffic changes [8]. Such approaches have a closed loop control
and thus if network dynamics are slow enough compared to
network RTT, for example in a datacenter [44]–[46], they can
converge to an optimal network configuration. However, in

0 2000 4000 6000 8000 10000
Decision Epoch

0.20

0.15

0.10

0.05

N
or

m
al

iz
ed

 R
ew

ar
d

NeuroTE-Encode-Size-3
NeuroTE-Encode-Size-10
NeuroTE-Encode-Size-50

(a) Training curve in ARPANET.

0.0 0.1 0.2 0.3 0.4 0.5
Normalized Delay

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

C
D

F

NeuroTE_Encode_Size_3
NeuroTE_Encode_Size_10
NeuroTE_Encode_Size_50

(b) MFD distribution in ARPANET.

Fig. 7: Effect of different encoding vector sizes.

a WAN environment with long RTT, these approaches can
experience a large transient penalty [7].
ML-based TE. Machine learning has been successfully ap-
plied to a variety of problems in the networking area (see [47]
and references therein). Recent works on the application of
machine learning in network control can be found in [48]–
[50]. The most relevant works to ours are [3], [15], [16], which
apply DRL to TE. Specifically, Xu et al. [3] apply the DDPG
algorithm [27] to the problem of delay-sensitive TE. Using
simulations, they show that a DRL-based approach can out-
perform optimization-based approaches when the performance
objective is the average end-to-end delay. Zhang et al. [16]
use a DRL algorithm to identify the so-called critical flows
and then selectively reroute them to balance link utilization in
an SDN network. However, the actual TE controller in their
work is based on a linear programming model. The authors
in [15] consider TE with end-to-end delay, but their focus is on
distributed TE based on multi-agent RL. In contrast, our work
considers an SDN network where centralized control allows a
simpler controller algorithm design. Orthogonal to our work
on TE, there are also several recent works on using DRL for
congestion control on end systems [49], [51]–[53].

All these works, however, rely on a traditional traffic matrix
for traffic engineering. In contrast, we propose using traffic
encoding matrices in an end-to-end learning architecture. A
traffic encoding matrix provides a better representation of
distributional demand information, which allows the DRL-
based controller to achieve better performance in terms of
training convergence and end-to-end delay.

VII. CONCLUSION

In this paper, we presented the design and evaluation of
NeuroTE, a general DRL-based framework for traffic engineer-
ing. The design of NeuroTE is based on employing machine
learning for network control in an end-to-end manner; not
just for decision making but also for learning traffic demand
representations. Using real traffic traces, we showed that
NeuroTE results in improved network performance and faster
convergence compared to existing TM-based DRL approaches.
We believe that the core idea of NeuroTE, i.e., end-to-end
learning of demand representation and decision making, has
a lot of promise and can be applied to other network control
problems such as dynamic resource allocation problems. A
worthwhile future work is to study NeuroTE over larger network
topologies and with more diverse traffic patterns.

REFERENCES

[1] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, Aug. 2013.

[2] S. Jain et al., “B4: Experience with a globally deployed software defined
WAN,” in Proc. ACM SIGCOMM, Aug. 2013.

[3] Z. Xu et al., “Experience-driven networking: A deep reinforcement
learning based approach,” in Proc. IEEE INFOCOM, Apr. 2018.

[4] P. Kumar et al., “Semi-oblivious traffic engineering: The road not taken,”
in Proc. USENIX NSDI, Apr. 2018.

[5] C. Zhang, Y. Liu, W. Gong, J. Kurose, R. Moll, and D. Towsley,
“On optimal routing with multiple traffic matrices,” in Proc. IEEE
INFOCOM, Apr. 2005.

[6] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache,
“Dynamic pricing and traffic engineering for timely inter-datacenter
transfers,” in Proc. ACM SIGCOMM, Aug. 2016.

[7] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“COPE: Traffic engineering in dynamic networks,” in Proc. ACM
SIGCOMM, Aug. 2006.

[8] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive
traffic engineering,” in Proc. IEEE INFOCOM, Apr. 2001.

[9] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
“Traffic matrix estimation: Existing techniques and new directions,” in
Proc. ACM SIGCOMM, Aug. 2002.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press and McGraw–Hill, 2009.

[11] A. Bayati, V. Asghari, K. Nguyen, and M. Cheriet, “Gaussian process re-
gression based traffic modeling and prediction in high-speed networks,”
in Proc. IEEE GLOBECOM, Dec. 2016.

[12] N. Ramakrishnan and T. Soni, “Network traffic prediction using recur-
rent neural networks,” in Proc. IEEE ICMLA, Dec. 2018.

[13] A. Azzouni and G. Pujolle, “NeuTM: A neural network-based frame-
work for traffic matrix prediction in SDN,” in Proc. IEEE NOMS, Apr.
2018.

[14] M. Dolati and M. Ghaderi, “Achieving high utilization with software-
driven WAN,” in Proc. IEEE IWQoS, Aug. 2019.

[15] P. W. Pinyarash Pinyoanuntapong, Minwoo Lee, “Delay-optimal traffic
engineering through multi-agent reinforcement learning,” in Proc. IEEE
INFOCOM, NI Workshop, 2019.

[16] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “CFR-RL: Traffic
engineering with reinforcement learning in SDN,” IEEE J. Sel. Areas
Commun., vol. 10, no. 38, 2020.

[17] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic matrix
estimator for OpenFlow networks,” in Proc. PAM, Apr. 2010.

[18] What is SD-WAN?, accessed Oct. 14, 2021. [Online]. Avail-
able: https://www.cisco.com/c/en ca/solutions/enterprise-networks/
sd-wan/what-is-sd-wan.html

[19] CloudEngine 16800, accessed Oct. 14, 2021. [Online]. Available:
http://e.huawei.com/topic/cloud-engine2019/en/index.html

[20] NVIDIA BlueFiled Data Processing Unit, accessed Oct. 14, 2021.
[Online]. Available: https://www.nvidia.com/en-us/networking/products/
data-processing-unit/

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
3rd ed. MIT Press, 2018.

[22] V. Minh et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, 2015.

[23] Y. Xiao, J. Liu, J. Wu, and N. Ansari, “Leveraging deep reinforcement
learning for traffic engineering: A survey,” IEEE Commun. Surveys Tuts.,
vol. 4, no. 23, 2021.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. ICML, Jul. 2018.

[25] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, 2019.

[26] S. Levine, “Actor-critic algorithms,” accessed Oct. 14, 2021.
[Online]. Available: http://rail.eecs.berkeley.edu/deeprlcourse-fa17/
f17docs/lecture 5 actor critic pdf

[27] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in Proc. ICLR, May 2016.

[28] C. Raiciu et al., “How hard can it be? Designing and implementing a
deployable multipath TCP,” in Proc. NSENIX NDSI, Apr. 2012.

[29] X. Lin and N. Shroff, “Utility maximization for communication net-
works with multipath routing,” IEEE Trans. Autom. Control, vol. 5,
no. 51, 2006.

[30] K. Winstein and H. Balakrishnan, “TCP ex Machina: Computer-
generated congestion control,” in Proc. ACM SIGCOMM, Aug. 2013.

[31] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. ACM NIPS, Dec. 2017.

[32] L. D. Vito, S. Rapuano, and L. Tomaciello, “One-way delay measure-
ment: State of the art,” IEEE Trans. Instrum. Meas., vol. 12, no. 57,
2008.

[33] Accedian Networks, “One-way delay measure-
ment techniques,” accessed Oct. 14, 2021. [On-
line]. Available: https://accedian.com/wp-content/uploads/2015/05/
One-WayDelayMeasurementTechniques-AccedianWhitePaper.pdf

[34] Viavi Solutions, “One-way delay and jitter measurement,” accessed
Oct. 14, 2021. [Online]. Available: https://www.viavisolutions.com/ja-jp/
literature/one-way-delay-jitter-measurement-application-notes-en.pdf

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, 1997.

[37] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. ICLR, Oct. 2016.

[38] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel DDPG method
with prioritized experience replay,” in Proc. IEEE SMC, Oct. 2017.

[39] C. Wang and K. Ross, “Boosting soft actor-critic: Emphasizing recent
experience without forgetting the past,” Jun. 2019, accessed Oct. 14,
2021. [Online]. Available: https://arxiv.org/pdf/1906.04009.pdf

[40] PyTorch. [Online]. Available: https://pytorch.org/
[41] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
2011.

[42] WIDE Traffic Traces, 2018, http://mawi.wide.ad.jp/mawi/.
[43] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural

networks,” in Proc. AISTATS, Apr. 2011.
[44] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-

ancing for datacenters,” in Proc. ACM SIGCOMM, Aug. 2014.
[45] R. Mittal et al., “TIMELY: RTT-based congestion control for the

datacenter,” in Proc. ACM SIGCOMM, Aug. 2015.
[46] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and

S. Katti, “NUMFabric: Fast and flexible bandwidth allocation in dat-
acenters,” in Proc. ACM SIGCOMM, Aug. 2016.

[47] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
for networking: Workflow, advances and opportunities,” IEEE Netw.,
vol. 32, no. 2, 2018.

[48] H. Mao, M. Alizadeh, I. Menachey, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. ACM HotNets, Nov.
2016.

[49] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven
congestion control: When multi-path TCP meets deep reinforcement
learning,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, 2019.

[50] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proc. ACM SIGCOMM, Aug. 2019.

[51] N. Jay, N. H. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on Internet congestion control,” in
Proc. ICML, 2019.

[52] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: a
pragmatic learning-based congestion control for the Internet,” in Proc.
ACM SIGCOMM, 2020.

[53] H. Jianga, Q. Li, Y. Jiang, G. Shen, R. Sinnotte, C. Tian, and M. Xu,
“When machine learning meets congestion control: A survey and com-
parison,” Computer Networks, vol. 192, 2021.

