Energy Efficiency in Wireless Sensor Networks

Majid Ghaderi Department of Computer Science University of Calgary mghaderi@ucalgary.ca

Outline

wireless sensor networks
energy efficiency challenge
compression and cooperation
cooperative routing
open problems

What is a Wireless Sensor Network?

network of typically small, battery-powered, wireless devices:

(💭 🕽

○ on-board processing

• wireless communication

sensing capabilities

collecting data and sending to a sink(s)

What is the Networking Challenge?

□ power, power, power, ...
 □ life time with 2 AA batteries
 ≈ 20 days

- processing and memory limitations are temporary
 - processing capacity doubles every 2 years
- power limitation is fundamental
 - battery capacity doubles every 35 years!

What is the Networking Challenge?

□ wireless communication is power hungry:

 • energy to transmit 1 Kbit over 100 m
 ≈ executing 3 million instructions

 □ energy efficient communication is critical
 • duty cycling sensors, efficient MAC protocols
 • ...

our work:

- 1. compression: minimize transmitted data
- 2. cooperation: minimize transmission energy

Minimize Data Volume

□ take advantage of redundant sensor data • sensors are densely deployed Onearby readings might be correlated • correlated data can be compressed decades of research/innovation in data compression Oentropy achieving compression Odistributed compression (Slepian-Wolf coding) □ how can it be applied in sensor networks?

Minimize Data Volume

• our work: *hierarchical routing* Onearby sensors form a *cluster* Oeach cluster has a cluster *head* Ocluster head *aggregates* cluster data □ challenges: • how to form clusters? • what is the optimal size of clusters? **ONP-hard problem**

• approximate and heuristic techniques

Minimize Transmission Energy

significant advances at physical layer
 efficient communication techniques, such as cooperative communications

Ocaveat: not much impact at network layer

our goal:

Odesign network protocols to take advantage of cooperation

how? cross-layer design, specifically routing
 joint optimization of cooperation and routing

Routing in Sensor Networks

link abstraction between *two* nodes

 a functional link originates from a single node
 simultaneous transmissions result in collision

 shortest path routing

 network is a graph of point-to-point links
 link cost is transmission energy

Cooperative Communication

 single antenna nodes create a distributed multiple antenna system
 virtual MIMO (multiple-input multiple-output)

benefits?

Oless transmission energy

 \bigcirc more reliable *links* →longer transmission range

Cooperative Routing

□ simple graph representation is not adequate Onotion of a link is *vague* \rightarrow no fixed links Ochanging cooperative nodes changes links! Onon-adjacent nodes may communicate cooperatively **our** cooperative routing: **O**multi-hop routing Oin each step, a set of transmitters send to a set of receivers cooperatively

Cooperative Routing

 how to choose transmitting and receiving sets in each step?
 minimize end-to-end path cost

Path Cost =
$$\sum_{k} LC(S_k, T_k)$$

 $LC(S_k, T_k)$: link cost from S_k to T_k

form a super graph of all possible transmitting/receiving sets
find the shortest path in the super graph

□ channel model

□ $y_j[t]$: signal received at node j□ $x_i[t]$: signal sent by node i□ $\eta_j[t]$: noise at node j

*P*_{max}: power constraint at transmitters
 SNR_{min}: decoding constraint at receivers
 W_i: transmit power at node *i*

$$\operatorname{Link}\operatorname{Cost}\left(\operatorname{LC}\right) = \sum_{i=1}^{M} w_i^2$$

$$\sum_{i=1}^{M} h_{ij} w_i \ge \sqrt{\text{SNR}_{\min} P_{\eta_j}} \quad \text{for all receiver } j$$
$$w_i \le \sqrt{P_{\max}} \quad \text{for all transmitter } i$$

we are interested in minimizing link cost, i.e. minimizing transmit power

$$\min\sum_{i=1}^M w_i^2$$

subject to:

$$\sum_{i=1}^{M} h_{ij} w_i \ge \sqrt{\text{SNR}_{\min} P_{\eta_j}} \quad \text{for all receiver } j$$
$$w_i \le \sqrt{P_{\max}} \quad \text{for all transmitter } i$$

SISO: single-input single-output

$$LC(s,t) = \frac{SNR_{\min}P_{\eta_t}}{h_{st}^2}$$

MISO: multiple-input single-output

MIMO: multiple-input multiple-output

□ no exact closed-form solution
 → approximate as a MISO link
 ○ convert T to a single super node t
 ○ noise power at super node: P_{ηt} = max P_{ηj}
 ○ channel gains: h_{it} = min h_{ij}

Simulation Results

Open Problems

- how about throughput in multi-flow networks?
 - Ointerference increases due to cooperation
 - Otransmission range increases due to cooperation
- protocol design
 - Ooptimal routing is NP-hard
 - •heuristic routing algorithms
 - Odistributed implementation

Thank you.

For more information, please go to http://www.ucalgary.ca/~mghaderi/research.html

M. Dehghan and M. Ghaderi, ``<u>Energy efficient cooperative routing in wireless networks</u>," Tech. Report 2009-930-09, Department of Computer Science, University of Calgary, June 2009.