
Proactive Service Orchestration with Deadline
Minh Nguyen, Mahdi Dolati and Majid Ghaderi

Department of Computer Science, University of Calgary

Abstract—In network function virtualization, network services
are implemented as service function chains (SFCs). An extensive
body of work exists on SFC orchestration, although a vast majority
of them consider reactive algorithms that reprovision resources in
response to service demand fluctuations. As such, they result in
unpredictable and often significant delays that negatively affect the
performance of delay sensitive SFCs. In this paper, we consider
proactive SFC orchestration and develop exact and approximate
algorithms that perform well under general service demands
without requiring frequent resource reprovisioning. Specifically,
we first formulate SFC orchestration with deadline as a mixed
integer non-linear program and show that it can be reduced to a
second-order cone program, which can be solved using standard
optimization software, albeit for small problem instances. We then
design an approximate algorithm for large problem instances by
applying iterative rounding and variable fixing techniques to the
exact problem formulation. We present extensive model-driven
simulation results to study the behavior of our algorithms in
small and large problem instances and demonstrate their ability to
achieve any desired provisioning-reprovisioning trade-off. We also
compare the performance of our algorithms against two recently
proposed algorithms called FFCA [1] and MaxZ [2].

I. INTRODUCTION

A. Background and Motivation
Network function virtualization (NFV) [3] is an emerging

paradigm, which enables rapid and scalable deployment of net-
work services. In this paradigm, network functions, traditionally
performed by specialized hardware appliances, are softwarized
and deployed on an NFV infrastructure (NFVI). Typically, these
software-based network functions, commonly referred to as
virtual network functions (VNFs), are installed and run on virtual
machines (VMs) hosted in an enterprise cloud.

To realize the benefits of NFV, several technical challenges
need to be addressed. One important challenge is the orchestra-
tion of service function chains (SFCs) [4]. Each SFC specifies
an ordered sequence of VNFs that user traffic has to traverse
to realize a particular network service. SFC orchestration refers
to the joint problem of deciding how many VNF instances to
use, where in the NFVI to deploy these instances and how to
route traffic between them to meet certain objectives. A desirable
objective is to minimize the operational cost of orchestrating the
SFCs in the NFVI by provisioning just enough resources (e.g.,
physical servers) to satisfy service demands according to pre-
specified service level agreements (SLAs).

Optimal provisioning of cloud resources for SFC orchestra-
tion, nevertheless, is not trivial. The amount of resources a
network service requires is determined based on the type of
VNFs involved and the level of demand (e.g., rate of traffic)
for that service, which is only known at runtime. In particular,
a key challenge in SFC orchestration is that service demands
are dynamic and fluctuate over time. Thus, an orchestration
algorithm has to either dynamically react to changes in demand
by reprovisioning resources, or proactively provision the right

amount of resources in advance to avoid the need for repro-
visioning resources on the spot. While reactive algorithms are
generally simpler to design, they result in unpredictable and
often significant delays (see, e.g., [5]) as they need to reprovision
resources on-demand, e.g., migrate virtual machines or activate
new servers. Most VNF operations are strictly delay sensitive and
run under stringent delay requirements. Any disruption to VNF
operations results in poor performance and quality of service,
and has to be avoided.

In this paper, we consider proactive SFC orchestration and
develop exact and approximate orchestration algorithms that
perform well under general service demands without requiring
frequent resource reprovisioning.

B. Related Work
Prior works that are most relevant to ours are reviewed below,

where proactive SFC orchestration algorithms are divided into
online and robust algorithms.
Reactive algorithms. Extensive surveys on reactive SFC orches-
tration algorithms are presented in [6] and [7]. The common
theme in these algorithms is the deterministic modeling of
service demands in an offline setting during the service pro-
visioning. Typically, the nominal or worst-case service demands
are assumed to devise an initial orchestration model. Later, at
run-time, VNFs are dynamically reprovisioned (e.g., scaled up
and down) in response to demand fluctuations to meet the pre-
specified service requirements. As discussed earlier, while this
approach is suitable for delay-tolerant services, it results in poor
performance for delay-sensitive services.
Online algorithms. The key feature of online algorithms is the
assumption that no information about future service demands is
available, yet the orchestration should be conducted such that
any possible future service demands can be satisfied without
reprovisioning. Since no information about future demands is
assumed, the worst-case performance of online algorithms (such
as those presented in [8] and [9]) could be particularly bad.
On the other hand, when reasonably accurate predictions about
future demands could be obtained, techniques from online con-
vex optimization can be used to design more efficient online
algorithms [10–12]. However, if the predictions are not accurate,
these algorithms result in inefficient orchestrations.
Robust algorithms. While it is not realistic to assume that
full knowledge of future service demands is available a priori,
often in practice partial knowledge about demands could be
obtained as part of SLAs, application requirements, admission
control policies, or past history. Such information, however
noisy or incomplete, if incorporated in SFC orchestration, results
in more efficient provisioning decisions. To this end, a few
works have studied SFC orchestration with demand uncertainty
(e.g., [1], [13–15]). Specifically, the work in [13] formulates SFC
orchestration as a robust optimization problem with the objective

2

of maximizing the NFVI operator’s profit. More relevant to our
work is [14], in which the authors propose a robust orchestration
model that aims at minimizing the energy consumption of the
NFVI. This model, however, is computationally expensive and
can only be solved for small problem instances. To speed up
solving this model, a heuristic approach is presented in [15],
in which the placement, routing and resource allocation sub-
problems are solved separately. While the proposed heuristic can
be applied to large problem instances, it results in sub-optimal
solutions as it considers orchestration sub-problems separately.
In a follow-up work, the authors consider SFC orchestration
in 5G virtualized infrastructures, and model the problem as
a robust binary optimization problem, which can be solved
efficiently [1]. This work considers service delay but in a rather
simplified model, where a deadline is considered for each pair
of consecutive VNFs in a hop-by-hop manner and only the
propagation delay is taken into account. In our work, we consider
the end-to-end delay over the entire SFC, and consider not only
the fixed propagation delays but also load-dependent queueing
and processing delays. As we show in Section III, considering
such a detailed delay model changes the structure of the SFC
orchestration problem by introducing non-linear constraints into
the formulation. This requires entirely different set of techniques
to model and solve the SFC orchestration problem.
C. Our Work

We consider the SFC orchestration problem with the objective
of minimizing the energy consumption of the NFVI. Specifically,
given a list of SFCs representing the requested services and an
NFVI consisting of servers and switches, our objective is to
optimally deploy the VNFs required to provide these services
such that the energy consumed by the NFVI is minimized
while meeting a deadline for each service. To compute energy
consumption, we consider a detailed model, which accounts for
the energy consumed by servers and switches, and includes
both load-dependent and constant energy consumption of the
infrastructure elements. To account for deadlines, we consider an
end-to-end delay model that considers load-dependent processing
and queuing delays as well as constant propagation delays across
the entire SFC chains.

To solve the SFC orchestration problem, we develop exact
and approximate algorithms that perform well under general
service demands without requiring frequent reprovisioning. We
assume that some knowledge about future traffic demands, i.e.,
the nominal traffic demand and maximum demand deviation, is
available and formulate the problem as a robust optimization
problem. A key feature of our algorithms is that they can
achieve any desired trade-off between the proactivity of the
computed orchestration and its energy cost. They can compute
SFC orchestrations that minimize the NFVI energy cost but
cause frequent reprovisioning at run-time. Alternatively, they
can compute orchestrations that avoid run-time reprovisioning
completely at the cost of increased NFVI energy cost.

Our main contributions in this paper are summarized below:
• We formulate the proactive SFC orchestration with dead-

line as a mixed-integer non-linear program. Then, we
show that the problem can be transformed into a mixed-
integer second-order cone program (MISOCP), which can
be solved for small problem instances.

• To tackle the computational complexity of the MISOCP
formulation, we apply several techniques including iterative
rounding and variable fixing to the exact formulation, which
results in an approximate model that can be efficiently
solved for large problem instances.

• We present extensive model-driven simulation results to
study the behavior of our algorithms in small and large
problem instances and demonstrate their ability to achieve
any desired proactivity-cost trade-off. We also compare
our approximate algorithm against two recently proposed
algorithms, namely the First Fit Clustering Allocation
(FFCA) [1] and MaxZ [2] algorithms.

D. Paper Organization

In Section II, we describe different components of our model.
The mathematical formulation is presented in Section III. Sec-
tions IV and V present the exact and approximate algorithms,
respectively. The simulation results are shown in Section VI. Fi-
nally, Section VII concludes the paper. Due to space limitation,
some technical details and derivations are omitted from this
version and can be found (online) in [16].

II. SYSTEM MODEL

In this section, we discuss our assumptions and describe the
models for various components of the NFVI.

A. NFVI Model

The substrate network is modeled as a directed graph Gphy =
(N,E), where N and E, respectively, are the sets of physical
nodes and links. A physical node can either be a switch or a
server. We have N = Nserver ∪Nswitch, in which Nserver and
Nswitch denote the sets of servers and switches, respectively.
Also, the set of all VNFs is denoted by F .

Each server is capable of hosting any VNF as long as it
has sufficient capacity. The processing capacity of server n is
determined by the number of available CPU cores Mn and the
processing capacity of each core ccpun . Given the processing rate
requirement rprocf,n for VNF f at server n, we allocate mf,n CPU
cores to the VM that runs the function f . The allocated CPU
cores to the VM should provide enough processing capacity cprocf,n

to meet the processing rate requirement rprocf,n . Unlike previous
works which assume that the processing rate requirement is fixed
and solely dependent on the type of VNF (e.g., [1], [8], [11], [13–
15]), the processing rate requirement in our model is a function
of the incoming traffic rate. We also assume that all links in the
substrate network are full-duplex, and model each physical link
as two equal-capacity directed links in opposite directions. We
let rbwde denote the aggregate rate of traffic on link e, which
should not be greater than the link capacity cbwde .
B. VNF Model

The NFVI operator holds a set of VNF images corresponding
to the offered services. The VNF images are deployed on the
servers in the NFVI to provide a set of services. We define the
binary variable if,n to indicate if server n hosts an instance
of VNF f . Multiple instances of VNF f can be deployed on
different servers to speed up the processing, but at most Kf

servers can each host an instance of f at a time. The value of
Kf is determined by the number of licenses that the network

3

operator has acquired for VNF f . Each VNF f has a processing
coefficient σf , ranging between 0 and 1, that indicates its
processing complexity. Simple VNFs such as Firewall and NAT,
which do not require much processing, have their σf close to
one. On the other hand, computationally more demanding VNFs
such as DPI and WAN optimizer have smaller values of σf .
C. SFC Model

The set of SFCs to be orchestrated in the NFVI is denoted
by U . Each SFC S is modelled as a virtual network represented
by a directed graph Gvirt = (SV , SJ), where SV and SJ are,
respectively, the sets of virtual nodes and links. The virtual nodes
include the ingress/egress nodes as well as the required VNFs
(see Fig. 3(a) for example SFCs). We use lower case letter j to
denote an arbitrary virtual link and v to represent an arbitrary
virtual node. While multiple instances of each VNF are deployed
on different servers, we assume that, with a proper scheduling
mechanism (e.g., [17]), multiple SFCs can share a VNF instance
deployed on a server.

The binary variable av,n is used to indicate whether virtual
node v is mapped to physical node n. Also, define the variable
lj,e to denote if physical link e is responsible for routing the
traffic of virtual link j. Each virtual link j has a traffic demand
rbwdj . In this work, we assume single-path routing, so each virtual
link is mapped to a set of physical links that together compose
a path, connecting the physical nodes to where the two ends of
the virtual link are mapped. For each virtual node v, we define
the set of all substrate nodes where v can be mapped to as Nv .
There are several uses of the set Nv . First, it gives a convenient
way to restrict the placement of ingress and egress nodes to
certain locations in the substrate network. Second, it allows the
NFVI operator to narrow the possible locations of each VNF to
a specific set of servers. This may be done due to security or
administrative requirements associated with each VNF.
D. Demand Fluctuation Model

Each future service demand rbwdj is assumed to lie within
an interval [r̄bwdj − r̂bwdj , r̄bwdj + r̂bwdj], where r̄bwdj and r̂bwdj

denote the nominal value of rbwdj and its maximum deviation,
respectively. To control the level of proactivity of the model,
we assume that at most Γ demands can simultaneously deviate
maximally from their nominal values, i.e.,∑

j

∣∣∣∣ rbwd
j − r̄bwd

j

r̂bwd
j

∣∣∣∣ ≤ Γ. (1)

A small Γ results in a less proactive solution that may lead to
frequent reprovisioning at run-time. By setting a large value
for Γ, relative to the number of traffic demands, run-time
reprovisioning can be completely avoided at the cost of more
energy consumption.
E. Energy Model

The energy consumption of both servers and switches is
modelled by a linear function of their utilization [18]. While
the switches are always active, we assume that the servers can
be turned off if they do not host any VNF. The on/off status
of server n is indicated by the binary variable on. Let P activen

denote the power consumption of an active device in idle state.
Then, the power consumption of device n, denoted by Pn, scales
proportionally with its resource utilization. Let Pmaxn denote the
maximum power consumption of device n at full utilization.

F. Delay Model

The end-to-end delay for each SFC is computed as the sum of
processing, queueing and propagation delays over all of servers
and links allocated to it. The processing delay of each VNF
instance is approximated by the response time of an M/G/1
processor sharing queue. The processing delay dprocf,n of VNF f
at server n is determined by the allocated processing capacity
cprocf,n and its processing rate requirement rprocf,n . The processing
capacity is dependent on the number of CPU cores allocated
to the VM that runs the VNF instance, while the processing
rate requirement is dependent on the incoming traffic rate. Each
physical link e is associated with a propagation delay dprpe and
a queueing delay dbwde . The propagation delay is always fixed.
The queueing delay, on the other hand, is a function of the traffic
load on the link. We estimate the queueing delay by the response
time of an M/M/1 queue.

III. PROBLEM FORMULATION

In this section, we formulate SFC orchestration as a con-
strained optimization problem. For clarity, we group the con-
straints into several groups as follows.

A. Resource Provisioning

In our model, the processing capacity required to deploy a
VNF instance is not known a priori and can only be determined
at the time of placement by summing the traffic demands of all
service flows to be served by that VNF instance. Specifically,
the minimum processing rate rprocf,n required to deploy VNF f
on server n is computed as follows:

r
proc
f,n =

∑
S∈U

∑
j∈SJ

t(j.dest)=f

r
bwd
j · aj.dest,n, ∀f ∈ F, ∀n ∈ Nserver, (2)

where the function t(j.dest) indicates the VNF that is required
by virutal node j.dest. Only those service flows (i.e., virtual
links) that destined to VNF f and deployed on server n are
considered in the calculation of rprocf,n . Given this processing re-
quirement, the allocated processing capacity cprocf,n is determined
by the following constraints:

c
proc
f,n = σf ·mf,n · ccpun , ∀f ∈ F, ∀n ∈ Nserver, (3)

r
proc
f,n ≤ cprocf,n , ∀f ∈ F, ∀n ∈ Nserver. (4)

These constraints state that CPU cores allocated to run a VNF
should provide enough processing capacity for it to at least meet
its minimum processing requirement rprocf,n ; though more CPU
cores can be allocated to each VNF to speed up the processing,
ensuring that the deadline for an SFC is met. However, the total
number of allocated CPU cores must be less than the number of
available CPU cores at the server:∑

f∈F

mf,n ≤Mn, ∀n ∈ Nserver. (5)

B. Delay Requirement

Let the binary variable we indicate if there is any traffic load
on link e. The queueing delay dbwde at link e is given by:

d
bwd
e =

we

cbwd
e − rbwd

e

, ∀e ∈ E, (6)

we ≥ lj,e, ∀S ∈ U, ∀j ∈ SJ , ∀e ∈ E. (7)

4

When there is no traffic load, the queueing delay is 0. The
processing delay dprocf,n for VNF f on server n is given by:

d
proc
f,n =

if,n

cprocf,n − r
proc
f,n

, ∀n ∈ Nserver. (8)

The binary variable if,n indicates whether VNF f is hosted on
server n. For a VNF that is not hosted on a server, its processing
delay on that server is 0. The end-to-end delay for each SFC S
must satisfy its deadline denoted by θS :∑

j∈SJ

∑
e∈E

lj,e(d
bwd
e + d

prop
e) +

∑
v∈Sv

∑
n∈Nserver

∑
f∈F

t(v)=f

av,nd
proc
f,n ≤ θS , ∀S ∈ U.

(9)

C. VNF Placement

The optimization model chooses the optimal number of in-
stances of each VNF to deploy as well as where to deploy them.
However, the total number of deployed instances for a VNF
should be no more than the number of licenses available:∑

n∈Nserver

if,n ≤ Kf , ∀f ∈ F, (10)

where Kf denotes the number of licenses for VNF f . Except for
the ingress and egress nodes, each virtual node in an SFC graph
denotes a VNF required for that service. Each of these nodes
must be mapped to a server, where the corresponding VNF is
deployed, as enforced by the constraint:

av,n ≤ if,n,

∀S ∈ U, ∀v ∈ SV , ∀n ∈ Nserver, ∀f ∈ F : t(v) = f.
(11)

Each virtual node v must be mapped to a substrate node in its
set of possible locations Nv , as captured by:∑

n∈Nv

av,n = 1, ∀S ∈ U, ∀v ∈ SV , (12)

av,n = 0, ∀S ∈ U, ∀v ∈ SV , ∀n ∈ N : n /∈ Nv. (13)

D. Flow Routing

The problem of selecting paths for routing traffic between
the deployed VNFs can be modelled as a single-path multi-
commodity flow problem, which has a standard set of constraints.
First, we need to ensure that the aggregate flow rate on each link
does not exceed its capacity:

r
bwd
e =

∑
S∈U

∑
j∈SJ

r
bwd
j lj,e, ∀e ∈ E, (14)

r
bwd
e ≤ cbwd

e , ∀e ∈ E. (15)

The aggregate flow on each link is computed as the sum of
traffic rates of all service flows (i.e., virtual links) that are routed
through it as shown in (14). Second, we have a constraint to
ensure the conservation of flows at each node:∑

e:e.dest=n

lj,e −
∑

e:e.source=n

lj,e = aj.dest,n − aj.source,n,

∀n ∈ N, ∀S ∈ U, ∀j ∈ SJ .

(16)

This constraint states that unless node n is either the source or
destination of flow j, it only relays traffic of flow j.

E. Power Consumption

We consider the energy consumption for both servers and
switches. To reduce the energy consumption, only those servers

that have to host some VNFs are turned on. We use the
following constraint to identify those servers that are active:

on ≥ if,n, ∀n ∈ Nserver, ∀f ∈ F. (17)

The energy consumption of active servers and switches is a
function of their utilization. This relation is captured by the
following linear model:

Pn =

onP

active
n +

∑
f∈F mf,n

Mn

(Pmax
n −Pactive

n) ∀n∈Nserver

Pactive
n +

∑
e.dest=n

rbwd
e

cbwd
n

(Pmax
n −Pactive

n) ∀n∈Nswitch.

(18)

F. Demand Fluctuations

We apply the Γ-Robust optimization framework [19] to com-
pute SFC orchestrations that remain feasible for all possible
future service demands (those that conform with the demand
specifications). To this end, we replace (2) and (14) in the
original formulation by their linear robust counterparts (see our
technical report [16] for details). Specifically, (2) is replaced by,

r
proc
f,n = Γαf,n +

∑
S∈U

∑
j∈SJ

t(j.dest)=f

r̄
bwd
j aj.dest,n + βj,f,n,

∀f ∈ F, ∀n ∈ Nserver,

(19)

αf,n + βj,f,n ≥ r̂bwd
j aj.dest,n,

∀f ∈ F, ∀n ∈ Nserver, ∀S ∈ U, ∀j ∈ SJ : t(j.dest) = f,
(20)

while (14) is replaced by the following equations,

r
bwd
e = Γγe +

∑
S∈U

∑
j∈SJ

lj,er̄
bwd
j + ζj,e, ∀e ∈ E, (21)

γe + ζj,e ≥ r̂bwd
j lj,e, ∀e ∈ E, ∀S ∈ U,∀j ∈ SJ . (22)

The optimization variables αf,n, βj,f,n, γe, and ζj,e are auxiliary
variables introduced to derive the robust counterparts.

G. SFC Orchestration Problem

The SFC orchestration problem is defined as the following
constrained optimization problem:

Minimize
∑
n∈N

Pn

s.t. resource cstrs: (3)–(5), (19) and (20) energy cstrs: (17) and (18)

routing cstrs:(15), (16), (21) and (22) placement cstrs: (10)–(13)

delay cstrs: (6)–(9).

IV. EXACT ORCHESTRATION ALGORITHM

We note that constraints (6), (8) and (9) in the above for-
mulation are non-linear. In this section, we show how these
constraints can be reformulated in order to transform the model
into a MISOCP, which can be solved using standard solvers such
as CPLEX [20] and Gurobi [21].

Let d̃bwde and hbwde , repsectively, denote the upper bound on
the queueing delay and the residual capacity of link e. Then (6)
can be rewritten as follows:

d̃
bwd
e h

bwd
e ≥ we, ∀e ∈ E, (23)

h
bwd
e = c

bwd
e − rbwd

e , ∀e ∈ E. (24)

The product term in (23) can be expressed as a sum of squares
as follows:

2w
2
e + (d̃

bwd
e)

2
+ (h

bwd
e)

2 ≤ (d̃
bwd
e + h

bwd
e)

2
, ∀e ∈ E. (25)

5

Notice that since we is a binary variable, it can be conveniently
replaced by its square, which consequently transforms the con-
straint into a second-order conic constraint. In the same way, we
can reformulate (8) as follows:

2i
2
f,n + (d̃

proc
f,n)

2
+ (h

proc
f,n)

2 ≤ (d̃
proc
f,n + h

proc
f,n)

2
,

∀f ∈ F, ∀n ∈ Nserver,
(26)

h
proc
f,n = c

proc
f,n − r

proc
f,n , ∀f ∈ F, ∀n ∈ Nserver, (27)

where d̃procf,n and hprocf,n are, respectively, the upper bound on
the processing delay and the unused portion of the allocated
processing capacity of VNF f on server n.

Next, we substitute the individual delay components in (9) by
their upper bounds:∑

j∈SJ

∑
e∈E

lj,e(d̃
bwd
e + d

prop
e) +

∑
v∈Sv

∑
n∈Nserver

∑
f∈F

t(v)=f

av,nd̃
proc
f,n ≤ θS , ∀S ∈ U.

(28)

We use the big-M approach to linearize the products of binary
and continuous variables in (28). We define d̃bwdj,e = lj,ed̃

bwd
e

as the upper bound on the queuing delay experienced by traffic
flow j on link e. Assume that d̃bwde is bounded by a constant
M1, we can express d̃bwdj,e = lj,ed̃

bwd
e by the following set of

linear constraints:

d̃
bwd
e ≤ d̃bwd

j,e + (1− lj,e)M1, ∀e ∈ E, ∀S ∈ U, ∀j ∈ SJ , (29)

d̃
bwd
j,e ≤ lj,eM1, ∀e ∈ E, ∀S ∈ U, ∀j ∈ SJ , (30)

d̃
bwd
j,e ≤ d̃

bwd
e , ∀e ∈ E, ∀S ∈ U, ∀j ∈ SJ . (31)

Similarly, given a VNF request v of type f (i.e., t(v) = f),
define d̃procv,n = av,nd̃

proc
f,n as the upper bound on its processing

delay at server n. Let constant M2 denote an upper bound on
d̃procf,n . We can linearly express d̃procv,n = av,nd̃

proc
f,n as follows:

d̃
proc
f,n ≤ d̃procv,n + (1− av,n)M2,

∀n∈Nserver, ∀f ∈F, ∀S∈U, ∀v∈SV : t(v)=f,
(32)

d̃
proc
v,n ≤ av,nM2, ∀n∈Nserver, ∀f ∈F, ∀S∈U, ∀v∈SV , (33)

d̃
proc
v,n ≤ d̃procf,n , ∀n∈Nserver, ∀f ∈F, ∀S∈U, ∀v∈SV : t(v)=f. (34)

For this to work, M1 and M2 should be set to sufficiently large
values. Although we rely on the program to compute d̃procv,n and
d̃bwdj,e , we know that these individual delay components should
not be greater than the deadline θS of SFC S to which v and j
belong. Thereby, by setting M1 = M2 = maxS θS , we ensure
that M1 and M2 are always greater than any d̃procv,n and d̃bwdj,e in
a feasible solution. The end-to-end delay requirement now can
be expressed as a linear constraint as follows:∑
j∈SJ

∑
e∈E

d̃
bwd
j,e +lj,ed

prop
e +

∑
v∈Sv

∑
n∈Nserver

∑
f∈F

t(v)=f

d̃
proc
v,n ≤θS , ∀S∈U. (35)

One important consideration is the specification of the dead-
line θS . In practice, it is difficult to determine the exact value
of θS for a given service, as it dependents on many factors
including the client preference for performance and cost. While
our model, in its current form, can accommodate any hard
deadline, if we allow some controlled slack in the service
delays, the algorithm can achieve substantially lower cost for
orchestrating the same set of services. In the following, we
present the modified algorithm (with slack) and show that it

can be tuned to achieve the same hard deadlines, if so desired.
Define a new variable zS ≥ 0 which indicates the amount of
delay slack for each SFC S and replace (35) by the following:∑

j∈SJ

∑
e∈E

d̃
bwd
j,e +lj,ed

prop
e +

∑
v∈Sv

∑
n∈Nserver

∑
f∈F

t(v)=f

d̃
proc
v,n −θS≤zS ,

∀S∈U.

(36)

A new term that captures the penalty for violating the deadlines
is then added to the objective:

Minimize
∑
n∈N

Pn + λ
∑
S∈U

zS , (37)

where λ is a parameter that expresses the importance of fulfilling
the hard deadlines. Specifically, by setting λ to a sufficiently
large value (e.g., ∞), the model is forced to meet the hard
deadlines. Alternatively, by setting λ to smaller values, the model
can trade-off the delay performance for reduced energy cost.

Our algorithm called SODL (Sfc Orchestration with Dead-
Line) to solve the problem exactly using a MISOCP formulation
is given in Algorithm 1.

Algorithm 1 SODL (Exact Orchestration)

Minimize
∑
n∈N

Pn + λ
∑
S∈U

zS

s.t. resource cstrs: (3)–(5), (19) and (20) energy cstrs: (17) and (18)

routing cstrs: (15), (16), (21) and (22) placement cstrs: (10)–(13)

delay cstrs: (24)–(27), (29)–(34) and (36).

V. APPROXIMATE ORCHESTRATION ALGORITHM

The presence of integer variables in SODL makes it com-
putationally intractable for large problem instances. In this
section, we develop an orchestration algorithm called xSODL
(approXimate SODL) that employs iterative rounding [2] to
compute an approximate solution to the problem. To apply
iterative rounding, we first relax all integer variables in the
MISOCP (i.e., av,n, lj,e, if,n, we, on and mf,n) transforming it
into a SOCP which is a special class of quadratic programming
that can be solved in polynomial time [22]. The relaxed model
is then solved iteratively to obtain fractional solutions. In each
iteration, we selectively round a subset of variables in a manner
that respects all constraints in the model and fix their values.
The procedure terminates when all relaxed integer variables are
fixed. The details of these steps are given in Algorithm 2 and
further explained below. Table I summarizes the notations used
in the algorithm. Note that out of the six integer variables, on,
we and if,n are derived variables, which will be automatically
fixed when av,n and lj,e are fixed. This leaves us with three
variables to be fixed including av,n, lj,e and mf,n.

TABLE I: Summary of Notations
Notation Description
M The relaxed model
Msol Solutions returned by solving M

Υ Number of virtual nodes (VNF requests) that are mapped per iteration
Kf Number of unused licenses for VNF f
V List of virtual nodes (VNF requests) still need to be mapped
Pn,f List of VNFs requests that are mapped to VNF instance f at server n
Fn List of different VNFs (types) at server n
J List of virtual links (traffic flows between VNFs) still need to be routed
Le List of flows that are routed through physical link e

6

Algorithm 2 xSODL (Approximate Orchestration)
Input: All model’s parameters,M, Γ, Υ Return:Msol

1: V ← {v | ∀S ∈ U, ∀v ∈ SV , v 6= ingress ∧ v 6= egress}
2: Pn,f ← {} ∀n ∈ Nserver, ∀f ∈ F
3: Fn ← {} ∀n ∈ Nserver

4: J ← {j | ∀S ∈ U, ∀j ∈ SJ}
5: Le ← {} ∀e ∈ E
6: Kf ← Kf ∀f ∈ F
7: RestrictPlacement(M,P,V,Γ,F,K)
8: RestrictRouting(M,J ,L,Γ)

9: Msol ← Solves the relaxed program . Obtain an initial solution
10: while |V| > 0 do
11: for i← 1 to min{Υ, |V|} do
12: (v, n)← argmax(v,n){av,n|∀av,n∈Msol, v /∈V ∧ n∈ Nv}
13: f ← v.type

14: M.addConstr(av,n = 1) . Fix the placement
15: Pn,f .orderInsert(v) . Record where v is mapped
16: if f /∈ Fn then
17: Fn.append(f) . Keep track of the deployed VNF instances
18: Kf ← Kf − 1 . Update the number of remaining licenses
19: end if
20: RestrictPlacement(M,P,V,Γ,F,K)
21: M.updateConstr((5),

∑
f∈F mf,n≤Mn − |Fn| + 1) . CPU reservation

22: V.remove(v)

23: end for
24: Msol ← Solves the relaxed program
25: for j ∈ SJ , ∀S ∈ U do
26: if aj.source,n1

= 1 ∧ aj.dest,n2
= 1 ∧ j ∈ J then

27: Route(M, n1, n2, j, L)
28: J .remove(j)
29: end if
30: end for
31: RestrictRouting(M,J ,L,Γ)

32: end while
33: Msol ← solves the relaxed program
34: formf,n ∈ Msol do
35: M.addConstr(mf,n = dmf,ne) . Fix the CPU allocation
36: end for
37: M.updateConstr((5),

∑
f∈F mf,n≤Mn) . Restore servers’ capacities

38: Msol ← Solves the relaxed program
39: returnMsol

A. VNF placement

Fractional Placement. The mapping of virtual nodes to the
substrate nodes is given by the variable av,n. We define the
list V which keeps track of virtual nodes that have not been
mapped. In each iteration of the main loop (lines 10 - 32),
considering only the mappings (v, n) where v∈V and n∈Nv ,
the algorithm selects the top Υ variables among av,n variables
that have the largest fractional values (line 12) and fixes them to
one by adding an equality constraint to the model (line 14). For
each virtual node being mapped, xSODL keeps track of where
it is mapped (line 15), the list of different VNFs that have been
instantiated on the selected server (line 17) and the remaining
number of licenses (line 18). This information is later used by
RestrictPlacement to update Nv and the model (line 21).
The virtual nodes that have been mapped are also removed from
V (line 22), preventing them from being re-picked in future
iterations. Once all virtual nodes have been mapped (i.e., V = ∅),
the main loop of the algorithm (lines 10 - 32) terminates. The
parameter Υ controls the number of virtual nodes to be mapped
in each iteration. The more virtual nodes that are mapped in
each iteration, the faster the algorithm will run. Therefore, by
increasing Υ, we can make the algorithm scalable to problems
involving a large number of VNF requests. However, as it is
later shown in Section VI, the reduction in runtime achieved by
increasing Υ comes at the higher energy provisioning cost.
Solution Feasibility. Since each server node in the substrate
network is constrained by its capacity, rounding a fractional
assignment to an integral one can make the model infeasi-

VNF1 VNF2
1.0 1.0

0.
4

0.4

0.7

0.6

0.3

0.
3

0
.3

Fig. 1: The path that can carry the
largest fractional amount of flow is
the one that is most likely to cost
the least energy and delay.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Minimum CPU required for the incoming traffic load

Actual CPU allocation decided by the model

Rounded Solution

VNF1 VNF2 VNF3

VNF1 VNF2 VNF3

VNF1 VNF2 VNF3

preserved

Fig. 2: Reserving 2 CPUs on a
server with 3 VNF instances en-
sures that the rounding does not
violate the capacity.

ble. To avoid such scenarios, after each successful assign-
ment, RestrictPlacement iterates through every possible
mapping (v, n) of each virtual node v that has not yet been
considered (i.e., v /∈ V) and eliminates mappings that, if chosen,
will make the model infeasible (i.e., by updating Nv). There are
two cases to consider, as follows:
Case (I). The server does not have enough capacity to support
the full traffic load of the fractionally assigned virtual nodes.
To avoid this case, the algorithm keeps track of all virtual
nodes that have been mapped to each server so far. These
virtual nodes are sorted in descending order of their maximum
demand deviations. The top Γ virtual nodes are assigned their
worst-case demands. When checking if it is feasible to assign
virtual node v to server n, assuming that v is already placed
at n, RestrictPlacement sums up the CPU demands of
all VNFs and verifies that it is less than Mn− |Fn|+ 1, where
Mn is the total number of available CPU cores and |Fn| is the
number of different VNFs at server n (see subsection V-C).

Case (II). The virtual node is fractionally assigned to a server
where no VNF of the same type has been instantiated while
all licenses have been used. To avoid this case, the algorithm
records the number of licenses that have been issued for each
type of VNF. When all licenses of VNF f have been used,
virtual nodes of type f can only be mapped to servers where
an instance of f already exists.

In both cases, RestrictPlacement updates Nv to contain
only the mappings that do not make the model infeasible. For
mappings eliminated due to the capacity limitation in Case (I),
RestrictPlacement also adds additional constraints to pre-
vent the model in the next run (line 24) from mapping fractions
of virtual nodes to servers that do not have enough capacity to
support the full assignment.
B. Routing
Fractional Routing. The mapping of virtual links (flows) to
physical links in the substrate network is indicated by the
variable lj,e. As the binary constraint on lj,e is relaxed, a flow
can be split into multiple subflows and routed through different
paths. When two ends of a virtual link have been mapped, as
a result of solving the relaxed model on line 24, we obtain an
optimal multi-path routing solution for the corresponding flow.
Out of the paths returned by the relaxed model, Route chooses
the path that carries the largest fractional amount of flow to route
the traffic (line 27). The problem is referred to in the literature
as the Widest Path problem, and can be solved using a variant of
the Dijkstra’s algorithm [23]. To select a path, all fractional flow
assignments on the links that constituted that path are rounded
to one. Fig. 1 shows an example of how a single-path solution
is constructed from the fractional flow assignments.

7

Solution Feasibility. As with mapping the virtual nodes, the
algorithm keeps track of all virtual links that have not been
mapped yet in J . In each iteration, only the virtual links that are
still in J are considered. RestrictRouting iterates through
every possible mapping of each virtual link in J and excludes
mappings that make the model infeasible. This is carried out
by directly adding constraints to the relaxed model to prohibit
it from routing fractions of flows through links that do not
have enough capacity to accommodate the full flows. To assess
whether physical link e has enough capacity to map virtual link
j, the algorithm keeps a record of the virtual links that have been
mapped to e (i.e., when performing routing in Route). Then,
assuming that j is already mapped to e, RestrictRouting
calculates the total bandwidth demand on e, and verifies that it
is less than the link’s capacity.

C. CPU allocation

Fractional Allocation. The last variable to fix in the algorithm
is mf,n, which determines the number of CPU cores allocated to
each deployed VNF instance. Unlike av,n and jj,e, mf,n cannot
be fixed on-the-go when a virtual node is mapped since more
virtual nodes in subsequent iterations could be mapped to the
same VNF instance. Recall that the number of allocated CPU
cores to a VNF is a function of the demand for that VNF. The
only option, therefore, is to wait until all virtual nodes and links
have been mapped to perform rounding on mf,n. Specifically,
after all variables av,n and jj,e have been fixed, the algorithm
reruns the relaxed model to obtain the optimal fractional CPU
allocations (line 33), and then rounds up the computed fractional
solutions (lines 34-36).
Solution Feasibility. To ensure that the rounding of allocated
fractional CPU cores does not violate the server capacity con-
straint, we reserve a certain number of CPU cores on each active
server for the rounding (line 21). The number of CPU cores to
reserve is determined based on the number of VNF instances
on the server (i.e., not the number of virtual nodes). Given that
there are |Fn| VNF instances on server n, we show that by
reserving |Fn| − 1 CPU cores, the capacity of the server will
not be violated due to rounding. We have,∑

f∈Fn

mf,n ≤Mn − (|Fn| − 1)

=⇒ mfx,n +
∑

f∈Fn−{fx}

dmf,ne ≤Mn − (|Fn| − 1) + (|Fn| − 1)

⇐⇒ mfx,n +
∑

f∈Fn−{fx}

dmf,ne ≤Mn

⇐⇒
∑

f∈Fn

dmf,ne ≤Mn.

Once the algorithm has finished fixing mf,n, it restores the
capacities of the servers (line 37) and reruns the model (line 38)
to apply the fixed mf,n to all derived variables before returning
the final solution. Fig. 2 shows an example demonstrating how
our CPU reservation and rounding schemes work.

VI. PERFORMANCE EVALUATION

We conduct extensive simulations to assess the performance
of our exact (i.e., SODL) and approximate (i.e., xSODL) algo-
rithms in terms of being able to proactively deal with demand
fluctuations as well as scaling to large problem instances. Both
algorithms are implemented in Gurobi [21] and run on an Intel
Core i7-3720QM@2.6GHz machine with 16 GB RAM.

TABLE II: Settings for virtual network functions (from [24]).
VNF f Abbr. Proc. coef. (σf) No. of licenses (Kf)

Traffic Monitor TM 1.0 3

Fire Wall FW 0.9 3

Intrusion Detection System IDS 0.7 3

WAN Optimizer WO 0.6 3

Video Optimizer VO 0.6 3

TABLE III: Settings for servers and switches (from [25], [26]).
Server configurations (4 classes)

No. of cores (Mn) 4 cores 6 cores 8 cores 10 cores

Raw core capacity (ccpun) 1.0 Gbps 1 Gbps 1.0 Gbps 1 Gbps

Idle power (Pactive
n) 70 Watts 75 Watts 80 Watts 100 Watts

Max power (Pmax
n) 200 Watts 250 Watts 300 Watts 350 Watts

Switch configurations

Switching capacity (cbwd
n) 120.0 Gbps

Idle power (Pactive
n) 30 Watts

Max power (Pmax
n) 60 Watts

A. Exact Algorithm Evaluation

Simulation Settings. We consider orchestrating 3 SFCs, whose
compositions and nominal service demands (in Gbps) are shown
in Fig. 3(a) (these SFCs are described in [27]). The 12 VNFs
in the service chains belong to five different VNF types. The
processing coefficient for each VNF type is specified in Table II.
We assume that 3 licenses for each VNF type are available.
By default, the deadlines for all SFCs are set to 0.2 millisec-
onds [28]. These deadlines are strictly enforced by SODL as λ is
set to be very large. The NFVI is a Clos data center topology, as
illustrated in Fig. 3(b), with 8 servers, 7 switches and 36 directed
links (i.e., 18 full-duplex connections) which have negligible
propagation delays. The core switch SW1 is set to be both the
ingress and egress location of all SFCs. Table III summarizes
configurations for servers and switches.
Baseline Algorithm. We compare SODL with a baseline al-
gorithm, which is constructed by adding a safety margin to
each SFC’s nominal demand to account for future demand
fluctuations. Specifically, if the demand profile of flow j is given
by [r̄j − r̂j , r̄j + r̂j], then the baseline algorithm assigns the
demand r̄j + ρr̂j to j, for some 0 ≤ ρ ≤ 1. Clearly, a range of
proactive orchestrations can be achieved by changing the value
of ρ. Specifically, setting ρ to 1 results in a fully proactive
orchestration, while setting ρ to 0 leads to an orchestration that
is susceptible to any demand fluctuation.
Effect of Demand Fluctuations. The goal of this experiment is
to show: (i) the ability of SODL to proactively cope with demand
fluctuations, and (ii) the effect of the proactivity of SODL on
the service orchestration cost. We show the results for different
values of Γ, which is the parameter that controls the proactivity
of our algorithms. We consider three demand profiles with
relative maximum deviations of r̂j/r̄j = 10%, 30%, and 50%.
For each demand profile, first we run SODL to compute the

Ingress FW TM WO IDPS Egress

Video Streaming

1.4 1.4 1.4 1.4 1.4

Ingress FW TM VO IDPS Egress0.6 0.6 0.6 0.6 0.6

Web Service

Ingress FW VO WO IDPS Egress1.6 1.6 1.6 1.6 1.6

Online Gamming

(a) Set of SFCs.

SW1

SW2 SW3

SW4 SW5 SW6 SW7

SV1 SV2 SV3 SV4 SV5 SV6 SV7 SV8

25 Gbps

10 Gbps

(b) NFV infrastructure.
Fig. 3: Exact model evaluation settings.

8

0 1 2 3
Proactivity level (Γ)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
e
v
e
l

o
f

ro
b

u
st

n
e
ss

r̂j/r̄j =10% r̂j/r̄j =30% r̂j/r̄j =50%

(a) Effect of demand fluctuations.

0 1 2 3
Proactivity level (Γ)

0

200

400

600

800

1000

1200

1400

1600

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

r̂j/r̄j =10% r̂j/r̄j =30% r̂j/r̄j =50%

(b) Price of robustness.

10% 30% 50%
Maximum demand deviation (r̂j/r̄j)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
e
v
e
l

o
f

ro
b

u
st

n
e
ss

ρ = 0.25 ρ = 0.50 ρ = 0.75 Γ = 1

(c) Relative protection levels.

10% 30% 50%
Maximum demand deviation (r̂j/r̄j)

0

200

400

600

800

1000

1200

1400

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

ρ = 0.25 ρ = 0.50 ρ = 0.75 Γ = 1

(d) Relative energy cost.

60 80 100 120 140 160 180 200
Deadline (θ) in microseconds

1100

1150

1200

1250

1300

1350

1400

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

Γ = 1

Γ = 0

(e) Effect of deadlines.
Fig. 4: Performance of SODL under different levels of proactivity, demand fluctuations and deadlines.

corresponding proactive placement. Then, we randomly generate
500 demand vectors (consistent with the demand profile), where
each vector consists of 3 demands, one for each deployed
SFC. For each demand vector, we check whether the demands
can be satisfied by the computed placement. This allows us
to compute the percentage of feasible (infeasible) demands,
which indicates how proactive (reactive) the orchestration
algorithm is. Fig. 4(a) shows the percentage of feasible
demands (with 95% confidence intervals) as the proactivity
level increases. We observe that when the proactivity level is 0,
frequent reprovisioning is required. However, as the proactivity
level increases, the percentage of feasible demands increases
significantly. In particular, setting Γ to be as low as 1 makes the
computed placement immune to demand fluctuations in 90% of
cases. Fig. 4(b) plots the energy cost of service orchestration
against the proactivity level Γ for the three demand profiles.
As evident from the figure, the energy consumption increases
monotonically with Γ. This is expected since by increasing Γ,
the model becomes more proactive and produces placements
provision more network resources to cope with higher future
demand fluctuations, thus increasing the energy consumption.
The effect of Γ on the energy consumption becomes even more
pronounced as demands exhibit a larger range of variation.
Comparison with Baseline. The baseline model is solved by
setting Γ = 0 in our exact model, and using deterministic service
demands computed with respect to various values of ρ. Figs. 4(c)
and 4(d), respectively, compare the robustness and energy cost
of the baseline using three values for ρ (i.e., 0.25, 0.50 and
0.75) against SODL with Γ = 1. As in the previous experiment,
to measure robustness, we use the computed placement to
accommodate 500 randomly generated demands and record the
percentage of feasible demands. The results shown in the figures
reveal that SODL provides better protection against demand
fluctuations while at the same time consuming less energy
than the baseline algorithm for all considered values of relative
maximum deviation r̂j/r̄j .
Effect of Deadline. Fig. 4(e) illustrates the effect of the deadline
θ on energy consumption for Γ = 0 and Γ = 1. When the
deadline is tight, we observe that a small change in the deadline
drastically changes the energy consumption. However, as the
deadline becomes loose, the effect of its change on the energy
consumption becomes less significant. This is anticipated since
unless there is a tight deadline, the model only needs to provision
just enough resources to satisfy the demands.
Effect of Approximations. The objective of this experiment
is to compare the performance of SODL and xSODL. We
run both algorithms on 100 demand profiles with different
proactivity level Γ and record the average energy consumption
and number of allocated CPU cores to all VNF instances. Each

demand profile is specified by the relative maximum deviation
r̂j/r̄j = 20%, where the nominal demand is generated randomly
over the range [0.5, 2.5] (Gbps).

The results are, respectively, presented in Figs. 5(a) and 5(b)
with the 95% confidence intervals. We can see that the placement
solution computed by xSODL consumes about 10% (100 Watts)
more energy than that of SODL. This difference is less than
the maximum energy consumption of a single server, which
implies that SODL and xSODL generally agree on the number
of servers to deploy. The recorded numbers for allocated CPU
cores shown in Fig. 4(d) also confirm this conclusion. Recall
that the minimum capacity of a server is 4 CPU cores. We see
that xSODL allocates only 2 to 3 more cores than SODL.

0 1 2 3 4 5 6

Proactivity level (Γ)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

xSODL

SODL

(a) Relative energy cost.

0 1 2 3 4 5 6

Proactivity level (Γ)

20.0

25.0

30.0

35.0

40.0

T
o
t.

n
u

m
b

e
r

o
f

a
ct

iv
e

C
P

U
co

re
s xSODL

SODL

(b) Relative number of allocated CPU cores.
Fig. 5: Comparison of SODL and xSODL.

B. Approximate Algorithm Evaluation
Simulation Settings. To asses the performance of xSODL, we
consider a scaled-up version of the scenario considered for
SODL evaluation. Specifically, we triple the number of SFCs,
increasing the number of VNF requests from 12 to 36. The
number of licenses for each VNF is also increased to 10.
Demand profiles in this experiment are specified by the relative
maximum deviation r̂j/r̄j = 20%, where the nominal demands
are generated randomly over the range [0.5, 2.5] (Gbps). The
NFVI is still a Clos data center topology as in Fig. 3(b), but has
a larger capacity with 24 servers, 21 switches and 132 directed
links. All other settings remain the same.
Runtime-Energy Trade-off. In this experiment, we run xSODL
on the randomly generated demand profiles, and record the
average energy consumption and runtime for each value of Υ.
Recall that Υ is the number of VNFs fixed in each iteration of
the model. The results along with the 95% interval are reported
in Fig. 6. As expected, fixing more virtual nodes per iteration
reduces the time it takes to run the algorithm. Though this
benefit comes at a price. As Υ increases, the likelihood of virtual
nodes being assigned to unfavourable locations, which incur
more energy cost, increases since more fractional assignment
solutions are selected to be rounded.
Comparison with Existing Algorithms. We have implemented
the following algorithms for comparison with xSODL:

9

0 2 4 6 8 10 12 14 16

Number of virtual nodes fixed per iteration (Υ)

3400

3600

3800

4000

4200

4400

4600

4800

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

50

100

150

200

250

R
u

n
ti

m
e

in
se

co
n

d
s

Power consumption

Runtime

Fig. 6: Runtime-energy trade-off in xSODL.

• First Fit Clustering Allocation (FFCA) [1]: In this algorithm,
servers connecting to the same switch form a cluster. FFCA
tries to allocate all VNF requests on the same SFC to servers
within a cluster, with the server that has the most amount of
resources being considered first.
• MaxZ [2]: Similar to xSODL, MaxZ employs iterative round-
ing to decide where to map the VNF requests. However,
while xSODL performs capacity checks and adds additional
constraints to prevent the model from fractionally assigning
VNF requests to servers that do not have enough capacities
in the next run, MaxZ does not prevent such cases from
happening. After each run of the relaxed model, MaxZ simply
selects the largest fractional assignment that meets the capacity
requirement to fix the placement.

We note that both FFCA and MaxZ are only general approaches
for VNF mapping, they do not consider routing or CPU alloca-
tion. As such, we only implement them as alternative approaches
for picking a location for mapping a VNF request, while using
the same procedures as in xSODL for the CPU allocation and
traffic routing. Fig. 7(a) and 7(b), respectively, show the effect of
increasing λ on the energy provisioning cost and the percentage
of SFCs that do not meet the deadline. The 95% confidence
intervals shown in the figures are calculated based on 100 runs
of the algorithms on randomly generated demand profiles.

We observe that xSODL performs consistently better than the
other two approaches in terms of energy usage. However, in
terms of the quality of services (i.e., indicated by the percentage
of deadline-violated SFCs), while xSODL consistently outper-
forms FFCA, xSODL only performs better than MaxZ when λ
is set to be sufficiently large. When λ is small, the deadline
violation does not significantly affect the objective, and since
MaxZ is less energy-efficient and provisions more resources than
xSODL, it is likely to cause fewer deadline violations. It is
also worth noting that setting λ to zero forces the algorithm
to provision just enough resources to meet the service demands,
which leads to 100% deadline violations.

VII. CONCLUSION

In this work, we considered the SFC orchestration problem
with the objective of minimizing the energy usage of the NFVI,
while respecting the deadline for each service. We developed
exact and approximate algorithms to compute proactive orches-
tration solutions that can cope with fluctuations in future service
demands. The proposed algorithms capture all key aspects of
SFC orchestration, including dynamic CPU allocation based on
demand, sharing VNF instances among multiple service flows
and dependence of delay on traffic load. Extensive simulations
demonstrate that explicitly considering demand fluctuations re-
sults in more proactive and efficient resource allocation. An

0 10 20 30 40 50
Delay penalty factor (λ)

3600

3800

4000

4200

4400

4600

4800

5000

T
o
t.

e
n

e
rg

y
co

n
su

m
p

.
(∑

P
n
)

in
W

a
tt

s

xSODL MaxZ FFCA

(a) Relative cost.

0 10 20 30 40 50
Delay penalty factor (λ)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e
rc

e
n
ta

g
e

o
f

d
e
la

y
-v

io
la

te
d

S
F

C
s

xSODL MaxZ FFCA

(b) Relative delay performance.
Fig. 7: Comparing xSODL with existing algorithms.

interesting future work is to extend our model to include more
information about future demands, beyond the range of fluctua-
tions currently considered.

REFERENCES

[1] A. Marotta et al., “On the energy cost of robustness for green virtual
network function placement in 5G virtualized infrastructures,” Computer
Networks, vol. 125, 2017.

[2] S. Agarwal et al., “Joint VNF placement and CPU allocation in 5G,” in
IEEE INFOCOM, 2018.

[3] M. Chiosi et al., “Network functions virtualization: An introduction,
benefits, enablers, challenges & call for action,” ETSI White Paper, 2012.

[4] ETSI, “Network function virtualization(NFV); management and orchestra-
tion,” ETSI GS NFV-MAN, 2014.

[5] H. Ballani et al., “Towards predictable datacenter networks,” in ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, 2011.

[6] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A compre-
hensive survey,” IEEE Trans. Netw. Service Manag., vol. 13, no. 3, 2016.

[7] B. Yi et al., “A comprehensive survey of network function virtualization,”
Computer Networks, vol. 133, 2018.

[8] X. Wang et al., “Online VNF scaling in datacenters,” in IEEE CLOUD,
2016.

[9] B. Zhang, J. Hwang, and T. Wood, “Toward online virtual network function
placement in software defined networks,” in IEEE/ACM IWQoS, 2016.

[10] X. Wang et al., “Online learning-assisted VNF service chain scaling with
network uncertainties,” in IEEE CLOUD, 2017.

[11] X. Zhang et al., “Proactive VNF provisioning with multi-timescale cloud
resources: Fusing online learning and online optimization,” in IEEE IN-
FOCOM, 2017.

[12] M. Shit et al., “Competitive online convex optimization with switching
costs and ramp constraints,” in IEEE INFOCOM, 2018.

[13] V. S. Reddy, A. Baumgartner, and T. Bauschert, “Robust embedding of
VNF/service chains with delay bounds,” IEEE NFV-SDN, 2016.

[14] A. Marotta and A. Kassler, “A power efficient and robust virtual network
functions placement problem,” in IEEE ITC, 2016.

[15] A. Marotta et al., “A fast robust optimization-based heuristic for the
deployment of green virtual network functions,” Journal of Network and
Computer Applications, vol. 95, 2017.

[16] M. Nguyen, M. Dolati, and M. Ghaderi, “Proactive service orchestration
with deadline,” Tech. Rep. [Online]. Available: https://pages.cpsc.ucalgary.
ca/~minh.nguyen5/techrepVNF.pdf

[17] B. Yi, X. Wang, and M. Huang, “A generalized VNF sharing approach for
service scheduling,” IEEE Commun. Lett., vol. 22, no. 1, 2018.

[18] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, 2016.

[19] D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications
of robust optimization,” SIAM Review, vol. 53, no. 3, 2011.

[20] CPLEX. (2018). [Online]. Available: https://www.ibm.com/ca-en/
marketplace/ibm-ilog-cplex

[21] Gurobi. (2018). [Online]. Available: http://www.gurobi.com/
[22] S. Zymler, D. Kuhn, and B. Rustem, “Distributionally robust joint chance

constraints with second-order moment information,” Mathematical Pro-
gramming, vol. 137, no. 1-2, 2013.

[23] S. Patterson, N. McGlohon, and K. Dyagilev, “Optimal k-leader selection
for coherence and convergence rate in one-dimensional networks,” IEEE
Trans. Control Netw. Syst., vol. 4, no. 3, 2017.

[24] J. Martins et al., “ClickOS and the art of network function virtualization,”
in USENIX NSDI, 2014.

[25] Cisco. (2018) Power Calculator. [Online]. Available: http://ucspowercalc.
cisco.com

[26] Aruba. (2018) 3810 Switch Series. [Online]. Available: https://www.
arubanetworks.com/assets/ds/DS_3810SwitchSeries.pdf

[27] N. Huin, B. Jaumard, and F. Giroire, “Optimal network service chain
provisioning,” IEEE/ACM Trans. Netw., 2018.

[28] D. A. Popescu, N. Zilberman, and A. W. Moore, “Characterizing the impact
of network latency on cloud-based applications performance,” University
of Cambridge, Tech. Rep., 2017.

