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Abstract—With widespread deployment of virtualization tech-
nologies in datacenter networks, traditional tools used for net-
work monitoring, such as hardware taps, become unfit. This
is due to the inability of hardware solutions for dynamic
deployment and virtual network monitoring. This paper presents
the design and evaluation of SoftTap, a scalable alternative to
hardware taps which is capable of operating over both physical
and virtual switches. SoftTap is based on port and flow mirroring
capabilities of commodity OpenFlow switches and is not limited
to a specific network architecture or topology. A key design
challenge in SoftTap is the fast computation of switch mirroring
configurations in large-scale deployments. Our design is based on
novel polynomial time approximation algorithms that are shown
to achieve bounded approximation ratios compared to optimal
solutions. We evaluate SoftTap using model-driven simulations as
well as realistic Mininet experiments. Specifically, our simulations
consider large networks to show the scalability of SoftTap. Mininet
experiments, on the other hand, consider its real-world utility
by implementing an intrusion detection system (IDS) and a VoIP
metering application on top of SoftTap. In our experiments, under
SoftTap, IDS achieves up to 25% higher detection recall, while
VoIP metering achieves up to 23% less packet loss compared to
existing mirroring-based traffic monitoring approaches.

I. INTRODUCTION

Motivation. As datacenters grow in size and proliferate, the
importance of having in-depth network-wide visibility signif-
icantly increases. Providing such pervasive visibility requires
examining network behaviour at the granularity of packets [1],
[2]. Traditionally, packet-level traffic traces are collected us-
ing hardware tap (Test Access Point) devices, deployed at
specific points in the network. Such hardware middleboxes,
however, have become less useful as server and network
virtualization have become ubiquitous in datacenters. In a
virtualized datacenter network, traffic traverses through virtual
links and switches, making hardware taps ill-suited or even
infeasible to deploy (e.g., monitoring traffic between virtual
machines that are connected via a virtual switch). Without the
ability to capture and analyze packet-level traffic at arbitrary
points in the network, many management tasks such as fault
diagnosis, root cause analysis and malware detection can not
be effectively executed. This motivates adopting “virtual” taps,
i.e., software-defined traffic monitoring systems, in virtualized
network environments. In particular, a software-defined tap
does not require a specialized monitoring infrastructure and
can be dynamically deployed to different locations in the
network, making it well-suited for virtualized environments,
where virtual networks are created as overlays on top of a
shared physical network substrate.

To this end, we design and evaluate a software-defined
tap using the built-in port mirroring [3] feature available
on both commodity physical and software network switches.
In port mirroring, a switch duplicates its passing traffic to
a designated mirroring port. Port mirroring, however, could
suffer from “loss” due to port over-subscription (POS) [3],
[4]. In POS, traffic from every port on a switch is copied to its
mirroring port. If the total rate of traffic at the switch exceeds
the capacity of the mirroring port, the overload traffic is
dropped. Additionally, while simple and easy to deploy, POS is
highly inefficient as it creates a static mirroring configuration
independent of the distribution of traffic and the routing layout
of the network. Specifically, attempting to mirror all passing
flows in POS, every flow is mirrored at every switch along its
route. This results in most flows being mirrored at multiple
switches, which not only increases mirroring traffic but also
wastes the mirroring capacity of the network.

As a motivating example, consider the network depicted in
Fig. 1 which has three flows and three switches. With POS,
only flow f2 is fully mirrored (on switch S3), while flows
f1 and f3 are only partially mirrored, even though the total
rate of flows (at 2.5C) is less than the aggregate mirroring
capacity of the network (at 3C). From this example, we see
that to minimize the mirroring loss, the mirroring configuration
of switches must be determined with respect to the routing
layout and traffic distribution of the network. To this extent,
it is required to acquire global network information as well
as the ability to dynamically change mirroring configurations
of network switches as the network traffic changes. While
some switches support dynamic configuration of mirroring
ports through vendor-specific APIs (e.g., [5]), most legacy
switches do not support such functionality. Motivated by
the recent wide-spread availability of programmable switches
(e.g., OpenFlow switches), we argue that it is now possible to
build a traffic monitoring system based on switch mirroring
capability, which not only is low-cost but also provides high
fidelity traffic traces on par with traditional hardware taps.
Our Approach. Our approach is based on network-wide
optimization of switch mirroring configurations with respect to
network traffic and routing layout. Our key idea is that, from
traffic monitoring perspective, it does not matter which switch
in the network mirrors a flow, as long as each flow is mirrored
by at least one switch on its path. This insight leads us to
design a system that minimizes mirroring losses by balancing
mirroring load among switches. We demonstrate that we
maximize flow coverage, i.e., the percentage of flows that are
mirrored with no loss, by load-balancing among switches. One978-1-6654-0522-5/21/$31.00 ©2021 IEEE
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Fig. 1: While POS is unable to fully mirror the flows, SoftTap is able
to fully mirror all flows by mirroring flows f1, f2, and f3 on switches
S1, S3 and S2, respectively.

of the main challenges we address is how to determine switch
configurations in near-realtime, so that the mirroring system
can quickly react to network traffic changes. To this end,
we present the design and evaluation of SoftTap, a software-
defined packet-level tap based on mirroring capabilities of
commodity OpenFlow switches. By employing switches for
traffic monitoring, our design is able to provide pervasive
visibility covering every flow in the network, while scaling
out as the network expands. SoftTap does not require any
switch modifications and is agnostic to whether the switches
are physical or virtual, as long as they support OpenFlow, and
so, is an ideal solution for virtual cloud environments.

At the core of SoftTap is a mirroring orchestrator that is
implemented as an OpenFlow application. By solving an
optimization model, the orchestrator computes an efficient
mirroring configuration, taking into account the routing layout
of the network, which is then installed on switches via the
OpenFlow protocol. Recall the network example depicted in
Fig. 1. While POS was unable to fully mirror the flows, as
will be discussed later, SoftTap would be able to fully mirror
all flows, while achieving a mirroring rate (at 2.5C) that
is lower than that of POS (at 3C). To achieve this, SoftTap
supports two mirroring strategies, namely port mirroring and
flow mirroring. In port mirroring, as in legacy switches, a
subset of ports on each switch is selected for mirroring. In this
strategy, for monitoring a single flow, all flows passing through
the same port will be mirrored; therefore, it is inevitable that
some traffic will be unnecessarily duplicated. Flow mirroring,
on the other hand, mirrors traffic optimally by selecting a
subset of flows on each switch. While this strategy results
in optimal flow coverage, it is expensive to implement as it
requires installing additional forwarding rules on each switch
(Section II). Our results also indicate that it is slower to com-
pute the optimal mirroring configuration under flow mirroring
strategy compared to port mirroring strategy (Section IV).
Contributions. Our main contributions are:
• We present the design and evaluation of SoftTap, a low-cost

and scalable switch-based software-defined tap for traffic
monitoring in SDNs.

• We formulate the problem of computing the optimal mirror
configuration, supported by commodity OpenFlow switches,
under port and flow mirroring strategies. We prove that the
problem is NP-hard under both strategies and thus, focus on
designing approximation algorithms.

• We design polynomial time approximation algorithms for
the problem under both mirroring strategies, and analytically
bound the approximation ratio of our algorithms.

• We present simulation results to show the performance
and scalability of SoftTap in large networks, and compare
its performance against two existing mirroring approaches,
namely Planck [4] and Stroboscope [6].

• We also present Mininet experiments to show the utility
of SoftTap when used with an intrusion detection system
(IDS) and a VoIP metering application in a realistic net-
work environment. Our experiments show that, compared
to POS-based traffic mirroring approaches, under SoftTap,
IDS achieves up to 25% higher detection recall, while VoIP
metering achieves up to 23% less packet loss.

Due to space limitation, some proofs, technical details and
evaluation results are omitted from this version and can
be found in our technical report [7].

II. SYSTEM DESIGN

In this section, we describe the architecture of SoftTap, and
discuss how it interacts with an OpenFlow network. We also
present the formulation of port and flow mirroring problems
that form the core of the SoftTap orchestrator.

A. SoftTap Design

The high-level architecture of SoftTap is depicted in Fig. 2.
The main components of the system are described below.

OpenFlow Controller. The OpenFlow controller maintains a
state graph of the switches and exposes a northbound API to
the OpenFlow applications, in this case, SoftTap and packet
analyzer apps. The API provides an abstract view of the
network and allows SoftTap to read the state of the switches
and dynamically change their mirroring behavior in response
to traffic monitoring queries from packet analyzer apps or
changes in network traffic (e.g., arrival of a new flow).

Collector Servers. A set of traffic collector servers are con-
nected to network switches. The number of collector servers
depends on the size of the network and the type of filtering/pre-
processing provided by them. When configuring mirroring on
switches, SoftTap communicates with the controller to install
forwarding rules that specify a collector server as the destina-
tion of the mirrored traffic. Collector servers are selected in a
way to achieve load balancing among them.

Analyzer Apps. Analyzer apps, such as IDS, send traffic
monitoring queries to SoftTap, and analyze resulting collected
packet traces. Each analyzer sends monitoring queries that
specify a mirroring strategy to be used and a particular set
of flows to be monitored, or a wildcard query to monitor all
flows. For example, a lightweight controller application using
OpenFlow statistics [8] or predefined rules, submits mirroring
queries, specifying the set of flows to be mirrored. There could
be multiple analyzers that monitor the same traffic. SoftTap
collects all such queries and orchestrates a global mirroring
configuration to efficiently collect traffic traces from switches.
While not considered in our implementation, SoftTap could be
extended to consider different priorities among analyzers (e.g.,
by attaching a suitable utility function to each analyzer [9]).



Fig. 2: High-level architecture of SoftTap-based monitoring system.

Our current design provides only a best-effort monitoring
service and does not distinguish between different queries.

SoftTap App. The SoftTap app listens for flow monitoring
queries from analyzers, invokes the Mirror Optimizer module
to compute an optimal mirror configuration, and then, commu-
nicates with the controller to install appropriate rules on Open-
Flow switches using the Mirror Orchestrator module. Depend-
ing on the underlying mirroring strategy, i.e., port or flow
mirroring, the mirror configuration specifies the subset of ports
or flows to be mirrored on each switch. Mirror Orchestrator
module communicates with the OpenFlow controller to install
forwarding rules that implement the mirroring configuration on
each switch. At a high-level, an OpenFlow rule is composed
of match and action sets, where the former identifies a set
of flows and the latter defines the actions to be applied to the
members of the set. Adding a new rule depends on the specific
OpenFlow controller. In our implementation, in Section IV,
we use ONOS controller, which has a REST API that is used
to install rules by sending JSON-formatted POST requests to
the controller. With port mirroring, only one rule needs to
be installed for each mirrored port on a switch. However,
with flow mirroring, when flows cannot be aggregated, one
rule needs to be installed on the switch for each mirrored
flow. From the implementation perspective, mirroring rules
do not interfere with existing forwarding rules. In OpenFlow
switches the installed rules have to be refreshed periodically.
This allows SoftTap to automatically remove completed flows
from its set of active flows.

B. Mirror Optimization

The Mirror Optimizer module of SoftTap solves an opti-
mization problem to compute the optimal mirror configuration
for a given monitoring query (i.e., set of flows). We define
two problems, namely Selective Port Mirroring (SPM) and
Selective Flow Mirroring (SFM), corresponding to the port and
flow mirroring strategies, respectively. The objective of these
problems is to minimize the maximum mirroring load on any
switch in order to minimize mirroring losses. To reduce the
mirroring configuration computation time, Mirror Optimizer
fixes the configuration of existing flows in the optimization
problem. It is crucial to keep these problems as simple as
possible, as they have to be repeatedly solved at runtime.

Model. The set of flows to be mirrored is denoted by F .
The set of switches that can be used for mirroring is denoted
by W , where each switch w ∈ W has a set of ports Pw.

Let P = ∪w∈WPw denote the set of all switch ports in the
network. We say flow f meets port p ∈ Pw if p is the outgoing
port of f on switch w. Let Pf denote the set of ports that
flow f ∈ F meets on its path in the network. Similarly, let Fp
denote the set of flows that meet port p ∈ P . The traffic rate
of flow f is denoted by rf , while the traffic rate at outgoing
port p is denoted by rp.

Selective Port Mirroring (SPM). Define binary decision
variable xp to indicate whether port p is mirrored (xp = 1)
or not (xp = 0). Then, SPM can be formulated as an Integer
Linear Programming (ILP):

SPM: min λ (1a)

s.t.
∑
p∈Pf

xp ≥ 1, ∀f ∈ F (1b)∑
p∈Pw

xprp ≤ λ, ∀w ∈ W (1c)

xp ∈ {0, 1}. ∀p ∈ P (1d)
Constraint (1b) ensures that every flow is mirrored by at least
one of the ports it meets. Constraint (1c) enforces an upper
bound on the mirroring load of each switch, which is then
minimized across all switches in the objective. Notice that
λ is an optimization variable and can be interpreted as the
maximum mirroring load of any switch in the network. By
introducing λ, we have essentially linearized the objective
min maxw∈W λw, where λw denotes the mirroring load of
switch w.

Theorem 1. Problem SPM is NP-hard.

Proof. The proof is based on reduction from an instance of the
Set Cover problem to an instance of SPM, available in [7].

At first glance, SPM appears to be similar to the Set Cover
problem. However, we prove that SPM is considerably more
general than the Set Cover problem [7]. Additionally, despite
the formulation similarity between SPM and Min-Congestion
Flow Routing (MCFR) problem, they are fundamentally dif-
ferent. Consider ports and switches to be equivalent to paths
and links in MCFR, respectively. Each flow has to select a path
to minimize congestion on links. However, unlike MCFR, in
SPM if two flows use the same mirroring port, the congestion
of the corresponding switch is identical to that when only one
of them selects that port.
Selective Flow Mirroring (SFM). Let zf,w denote the binary
decision variable that indicates if flow f is mirrored on switch
w or not. Define Wf and Fw to be the set of all switches that
flow f meets on its path and the set of all flows that pass
through switch w, respectively. Then, SFM can be formulated
as the following ILP:

SFM: min λ (2a)

s.t.
∑
w∈Wf

zf,w ≥ 1, ∀f ∈ F (2b)∑
f∈Fw

zf,wrf ≤ λ, ∀w ∈ W (2c)

xf,w ∈ {0, 1}. ∀f ∈ F , w ∈ W (2d)
Constraint (2b) ensures that each flow is mirrored by at least
one of the switches in its path, while constraint (2c) enforces
the upper bound λ on the mirroring load of any switch.



Similarly, SFM also resembles the MCFR problem. Here, we
can consider switches to be equivalent to paths. However, we
can see that there is no notion of links in SFM. Consequently,
using existing solutions of MCFR to solve SFM can lead to sub-
optimal solutions as they do not consider the special structure
of the problem. In Section III, we will show that SFM is more
related to the Partition and Machine Scheduling problems,
albeit with rather subtle differences.

Theorem 2. Problem SFM is NP-hard.

Proof. The proof is based on reducing the Partition problem
to SFM and can be found in [7].

III. ALGORITHM DESIGN

It is crucial for the Mirror Optimizer module of SoftTap
to quickly compute a mirror configuration, as long delays
effectively lead to increased mirroring losses. Given that SPM
and SFM are NP-hard, we focus on designing polynomial time
approximation algorithms for these problem.

Notational Convention. Symbols denoting sets are typeset
in calligraphic font, e.g., set Z . The cardinality of set Z is
denoted by Z (i.e., typeset in regular font). Given variable Φz
for z ∈ Z , we define Φz = maxz∈Z Φz .

A. Port Mirroring Algorithm (PMA)

SPM is more general than the Set Cover problem [10], and
therefore, none of the existing solutions for the Set Cover
problem can be directly applied to solve SPM. A standard tech-
nique to solve such ILPs is to relax the integrality constraints,
solve the resulting LP and then round the fractional solution.
However, we design a combinatorial algorithm that avoids
solving any LP in the first place, thus performing substantially
faster than any rounding-based solution.

Algorithm. Our proposed algorithm is presented in Alg. 1.
At the core of the algorithm is a while loop. In each iteration
of the loop, the most cost efficient not-yet-mirrored port is
selected to be mirrored. The most cost efficient port is defined
as a port whose selection increases the objective λ by the
least amount per each newly mirrored flow (see line 3). After
selecting the best port, called p∗, its corresponding decision
variable xp∗ is set to one. Following that, all the flows that
pass through the port p∗ are removed from the set U , which
initially contains all the flows. The while loop continues until
U becomes empty. In line 7, the set of not-yet-mirrored ports
V is updated by deleting p∗. In line 8, the current maximum
mirroring rate is calculated to be used in the next iteration
of the while loop. In order to analyze the performance of the
PMA, in the process of computing the primal solution, we also
build the dual solution of the SPM problem, given as,

Dual: max
∑
f∈F αf (3a)

s.t.
∑
f∈Fp

αf − rpβωp
≤ 0, ∀p ∈ P (3b)∑

w∈W βw ≤ 1, (3c)
where, αf and βw are the dual variables associated with the
constraints (1b) and (1c), respectively. Theorem 3 describes

Alg. 1: Port Mirroring Algorithm (PMA)
procedure PMA(F , W)

1 {xp} ← {0} , λ← 0, U ← F , V ← P
2 while U 6= ∅ do

3 foreach p ∈ V do: cp ←
[rp+

∑
q∈Pωp

xqrq−λ]+

|Fp∩U|
4 p∗ ← argminp∈V{cp}
5 xp∗ ← 1
6 U ← U − Fp∗
7 V ← V − {p∗}
8 λ← maxw∈W

∑
p∈Pw

xprp
9 Compute dual variables as in Theorem 3

how the values for variables αf and βw are computed, as they
affect the approximation ratio achieved by the algorithm..

Theorem 3. PMA runs in O
(
(P f +Pw logP ) ·F

)
and attains

the approximation ratio R, for 1 ≤ R ≤ 1 + Mw∗(P
∗
f − 1),

where, w∗ denotes the switch with the maximum mirroring
load, P

∗
f is the maximum path length of any flow mirrored on

w∗, and Mw∗ is the number of flows mirrored on w∗.

Proof. The proof is divided into two parts, as follows.

Runtime Analysis. Upon selecting a new port, PMA has to
re-compute |Fp ∩U| for all other ports that share a flow with
the selected port. Each flow meets at most P f ports, and thus
the number of these operations is bounded by (P f · F ). In
each iteration, the mirroring load of one switch changes, which
means that the costs of at most Pw ports change. Using a Min-
Heap data structure, updating port costs can be implemented
in O(logP ). Thus, the cost of selecting p∗ in all iterations of
the loop will be bounded by O(F · Pw · logP ).

Approximation Analysis. To analyze the PMA algorithm, we
employ the dual fitting technique. To this end, we compute a
solution for the dual of the SPM problem (given in (3a)) and
then characterize the duality gap to specify the approximation
ratio. Let w∗ denote the switch with the maximum mirroring
load. Consider the following value assignment for variable αf :

αf =

{
rf
R , if f is mirrored on w∗

0, otherwise.
From the above, the objective of the dual problem will be
equal to 1

R of the value of the primal objective. Based on the
weak duality theorem, the objective value of the dual problem
serves as a lower bound for the primal objective value. Let λ?

be the optimum value of the primal problem. We have,∑
p∈Pw∗

xprp

R ≤ λ?, (4)
or, equivalently,

∑
p∈Pw∗

xprp ≤ Rλ?, which indicates that
the approximation ratio of PMA is given by R, as the LHS of
the inequality is the primal objective value. Now, consider the
two cases given below for the lower and upper bounds of the
approximation ratio R.
Lower Bound: In the case that the flows mirrored on w∗ do not
pass any other switch in the network, βw can be calculated as
follows: βw = 1 if w = w∗, and βw = 0 otherwise. Evidently,
constraint (3c) holds since,

∑
w∈W βw = βw∗ = 1.



We can derive the value of R from constraint (3b) as,∑
f∈Fp

αf ≤ rpβw∗ ⇒ rp
R ≤ rpβw∗ , (5)

which results in 1 ≤ R.
Upper Bound: Consider the general case in which the flows
that are mirrored on switch w∗ traverse some other switches.
Let Mw∗ denote the set of these flows. Furthermore, let P

∗
f

denote that maximum path length of any flow in Mw∗ . Note
that, there are at most 1+Mw∗(P

∗
f −1) switches (denoted by

W ′ ) that forward a flow inMw∗ . Additionally, the maximum
path length of any flow traversing switch w∗ is P

∗
f and all

those paths include the common switch w∗. Consequently, βw
can be computed as follows:

βw =

{
1

1+Mw∗ (P
∗
f−1)

, if w ∈ W ′

0, otherwise.
This value assignment satisfies constraint (3c). We can lever-
age constrain (3b) to determine the value of R, for any port p
that mirrors a flow in Mw∗ :∑

f∈Fp∩Mw∗
αf ≤

rp
R
≤ rpβωp

, (6)

or, equivalently,
rp
R
≤ rp

1 +Mw∗(P
∗
f − 1)

, (7)

which results in R ≤ 1 +Mw∗(P
∗
f − 1).

We emphasize that this is the worst-case approximation ratio
of PMA. As will be shown in Section IV, the approximation
ratio achieved by PMA in practice is substantially smaller than
its theoretical upper bound.

B. Flow Mirroring Algorithm (FMA)

At first glance, SFM resembles two well-studied problems:
1) Multiple Knapsack problem where each item can be held
only by a subset of available knapsacks [11], and 2) Scheduling
Unrelated Parallel Machines problem (SUPM), where each job
can be assigned to only a subset of available machines [12].
Reduction to [11] can give a 2-approximation algorithm for
the number of mirrored flows, but it can not be used to cover
all flows with a bounded value for λ. Under the assumption
that processing time of each job on a machine is bounded by
the optimal value of the problem, the technique in [12] can
be used to design a 2-approximation algorithm for SFM, while
mirroring all flows. However, to ensure that job assignment
restrictions are respected (i.e., each flow is mirrored from
a switch that it traverses), we have to set the processing
time of those jobs that can not be assigned to a machine
to ∞, which violates the assumption needed to establish
the proof of the approximation ratio presented in [12]. A
general variation of SUPM has been considered in [13] (with
assignment restrictions), but their approximation ratio is a
function of the maximum and minimum job processing times
(i.e., traffic rates) which can be arbitrarily larger than 2.
Therefore, in this work, we design an algorithm based on
the bisection method, which repeatedly employs an existing
result from machine scheduling literature, to find a solution

Alg. 2: Flow Mirroring Algorithm (FMA)
1 procedure FMA(W,F , ε)
2 λu ← maxw∈W

∑
f∈Fw

rf , λ` ←
∑

f∈F rf
|W|

3 if λ` < 1 then
4 foreach f ∈ F do: rf ←

rf
λ`

5 λm ← λu
6 while λu − λ` > ε

2
do

7 J , M, {tj,m} ← ToSUPM(F ,W, λm + ε)
8 {yj,m} ← SolveSUPM(λm,J , M, {tj,m})
9 if

∑
m∈M yj,m ≥ 1 : ∀j ∈ J then

10 λu ← λm
11 {zf,w} ← {yj,m} /* best feasible solution so far */
12 else
13 λ` ← λm
14 λm ← λ`+λu

2
15 return {zf,w}

w1 w2

w3

f1 f2 f3
f3

f2

f1

w3

w2

w1 rf1
rf2
rf3

λm + ε

J obs Machines

Fig. 3: ToSUPM: Converting an instance of SFM to an instance of
SUPM. Each flow f can be considered as a job and each switch w as
a machine. If flow f traverses switch w, tf,w is set to the rate of f .
Otherwise, tf,w is set to λm + ε, which is updated in each iteration.

for the SFM problem. We show that our algorithm attains the
approximate ratio of 2 + ε for any ε > 0.
Algorithm. The FMA algorithm is described in Alg. 2. It gets
an instance of SFM and a threshold ε, which controls the
runtime-optimality trade-off, as quantified in Theorem 4. The
algorithm starts by computing lower and upper bounds for λ.
The upper-bound, λu, is computed as the maximum traffic at
any switch. The lower-bound, λ`, is set to the total traffic that
should be mirrored divided by the number of switches. On
line 3, the algorithm checks if λ` is less than 1. If so, all flow
rates are scaled by the factor 1

λ`
. This, ensures that the optimal

solution is also greater than 1, which is crucial for proving the
approximation ratio of the algorithm. This scaling does not
change the solution, because every flow rate is scaled by the
same factor. Then, λu and λ` are updated in the while loop by
the bisection method until their difference becomes less than
or equal to ε

2 . In each iteration of the while loop, the method
ToSUPM is invoked to convert the current instance of SFM to
an instance of SUPM, where tf,w is set to λm+ε if flow f does
not traverse switch w (see Fig. 3). At this point, SolveSUPM
is invoked to check whether or not a machine schedule with
makespan λm exists (using the technique developed in [14]). If
a schedule exists, SolveSUPM constructs a machine schedule
with makespan of at most 2λm.

Theorem 4. FMA runs in O(W 2F 3 logF · log(WF/ε)) and
attains the approximation ratio 2 + ε.

Proof. The proof is divided into two parts, as follows:
Runtime Analysis. The main loop iterates at most log 2∆

ε
times, where, we have,

∆ = max
w∈W

∑
f∈Fw

rf −
1

W

∑
f∈F

rf ≤
∑
w∈W

∑
f∈Fw

rf = O(WF ) (8)



In each iteration of the loop, ToSUPM takes O(WF ) time to
create the set of processing times {tj,m}, while SolveSUPM
takes T = O(WF 2 logF ) [14] time.
Approximation Analysis. Using the update mechanism in
lines 9 to 13, we ensure that the objective remains between λu
and λ`. Thus, at the end of the while loop, the distance from
the optimal is at most ε2 . Let λ and λFMA denote the objective
achieved by the optimal solution and FMA, respectively. By
using SolveSUPM, we know that the objective in the last
iteration is at most 2(λ+ ε

2 ), which yields,
λFMA ≤ 2(λ+ ε/2) ≤ 2λ+ ελ = λ(2 + ε), (9)

where, the second inequality follows from the fact that λ > 1,
which is guaranteed by the scaling on lines 3 to 4.

IV. EVALUATIONS

Methodology. We evaluate our system using simulation and
Mininet experiments. Simulation experiments are available
in [10]. Simulation experiments show the performance and
scalability of PMA and FMA (ε = 0.02), through different per-
formance metrics. Mininet experiments are conducted to show
real-world performance of SoftTap when used in conjunction
with realistic applications, namely IDS and VoIP metering.
Algorithms. In addition to PMA and FMA, we have also
implemented the following algorithms for comparison:
• OPT: The optimal solution of ILPs obtained by Gurobi

optimizer. Note, we can obtain the optimal solution only
for small instances of the problems.

• Planck [4]: A POS-based solution, alternative to PMA, which
mirrors all ports of a switch to a mirroring port.

• KPS [6]: An alternative to FMA, presented in Stroboscope [6].
It mirrors a flow on a minimum number of switches along
its path to confirm the flow’s path compliance.

A. Simulation Experiments

Setup. In our simulations, we use two network topologies:
1) 12-pod FatTree topology with 180 switches and 72 hosts,
2) ISP topology, presented in [15], with 315 switches, 315
hosts and 1944 links. We generate traffic flows between
randomly chosen source-destination pairs, with the flow rates
randomly selected from a uniform distribution in the interval
[0.6, 2.0] Mbps. The reported results are averaged over 10 runs.
Simulations are implemented in Python. All computations are
carried out on a computer with an Intel® CoreTM i5-7360U
processor at 2.3 GHz and 8 GB of RAM.
Metrics. We report the following performance metrics:
• Maximum Switch Load: The maximum mirroring load of

any switch in the network.
• Runtime: The amount of time it takes to compute the

mirroring configuration.
• Coverage Percentage: The percentage of flows that are fully

mirrored by at least one switch.
• Coverage Cost: The network mirroring load divided by the

number of flows that are fully mirrored.
These metrics are reported for a varying number of flows in
traffic monitoring queries, denoted by Query Size.
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Fig. 4: Switch load analysis (FatTree topology).
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Fig. 5: Switch load analysis (ISP topology).
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Fig. 6: Scalability analysis with different query sizes.
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Fig. 7: Coverage analysis of port mirroring algorithms.

Switch Load Analysis. Fig. 4 and Fig. 5 show the maxi-
mum switch load of different algorithms on the FatTree and
ISP topologies, respectively. Specifically, from Fig. 4(a) and
Fig. 5(a) we can observe two points. First, the approximation
ratio of PMA is better than the calculated theoretical ratio. In
particular, on the ISP topology, the maximum switch load
under PMA is on average 3.1 times the optimal’s. Second,
regardless of the topology, Planck has the worst performance.
Fig. 4(b) and Fig. 5(b) show the maximum switch load of
flow mirroring algorithms on the FatTree and ISP topologies,
respectively. We see that the approximation ratio of FMA is



TABLE I: Runtime (sec.) on the FatTree topology.

Mirroring
Strategy

Query Size
120 160 200 240 280

Port PMA 0.004 0.006 0.005 0.012 0.030
Optimal 0.036 0.040 0.133 41.29 315.3

Flow FMA 0.234 0.434 0.690 1.045 1.743
Optimal 0.019 0.040 10.51 120.6 326.1

significantly better than the (2+ε) theoretical ratio. In addition,
regardless of the topology, KPS has the worst performance.
Runtime Analysis. Table I shows the comparison of PMA,
FMA and the optimal solutions runtime. For both strategies, the
optimal algorithms’ runtime increases exponentially, making
them impractical for any realistically sized network. Observe,
when the query size is less than 180, the optimal’s runtime is
less than FMA’s. As the number of flows increases from 180
to 280 (i.e., less than a factor of 2), the optimal’s runtime
increases to more than 300 sec, 150 times the FMA’s.
Scalability Analysis. Note, as we consider large problem
instances, we omit the optimal solutions. Additionally, we only
present the results on the FatTree topology, as the results on the
ISP topology show similar trends. The results are presented in
Fig. 6. A few observations are in order. First, PMA outperforms
Planck regardless of query size. Specifically, PMA’s maximum
switch load is on average 45% less than Planck’s. Additionally,
PMA takes less than 0.95 sec to solve a mirroring request
with 90K flows. Second, from Fig. 6(b), FMA significantly
outperforms the KPS algorithm in terms of the maximum
switch load. In particular, the maximum switch load of FMA
is on average 92% lower than that of KPS.
Coverage Analysis. Similar to the scalability analysis, we
only present the results for the FatTree topology. For this
set of simulations, we assume that switches have a mirroring
capacity of 60 Mbps. Fig. 7 shows the comparison between
PMA and Planck in terms of coverage percentage and coverage
cost. The first observation is that the coverage percentage of
Planck is less than the PMA’s. Specifically, for more than 4500
flows, Planck has nearly 0% coverage, while PMA has more
than 45%. The second observation is that Planck has a higher
coverage cost compared to PMA, despite its lower coverage
percentage (e.g., Planck has at least three orders of magnitude
greater coverage cost than PMA for 4500 flows). This is due
to Planck, redundantly, mirroring all ports on all switches.

B. Mininet Experiments

To study SoftTap performance in realistic network settings,
we built an IDS and a VoIP metering application on top
of SoftTap and studied their performance in Mininet. The
IDS uses SoftTap to monitor network traffic for the Zorro
malware [16]. The VoIP metering application measures the per
host bandwidth consumption of VoIP connections. Note, due
to space limitations, we only present PMA’s Mininet results.
Applications. We implement the following applications:
• IDS Application: An SDN query-generator module instructs

SoftTap to mirror suspicious flows (i.e., Telnet flows on port
23) to a collector node. On the collector node, a DPI-
based IDS analyzes the packet payloads and classifies them
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Fig. 8: Mininet measurement
results for IDS application.
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Fig. 9: Mininet measurement
results for VoIP application.

as contaminated by Zorro malware [16] (i.e., containing
“Zorro” string) or benign.

• VoIP Application: An SDN query-generator module instructs
SoftTap to mirror all VoIP traffic to a collector node, where
a VoIP metering application analyzes each host’s traffic to
determine VoIP usage, and, if necessary, enforces a specific
per host bandwidth quota.

Setup. For both application experiments, we use a 2-pod
FatTree topology, consisting of 8 hosts and 10 OpenFlow 1.3
switches. We configure ONOS OpenFlow controller as our
SDN controller. We generate UDP traffic between randomly
selected hosts. The capacity of all mirroring ports is set to be
10 Mbps, chosen to decrease the runtime of the experiments. In
Mininet, SoftTap is using PMA as an application on the ONOS
controller. In between the runs we increase the query sizes
by 5, going from 35 to 55. Finally, the reported results are
averaged over 5 runs.

IDS Application Experiments. In this experiment, we gener-
ate Telnet traffic, on port 23, containing traces of Zorro attack.
The traffic rate is randomly selected between [25.5, 28.1] KB/s.
Each flow consists of a random number of packets between 20
and 22, each of size 1278 B. [4− 5]% of the packets contain
“Zorro” string to represent malicious traffic. This is slightly



higher than what is assumed in the literature (i.e., 3% [17] for
internet traffic), to increase the probability of observing losses
of the Zorro packets when comparing the two algorithms. We
use the following metrics:
• Trace Utility: Number of mirrored Zorro packets divided by

the total number of mirrored packets.
• Detection Recall: Number of mirrored Zorro packets divided

by the total number of transmitted Zorro packets.
• Mirroring Overhead: Number of mirrored packets divided

by the total number of packets transmitted by mirrored
flows. Recall that in port mirroring, some packets are un-
necessarily mirrored due to port-level mirroring granularity.

IDS Application Results. Fig. 8 shows the measurement
results for the IDS application. Specifically, Fig. 8(a) depicts
the trace utility of both PMA and Planck. A few observations
are in order. First, for all query sizes, the trace utility of PMA
is more than Planck. This suggests that Planck collects more
redundant packets per each Zorro packet collected. Second,
trace utility has an increasing slope for both algorithms for
query sizes below 50. The reason is that only a small portion
of the total traffic contains the string “Zorro”. Therefore, as
the query sizes grow, the mirroring losses increase, with most
of the losses occurring for non-Zorro packets. This increase in
trace utility is observable to a certain mirroring saturation point
(e.g., 50 for Planck), after which more losses occur for Zorro
packets, as can be seen at 55 flows. This is also observable in
Planck’s detection recall for a query size of 55 flows.

Fig. 8(b) shows the detection recall of both Planck and
PMA. We can observe that, while for small query sizes both
algorithms mirror most of the Zorro packets, as the query sizes
increase Planck’s detection recall drops to nearly 71%, while
PMA mirrors 96% of the Zorro packets. This suggests that due
to Planck mirroring more redundant packets, the packets that
are of interest, i.e., Zorro packets, get lost, because of the
capacity limitations on the mirroring ports.

Fig. 8(c) shows the mirroring overhead of both algorithms.
As we can observe, the difference between Planck and PMA
is larger for smaller query sizes (i.e., in case of 35 queries,
Planck is 20% higher than PMA). However, as more flows
are introduced to the network this difference diminishes. The
reason is that, since for small queries PMA only mirrors small
number of ports, the overhead of Planck is substantially higher
than PMA. However, as the query sizes grow, PMA introduces
more ports to be mirrored and as a result, converges to Planck.

VoIP Application Experiments. To represent the VoIP traffic
in Mininet, we generate UDP traffic running on port 5060. The
traffic rate is randomly selected between [38.3, 40.8] KB/s.
Each flow consists of randomly chosen 30− 32 packets, each
of size 1278 B. We use the following performance metrics:
• Mirroring Loss: The percentage of packets that are not being

mirrored on any of the switches.
• Mirroring Redundancy: Number of redundant packets di-

vided by the total number of mirrored packets.
• Mirroring Overhead: The number of mirrored packets di-

vided by the total number of mirrored flow packets.

VoIP Application Results. Fig. 9 shows the measurement
results of the VoIP metering application. In particular, Fig. 9(a)
shows the mirroring loss for each algorithm. We can observe
that, since for small query sizes most mirroring ports are not
saturated, the difference in mirroring loss between the two
algorithms is small. However, as the query sizes grow, the
difference in mirroring loss starts to grow (e.g., for query size
55, the difference becomes 23%). These results suggest that,
similar to the IDS results, PMA achieves better flow coverage
by reducing the mirroring redundancy. From Fig. 9(b) we can
observe that the mirroring redundancy of both algorithms de-
creases as the query size increases. This behaviour is expected
since for smaller queries, the mirroring port’s capacities are
not fully saturated, and as such, some of the flows are mirrored
on more than one switch. Additionally, we can observe that,
for all query sizes, the mirroring redundancy of PMA is smaller
than that of Planck. In particular, for a query size of 55, PMA
has a redundancy of nearly 0, with 23% less packet loss than
Planck. Fig. 9(c) shows the mirroring overhead, which exhibits
the same behavior as in the IDS application.

V. DISCUSSION

While SoftTap is able to provide pervasive visibility into
an OpenFlow network, the current design has some lim-
itations. First, SoftTap targets applications that require full
packet capture and processing, which generally require a single
copy of each packet to cope with the processing overhead.
Examples of such applications include traffic classification
and security functions, e.g., intrusion detection and malware
analysis. This means that SoftTap is not targeting applications
that require monitoring traffic over multiple switches. Second,
current OpenFlow switches do not support partial packet
mirroring (e.g., mirroring just the packet header) without mod-
ifications [18]. There are, however, emerging programmable
switches (e.g., P4 switches [19]) that allow such granular
mirroring, although at this time, their cost and availability are
limiting their adoption. Third, for some applications, such as
network forensics, there are legal requirements on the collected
traffic traces (e.g., no loss is tolerated). If SoftTap is used for
such applications, the set of flows should be chosen judiciously
to avoid any losses. Finally, depending on the routing structure
of the network, SFM may require installing additional flow
rules in the limited switch flow tables. While this may affect
flow table occupancy, most commercial OpenFlow switches
(e.g., HP switches) support a list of actions per rule. This fea-
ture can be utilized to minimize the SFM flow table overhead
by including forwarding and mirroring actions in a single rule.

VI. RELATED WORKS

We briefly review existing works on network monitoring
that use OpenFlow or are inspired by such.

Flow Statistics Collection. Several works use OpenFlow
protocol built-in statistics collection mechanisms to monitor
the network [20]–[22]. Specifically, the works [20] and [21]
minimize the TCAM usage, while the work [22] focuses on
reducing the statistics collection time. Inspired by OpenFlow,



the works [23] and [24] use the hash values of flow identifiers
to collect per-flow statistics in commodity switches. While
these works are limited to flow statistics collection, our work
targets applications that require the packets’ metadata or
payload information.
Traffic Sampling. In traffic sampling, switches are config-
ured to forward 1-in-N packets they receive, to a collector.
Currently, OpenFlow specification doesn’t support sampling.
Therefore, several works focus on designing OpenFlow sam-
pling modules. The work [25] designs such modules to extract
flow statistics; while extracting packet payloads using sam-
pling is studied in [26] and [27]. In particular, the work [26]
assigns sampling time slots to switches based on historical
and active flows and the work [27] allows the controller to
determine the sampling rate of each flow.
Traffic Mirroring. Unlike traffic sampling, traffic mirroring
provides a full picture of the network. An example of a
network monitoring system, based on traffic mirroring, is
presented in [4], where the authors demonstrate that port
mirroring can be used to extract global network information
on a millisecond time scale. Their approach, however, does
not make use of SDN capabilities and is solely based on
POS with no attempt to optimize flow coverage or mirroring
traffic. Examples of per-flow mirroring systems are presented
in [6] and [28]. Specifically, in [6] and [28], different from
our work, the goal is to mirror a flow on multiple switches
in its path, with the former ensuring that the flow follows
its expected path and the latter targeting common faults in
datacenter networks (e.g., silent packet drops). Akin to flow
mirroring, the work [29] proposes a virtual tap to duplicate the
traffic between OpenStack based VMs, using the OpenFlow
group table feature. The proposed system assumes a pre-
computed configuration of the traffic of interest. In contrast, a
major contribution of our work is efficiently computing such
configurations without VM environment assumptions.

VII. CONCLUSION

In this paper, we designed and evaluated SoftTap, a traf-
fic monitoring system that utilizes port and flow mirroring
capabilities of commodity OpenFlow switches to create a
distributed network tap. SoftTap is built upon efficient and
fast algorithms for computing mirroring configurations of
switches, maximizing the flow coverage. To demonstrate its
applicability, we implemented a real-world IDS and a VoIP
metering application on top of SoftTap in ONOS controller. Our
Mininet experiments show that the detection rate of IDS and
the accuracy of metering application were increased by 25%
and 23%, respectively. A potential future work is extending
SoftTap to programmable switches to increase the flexibility of
the system by capturing partial packet payloads or headers.
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