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Abstract—This paper considers the problem of joint radio and
computing resource allocation in Cloud Radio Access Network
(C-RAN) architecture. We develop a resource allocation scheme
to maximize weighted sum-rate of the system, while minimizing
total power consumption. For power consumption, we consider
both static and dynamic power consumption in Remote Radio
Heads (RRHs), fronthaul links, and Base Band processing Units
(BBUs). Our model considers quality of service requirements,
fronthaul capacity, maximum transmission power, and computing
capacity constraints in a comprehensive formulation. The joint
resource allocation problem is non-convex, which is shown to
be NP-hard, and thus we apply a number of techniques to
convexify the problem. Then, using the Karush-Kuhn-Tucker
(KKT) conditions, we show that the problem can be decomposed
into two sub-problems that can be efficiently solved using an
iterative Quadratically Constrained Quadratic Program (QCQP)
and a bin packing algorithm, respectively. The performance of the
proposed scheme is evaluated through simulation studies, which
shows the proposed scheme outperforms the existing approaches
in BBU minimization, total power consumption, and system
utility which is defined as the weighted sum-rate minus power
consumption.

Index Terms—Cloud Radio Access Networks, Joint Resource
Allocation, BBU-RRH Mapping, Joint Transmission

I. INTRODUCTION

Wireless traffic is fast growing which requires increasing the
number of base stations and supporting advanced transmission
techniques such as Coordinated Multi-Point (CoMP). Increas-
ing the number of base stations however leads to substantial
increase in power consumption, capital expenditure (CAPEX)
and operational expenditure (OPEX), for mobile network oper-
ators [1], [2]. At the same time, it is challenging to implement
advanced techniques such as CoMP in traditional wireless
Radio Access Network (RAN) architectures because of the
high amount of control signaling required in the network [3],
[4]. Moreover, an increase in the number of base stations to
respond to the peak data traffic for peak hours results in the
underutilization of resources in non-peak hours [5].

Cloud Radio Access Network (C-RAN) has been pro-
posed as a promising solution to tackle the above-mentioned
problems [3]–[5]. In C-RAN, the Base Band process-
ing Units (BBUs) are separated from the Remote Radio
Heads (RRHs) and centralized in a cloud computing based
infrastructure called the BBU pool. The RRHs are connected
to the BBU pool using high bandwidth fronthaul connections
(e.g., over fiber optics). This way, computing resources are
shared via virtualization in the BBU pool among multiple

RRHs, which can reduce energy consumption due to statistical
multiplexing of computing resources. Also, RRHs consume
less power than traditional base stations. Furthermore, CoMP
techniques can be realized in C-RAN due to its centralized
architecture, which allows suppressing interference in the
network efficiently.

While C-RAN has the potential to bring high energy ef-
ficiency and resource utilization, several technical challenges
must be addressed to realize this architecture by managing
transmission power and resources in radio and BBU side of the
architecture [6]. Jointly optimizing transmission power from
the RRHs to User Equipment (UE), active RRHs, and BBU-
RRH mappings to determine the active BBU servers has a
significant effect on power efficiency and meeting Quality of
Service (QoS) requirements of users. Several research efforts
have been carried out to solve the resource allocation problem
in C-RAN [1], [2], [5], [7]–[13]. However, the existing works
do not take a fully joint approach in allocating RRH and BBU
side resources. There have been a few studies to model the
joint problem [12], [13], however, these works end up sepa-
rating the two sides of the problem at some point, which leads
to less efficient solutions. Also, there are several restrictions
with studies such as [1], [2], [5], which use simplified rate
models, or do not consider Joint Transmission (JT), which is
a main technique in 5G C-RAN to improve user throughput.
Restrictions of the current work are discussed in more details
in Section II.

In this work, we develop a joint model of radio and com-
puting resource allocation in C-RAN to optimize system uti-
lization, which includes both weighted sum-rate maximization
and power consumption minimization in RRH and BBU side
at the same time. We also design an algorithm to determine
beamforming vectors from RRHs to UEs, active RRHs, active
BBU servers, and BBU-RRH mappings in a JT-based C-RAN,
in which several RRHs are clustered to send data to the same
user at the same time-frequency resource block for enhanced
data transmission rate.

Our contributions in this paper can be summarized as
follows:

• We develop a comprehensive framework to model the
problem of joint radio and computing resource allocation
in C-RAN considering JT, fronthaul constraints, and QoS
requirements. The objective is to maximize weighted
sum-rate, while minimizing power consumption of the
system.



• After relaxing the integer variables and using several
techniques to make the problem convex, we establish
the Lagrangian of the joint problem and analyze it
using Karush-Kuhn-Tucker (KKT) conditions. Using this
analysis, we obtain a modified radio resource allocation
problem which includes the BBU side parameters.

• We propose a Quadratically Constrained Quadratic Pro-
gramming (QCQP) based algorithm to solve the modified
radio resource allocation problem.

• We evaluate the performance of the proposed algorithm
through simulation. Our simulations show that the pro-
posed algorithm outperforms the existing disjoint (such as
[7], [8]) and partially joint (such as [12]) schemes in the
number of active BBUs, power consumption, and overall
utilization of the system.

The remainder of the paper is organized as follows. In
Section II, the related work is discussed. We present the system
model and the problem formulation in Section III. Analysis
of the problem and the proposed algorithm are described in
Section IV. Simulation results are presented in Section V.
Section VI concludes the paper.

II. RELATED WORK

Studies on resource allocation in C-RAN can be categorized
into three groups, radio resource allocation, BBU resource
allocation, and joint radio and BBU resource allocation. Here,
we review current work on these three categories. Since our
proposed scheme belongs to the joint resource allocation
category, the studies in this category are reviewed in more
details, and we briefly review recent work in other categories.
Radio resource allocation. The works in this category con-
sider only radio resource allocation. In [14], a Deep Rein-
forcement Learning-based (DRL) algorithm is designed to
minimize the power consumption in RRHs. An RRH selection
problem is solved in [15] based on traffic density. The authors
in [16] investigated Physical Resource Block (PRB) allocation
and admission control problem in C-RAN subject to data
rate requirements, fronthaul capacity, and transmission power
constraints.
BBU resource allocation. Associating the minimum number
of BBUs to the RRHs is known as the BBU-RRH mapping
problem, which has been studied in several works. A combina-
tion of a bin packing based algorithm and simulated annealing
is proposed in [9] to minimize power consumption in the BBU
pool. The work in [10] is another study proposing three bin
packing based algorithms to solve the BBU-RRH mapping
problem. In [7], a borrow-and-lend approach is used to balance
the load of the BBU servers by reallocating RRHs from highly
utilized BBUs to the BBUs with lower load. The majority
of the studies on the BBU-RRH mapping problem do not
consider JT-clusters (groups of RRHs to transmit data in joint
transmission technique). All RRHs in one JT-cluster need to
be assigned to the same BBU so that data from all RRHs in
a JT-cluster to any associated user is processed in the same
BBU [8], [12]. In [8], a heuristic algorithm is proposed for
mapping JT-clusters to BBUs.

Joint radio and BBU resource allocation. The works men-
tioned above consider radio resource allocation and BBU
resource allocation separately, which leads to a less efficient
solution compared to the joint approaches. Recently, several
studies have considered joint allocation of BBU and RRH
resources [1], [2], [5], [11]–[13]. The work in [11] is for
uplink transmission and cannot be adopted for downlink and
JT-based transmission. In [12], after formulating a joint radio
and BBU resource allocation problem, the authors decompose
the problem into two sub-problems, in which BBU allocation
is separated from the radio side of the problem for simplicity.
A Weighted Minimum Mean Squared Error (WMMSE) based
algorithm is used to solve the beamforming part, and a Best
Fit Decreasing (BFD) algorithm is applied to find BBU-RRH
mappings. While data processing rates are included in the
beamforming side of the problem, the separation of BBU-
RRH mapping from the rest of the problem results in a
sub-optimal solution. Besides, BBU capacities are modeled
based on the number of UEs a BBU can accommodate,
which is a simplification that results in a less accurate model
compared to the rate-based BBU capacity modeling. Two
other works [1], [5] study joint BBU-RRH mapping and user
association problem, however, both studies have numerous
restrictions such as assumption of single connectivity mode
(i.e., non-JT), a simplified formulation with no transmit power
allocation, beamforming vector, and data rate calculation. In
[13], a joint BBU allocation and beamforming problem is
solved by decomposing the problem into two sub-problems.
However, the fronthaul constraints are ignored, and similar
to [12], the BBU power consumption model is based on the
number of RRHs mapped to each BBU instead of actual data
rates of users. Besides, the objective function is only power
consumption without considering throughput maximization of
the system. A swarm intelligence based scheme is proposed in
[2] to solve a joint user association and BBU-RRH mapping
problem. However, [2] uses a simplified rate formulation and
do not consider calculation of beamforming vectors.

We aim to overcome the restrictions and shortcomings of
the above mentioned work. To this end, we propose a compre-
hensive model for joint beamforming, RRH activation, BBU
activation, and BBU-RRH mapping. The objective function
we study is based on both weighted sum-rate maximization
and power minimization. We consider the QoS requirements
of users, limited fronthaul capacity, BBU constraints, and
maximum transmit power at RRHs. Our main contribution
is developing a joint algorithm (rather than only a joint
formulation and partially joint algorithms as in the exsiting
work [12], [13]) that considers the interplay between the BBU
side and the radio/beamforming side of the problem. This
approach makes the resulting solution closer to optimal, as
we will show in our evaluation results in Section V.

III. SYSTEM MODEL

In this section, we describe the models considered for
different aspects of the system and formulate the problem.



A. System Description

We consider downlink transmission of a C-RAN with mul-
tiple RRHs connected to a BBU pool consisting of multiple
servers (called BBU servers). The set of RRHs and BBU
servers are denoted as R and S, respectively. The set of
UEs (also called users throughout this paper) is represented
by K. We also consider JT as the CoMP technique, thus each
user can get connected to multiple RRHs at the same time.
We use the term JT-cluster to refer to any group of RRHs that
jointly transmit data to a group of users. The notation X is
used to denote the set of JT-clusters. Each user is associated to
one JT-cluster based on the signals that a user receives from
different RRHs. Also, without loss of generality, each RRH
belongs to only one JT-cluster. Base band processing for each
user is implemented by a Virtual Machine (VM) on a BBU
server. The notation VMk is used to refer to the VM of user k.
After processing the traffic of each user k on VMk (mapped to
a BBU server), the processed traffic is transmitted to the RRHs
in JT-Cluster of user k via fronthaul links, which connect
RRHs to the BBU pool. For each fronthaul link connecting
an RRH to the BBU pool, notation Cfh denotes its data rate
capacity.

B. Service Model

We model QoS requirements of each user k with a mini-
mum and maximum data rate requirement, denoted by rkmin

and rkmax, respectively. These requirements are based on the
Guaranteed Bit Rate (GBR), Maximum Bit Rate (MBR) and
Aggregate-MBR (AMBR) defined in LTE specification [17].
Each user k has a service priority denoted by πk, which allows
the system to implement some notion of fairness [17]. In our
model, higher value of πk means higher priority for user k.

C. RRH Model

The data rate of user k is calculated as

rk = B · log(1 + γ · SINRk), (1)

in which B is the system bandwidth, log(.) function is
logarithm with base 2, and γ is the coding efficiency [18].
Without loss of generality, γ is assumed to be one. In this
formula, SINRk is the Signal-to-Interference-plus-Noise Ratio
(SINR) for user k, defined as

SINRk =

|
∑

l∈Rk

hl
km

l
k|2∑

k′∈K
k′ ̸=k

|
∑

l∈Rk′

hl
km

l
k′ |2 + σ2

k

. (2)

Throughout the paper, the vectors are presented by boldface
lower case letters. The variable ml

k ∈ CM×1 is a vector of
complex numbers with the length of M (number of transmit
antennas in each RRH) denoting the transmit beamformer of
RRH l to user k. Each UE is assumed to be equipped with one
receive antenna [12], [19]. The term hl

k ∈ C1×M denotes the
channel vector between RRH l and user k. The noise power of
receiver at user k is represented by σ2

k. We use Rk to denote

the JT-cluster of user k, which only contains those RRHs that
have non-zero transmit beamforming vectors to user k. For any
RRH l, Kl is the set of all users with non-zero beamforming
vectors from RRH l (i.e., RRH l belongs to the JT-cluster of
each user in Kl). The RRHs can be in either active or sleep
mode. The set of active RRHs is denoted as Ron. We use
P rrh
on to denote the constant power consumption by each active

RRH and its associated fronthaul link. The notation P tx
l is the

transmission power consumption in RRH l, which depends on
the beamforming vectors of users served by RRH l. There is
a limit on the total transmit power consumption in each RRH
indicated by P tx

max.

D. BBU Model
A server in the BBU pool can be in either active or

sleep mode. The active state is when there is at least one
VM (corresponding to one user) accommodated on that server.
For any BBU server s, the binary variable ys is 1 if BBU
server s is active, and 0 otherwise. We use P bbu

s to denote the
power consumption in active server s. This power is composed
of a constant portion and a dynamic portion. Constant power
consumption of each active server s is denoted by P bbu

c , and
the dynamic portion of the power consumption depends on
the processing rates of VMs scheduled on the server. Each
server in the BBU pool has a limited processing capacity
characterized by Cbbu. The function ϕk(µk) is used to refer to
the power consumption of VMk. This function is a convex and
increasing function of processing rate (denoted by µk) required
by VMk [19]. Similar to [12], we assume a linear model to
relate power consumption to processing rates for each VMk:

ϕk(µk) = βk · µk, (3)

where βk is a positive constant. The processing rate µk of
VMk is also assumed to be linear with the data rate of user k
(as in [12], [20]),

µk = γ1 · rk + γ2, (4)

where γ1 and γ2 are constants. Without loss of generality, we
assume γ2 = 0.

The power consumption of servers in sleep mode is negli-
gible with respect to the power consumption in active mode
and is assumed to be zero.

E. Problem Formulation
Based on the above models, the joint resource allocation

problem is formulated as follows. In the rest of this section,
we discuss different components of this formulation.

maximize
dx
s ,ys,ml

k,Ron

f(ys,m
l
k,Ron) (5a)

s.t. rk ≥ rkmin, ∀k ∈ K (5b)

rk ≤ rkmax, ∀k ∈ K (5c)∑
k∈Kl

rk ≤ Cfh, ∀l ∈ R (5d)∑
x∈X

(dxs ·
∑

k∈Kjt
x

µk) ≤ Cbbu · ys, ∀s ∈ S (5e)



∑
k∈Kl

∥∥ml
k

∥∥2
2
≤ P tx

max, ∀l ∈ R (5f)∑
s∈S

dxs = 1, ∀x ∈ X (5g)

dxs , ys ∈ {0, 1}, ∀x ∈ X , s ∈ S. (5h)

Objective Function. We describe the formulation starting with
the objective function (5a) defined as

f(ys,m
l
k,Ron) = α ·

∑
k∈K

wk · rk

− (
∑
l∈R

(1{|Kl| > 0} · (P rrh
on + P tx

l )) +
∑
s∈S

ys · P bbu
s ).

(6)

This function is composed of two components. The first
component is the weighted sum-rate which should be max-
imized and the second component is the power consumption
in the RRHs, fronthaul links, and BBU pool, which should be
minimized. The parameter α is a normalizing factor which is
used when optimizing sum-rate and power consumption at the
same time to make the corresponding values comparable. We
use the notation wk = πk

rkavg
as the weight of each user k, taking

both user priorities and long-term average data rate (denoted
as rkavg) into account.

In the second component of the objective function, the
notation 1{|Kl| > 0} for any RRH l is the indicator function,
where 1{|Kl| > 0} is 1 if |Kl| > 0, and 0 otherwise. An RRH
can be in either active or sleep mode. The active state is when
there is at least one user with a non-zero beamforming vector
from that RRH. Therefore, 1{|Kl| > 0} is used to indicate if
an RRH is active or not.

Constraints. Constraints (5b) and (5c) guarantee the minimum
and maximum data rate requirements of each user, respec-
tively. The fronthaul link capacities of RRHs are represented
by constraints (5d). Constraints (5e) enforce the limits on the
processing capacity of the BBU servers. The integer variable
dxs for any JT-cluster x and BBU server s is defined as

dxs =

{
1 if JT-cluster x is scheduled on server s,
0 otherwise.

(7)

As mentioned earlier, in Section II, all RRHs in one JT-cluster
must be scheduled on the same BBU [8], [12]. Therefore, VM
of all users of those RRHs are scheduled on the same BBU
accordingly. We use Kjt

x to denote the set of users in JT-
cluster x. Constraints (5f) express the maximum power limit
on each RRH. Constraints (5g) ensure that VM of each user is
assigned to only one BBU server by assigning each JT-cluster
to only one BBU server. Constraints (5h) reflect integer-valued
variables dxs and ys.

NP-hardness. The problem is non-convex because of its
combinatorial nature due to the integer variables associated
with the RRH and server activation. Even ignoring the integer
variables, the problem can be reduced to the weighted sum-
rate maximization problem which is known to be NP-hard [21]
because of non-convex rate expressions in the objective func-

tion and constraints. Therefore, an approximation solution is
required to solve the problem.

IV. PROPOSED SOLUTION

In this section, problem (5) is analyzed. We convexify
the problem in several steps and use Lagrangian and KKT
conditions to develop an algorithm to solve the problem. We
call the proposed algorithm Joint Radio and BBU resource
allocation in C-RAN (JRBC).

Recasting the power components. The first step in analyzing
problem (5) is rewriting the power components of the objective
function as follows:∑

l∈R

1{|Kl| > 0} · (P rrh
on + P tx

l )

=
1

η

∑
l∈Ron

∑
k∈Kl

∥∥ml
k

∥∥2
2
+ |Ron|P rrh

on ,
(8)

and, ∑
s∈S

ys · P bbu
s =

∑
k∈K

ϕk(µk) +
∑
s∈S

ys · P bbu
c . (9)

In (8), the expression 1
η

∑
l∈Ron

∑
k∈Kl

∥∥ml
k

∥∥2
2

is the variable
portion of the power consumption in RRHs which is, in fact,
the sum of transmission powers from active RRHs to the users.
The notation η ∈ (0, 1) is the inefficiency coefficient of the
amplifier in each RRH [19].

Overall, using (8) and (9) and plugging (3) and (4) in (9),
the objective function can be recast as

f(ys,m
l
k,Ron) =

∑
k∈K

(α · wk − βk · γ1) · rk

− 1

η

∑
l∈Ron

∑
k∈Kl

∥∥ml
k

∥∥2
2
− |Ron|P rrh

on −
∑
s∈S

ys · P bbu
c .

(10)

Convexifying the components related to the RRH acti-
vation. For this part, we use the well-known ℓl-norm re-
laxation [19], [22]. To this end, we first need to define the
following vector:

g =
[ ∑
k∈K1

∥∥m1
k

∥∥2

2
,
∑
k∈K2

∥∥m2
k

∥∥2

2
, ... ,

∑
k∈K|R|

∥∥∥m|R|
k

∥∥∥2

2

]
. (11)

An RRH l is active if and only if at least one beamforming vec-
tor associated to RRH l is nonzero (i.e.,

∑
k∈Kl

∥∥ml
k

∥∥2
2
> 0).

Then, we can conclude that |Ron| = ∥g∥0. Then, the following
normalized ℓ1-norm relaxation is applied on ∥g∥0:

ξ · ∥g∥1 = ξ ·
∑
l∈R

∑
k∈Kl

∥∥ml
k

∥∥2
2
, (12)

where ξ is the normalizing factor [22]. Since the beamform-
ing vectors associated with the inactive RRHs are zero, the
following is concluded:

1

η

∑
l∈Ron

∑
k∈Kl

∥∥ml
k

∥∥2
2
=

1

η

∑
l∈R

∑
k∈Kl

∥∥ml
k

∥∥2
2
. (13)



Altogether, the objective function can be transformed to

f ′(ys,m
l
k) =

∑
k∈K

(α · wk − βk · γ1) · rk

− (
1

η
+ P rrh

on · ξ)
∑
l∈R

∑
k∈Kl

∥∥ml
k

∥∥2
2
−

∑
s∈S

ys · P bbu
c .

(14)

Convexifying SINR related expressions. Another compo-
nent of the problem that makes it non-convex is the SINR
expression in rk. In order to make it convex, we introduce
new variables rk and add rk ≥ 0 along with the following
constraint set to the problem:

rk ≤ B · log(1 + SINRk), ∀k ∈ K . (15)

It can be proved that this constraint is tight (omitted for
brevity), that is for any optimum solution, the equality between
two sides of (15) holds. Furthermore, the following relation
exists among Mean Squared Error (MSE) ϵk of user k and
transmit and receive beamforming vectors [23]:

ϵk = |
∑
l∈Rk

uk h
l
k m

l
k − 1|2

+
∑
k′∈K
k′ ̸=k

|
∑

l∈Rk′

uk h
l
k m

l
k′ |2 + (σk)

2 |uk|2, (16)

where uk ∈ C is the receive beamformer at user k. With given
transmit beamformers, the optimum MMSE (Minimum MSE)
receive beamformers can be obtained as

uk =

∑
l∈Rk

hl
k m

l
k∑

k′∈K |
∑

l∈Rk′ h
l
k m

l
k′ |

2
+ (σk)

2
, (17)

Then, the following well-known relation exists between
SINRk and corresponding optimum ϵk [24]:

ϵ−1
k = 1 + SINRk. (18)

Using equations (15) and (18), the following is obtained:

rk ≤ −B · log(ϵk). (19)

We use the first order Taylor approximation, in which any
function f(x) at any point x̄ can be approximated using

f̃(x) ≈ f(x̄) + (x− x̄) · f ′(x̄). (20)

Applying (20) to the function f(ϵk) = log(ϵk) around any
point of approximation ϵ̃k, the right-hand side of (19) is
linearized, and the following is obtained.

B

ϵ̃k · ln 2
· ϵk +B log ϵ̃k − B

ln 2
≤ −rk. (21)

Altogether and using (4) to transform constraints (5e) to (22f)
and with fixed uk’s, the problem is written as

maximize
dxs ,ys,m

l
k
,rk

f ′(ys,m
l
k, rk) (22a)

s.t.
B

ϵ̃k · ln 2 · ϵk +B log ϵ̃k − B

ln 2
≤ −rk ,∀k ∈ K

(22b)

rk ≥ rkmin , ∀k ∈ K (22c)

rk ≤ rkmax ,∀k ∈ K (22d)∑
k∈Kl

rk ≤ Cfh ,∀l ∈ R (22e)

∑
x∈X

(dxs ·
∑

k∈Kjt
x

rk) ≤
Cbbu

γ1
· ys , ∀s ∈ S (22f)

∑
k∈Kl

∥∥∥ml
k
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2
≤ P tx

max , ∀l ∈ R (22g)

∑
s∈S

dxs = 1 , ∀x ∈ X (22h)

dxs , ys ∈ {0, 1} , ∀x ∈ X , s ∈ S (22i)
rk ≥ 0 , ∀k ∈ K. (22j)

Relaxation of integer variables. There are two sets of integer
variables dxs and ys, both of which are part of the variables
in the BBU side. Note that the other components of power
consumption in the BBU side have been incorporated in the
sum rate expression in the objective function using (3) and
(4) as discussed above. First, we relax these integer variables
to continuous variables between 0 and 1. Therefore, the
constraint (22i) is replaced with 0 ≤ dxs ≤ 1 and 0 ≤ ys ≤ 1.
However, the constraint dxs ≤ 1 is extra because it can be
implied from constraints (22h) and dxs ≥ 0. Also, we can
ignore the constraint ys ≥ 0 since this constraint can be
implied from constraints (22f), (22j), and dxs ≥ 0.

BBU constraints. Now, the only difficulty of the problem is
the set of constraints (22f), which is a multi-variable quadratic
set of constraints and not convex in general. However, it can
be shown (omitted for brevity) that the functions in the left-
hand side of constraints (22f) are convex within range dxs ≥ 0
and rbk ≥ 0 (both are among the constraints of the problem).

Lagrangian analysis. Now that the problem is convex, we
take its Lagrangian to obtain insights about the optimal so-
lution using KKT conditions. The Lagrangian of the problem
is:
L(d,y,m, r,λ1,λ2,λ3,λ4,λ5,λ6,λ7,λ8,λ9,ν) =

−
∑
k∈K
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+
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dxs − 1) +
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λsx
7 (−dxs )

+
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8 (ys − 1) +

∑
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λk
9 (−rk),

(23)



where λ1, ...,λ9 are Lagrange multipliers of inequality con-
straints and ν is the Lagrange multiplier of the equality con-
straints. Then, the partial derivative of Lagrangian function L
with respect to variable ys gives the following KKT condition:

∂L

∂ys
= P bbu

c − λs
5 · Cbbu

γ1
+ λs

8 = 0. (24)

Besides, using complementary slackness we obtain

λs
5 (

∑
x∈X

(dxs ·
∑

k∈Kjt
x

rk)−
Cbbu

γ1
· ys) = 0. (25)

From this, either λs
5 = 0 or∑

x∈X
(dxs ·

∑
k∈Kjt

x

rk)−
Cbbu

γ1
· ys = 0. (26)

We prove that the first case (i.e., λs
5 = 0) does not hold, and

(26) is always true. We use contradiction by assuming λs
5 = 0.

However, plugging this into (24) results in λs
8 = −P bbu

c , and
since P bbu

c > 0 it is concluded that λs
8 < 0, which contradicts

the KKT condition that the Lagrange multipliers are non-
negative values. Therefore, λs

5 = 0 does not hold, and the
corresponding constraint is tight, that is∑

x∈X
(dxs ·

∑
k∈Kjt

x

rk) =
Cbbu

γ1
· ys . (27)

Now that (27) holds for all s ∈ S, by taking a summation on
both sides of it and multiplying by P bbu

c , we obtain

P bbu
c

∑
s∈S

∑
x∈X

(dxs ·
∑

k∈Kjt
x

rk) =
Cbbu

γ1

∑
s∈S

P bbu
c · ys . (28)

Then, the summations on the left-hand side of the equation
are rearranged as

P bbu
c

∑
x∈X

((
∑
s∈S

dxs ) · (
∑

k∈Kjt
x

rk)) =
Cbbu

γ1

∑
s∈S

P bbu
c · ys . (29)

From constraint (22h), we know that
∑

s∈S dxs = 1, hence the
following is obtained:

P bbu
c · γ1
Cbbu

∑
x∈X

∑
k∈Kjt

x

rk =
∑
s∈S

P bbu
c · ys . (30)

The two first summations on the left-hand side can be replaced
by one summation since each user belongs to only one JT-
cluster, and the result is as follows:

P bbu
c · γ1
Cbbu

∑
k∈K

rk =
∑
s∈S

P bbu
c · ys . (31)

Using (31), the objective function is transformed to

f ′′(ml
k, rk) =

∑
k∈K

(α · wk − βk · γ1 −
P bbu
c · γ1
Cbbu

) · rk

− (
1

η
+ P rrh

on · ξ)
∑
l∈R

∑
k∈Kl

∥∥ml
k

∥∥2
2
.

(32)

As can be seen from the above, the objective function does not
depend on ys’s anymore. Furthermore, to obtain this result,
we have already involved two constraints (22f) and (22h).
Consequently, we can remove variables ys and dxs and all
related constraints from the problem and obtain the following
optimization problem, which is a QCQP and can be solved effi-
ciently with the time complexity of O(|K|·|Rmax|·M)3.5 [25],
where |Rmax| is the maximum number of RRHs in any JT-
cluster.

maximize
ml

k,rk

f ′′(ml
k, rk) (33a)

subject to
B

ϵ̃k · ln 2
· ϵk +B log ϵ̃k − B

ln 2
≤ −rk ,∀k ∈ K

(33b)

rk ≥ rkmin ,∀k ∈ K (33c)

rk ≤ rkmax ,∀k ∈ K (33d)∑
k∈Kl

rk ≤ Cfh ,∀l ∈ R (33e)∑
k∈Kl

∥∥ml
k

∥∥2
2
≤ P tx

max ,∀l ∈ R (33f)

rk ≥ 0 ,∀k ∈ K. (33g)

This is an interesting result as it indicates that we can solve
the problem without involving variables ys and dxs making the
problem state smaller. Indeed, the main difference between
our work and the existing work on joint radio resource and
BBU resource allocation is that those studies separate the BBU
related variables from the radio side for simplicity without
considering their dependency. Using the analysis described
above, we proved that the variables can be separated in such
a way that the BBU side parameters are included in the radio
side problem. This means that the problem in the BBU side
indirectly affects the optimal solution values of beamforming
and rate variables. Furthermore, it does not affect the running
time of the algorithm since we only need to modify the
multipliers of the rate variable rk in the objective function
to α · wk − βk · γ1 − P bbu

c ·γ1

Cbbu
.

RRH activation and refining the JT-clusters. By solving
problem (33), transmit beamforming vectors ml

k’s are ob-
tained. Using ml

k’s, active RRHs can be determined. To this
end, any RRH l with

∑
k∈Kl

∥∥ml
k

∥∥2
2
≤ τ is switched off (if

this does not violate QoS requirements of the users), where
τ is a predefined value. The next step after solving problem
(33) is refining the JT-cluster set X . We use the set of active
RRHs to refine any x ∈ X by removing any inactive RRH l
from x. The solution can be further improved by resolving
problem (33) using fixed active RRHs and refined JT-clusters.
The final step in determining the active BBU servers and
BBU-RRH mappings. After solving problem (33), we use
the resulted rk’s to calculate µk’s, and from there, the total
required processing rate ωx of each JT-cluster x is calculated
using

ωx = γ1 ·
∑

k∈Kjt
x

rk . (34)



Then, the following bin-packing problem formulation can be
used to model the BBU-RRH mapping problem:

minimize
dx
s ,ys

∑
s∈S

ys · P bbu
c (35a)

subject to
∑
x∈X

dxs · ωx ≤ Cbbu · ys ,∀s ∈ S (35b)∑
s∈S

dxs = 1 ,∀x ∈ X (35c)

dxs , ys ∈ {0, 1} ,∀x ∈ X , s ∈ S. (35d)

Bin-packing is widely studied and has efficient algorithms with
provable performance. We can use an existing algorithm to
solve this problem efficiently. Note that for the bin-packing
problem to be feasible, we need to ensure that ωx ≤ Cbbu.
Therefore, we incorporate the following constraint into prob-
lem (33) when solving that problem:

γ1 ·
∑

k∈Kjt
x

rk ≤ Cbbu, ∀x ∈ X . (36)

JRBC algorithm. Now we have all the components to present
JRBC (our proposed algorithm). The algorithm is depicted in
Algorithm 1.

Algorithm 1 JRBC: Joint Radio and BBU allocation in C-RAN

1: Initialize the beamforming variable ml
k for each user k and

RRH l by dividing available total power consumption P tx
max in

RRH l equally among the users in Kl

2: Set i = 1, and set the convergence parameter.
3: repeat
4: Using transmit beamforming vectors ml

k’s and (17), compute
the receive beamformer uk for each user k.

5: Set j = 1.
6: repeat
7: Compute ϵ̃k using (16), uk’s and ml

k’s.
8: Use QCQP optimization to solve problem (33) while incor-

porating constraints (36) and using uk’s and ϵ̃k’s obtained
from lines 4 and 7, respectively.

9: j = j + 1.
10: until j > Imax

11: i = i+ 1.
12: until Convergence is reached or i > Jmax

13: Put any RRH l with
∑

k∈Kl

∥∥ml
k

∥∥2

2
≤ τ into sleep mode and

refine JT-clusters.
14: Calculate ωx’s using (34) and solve the bin-packing problem (35).

An iterative approach is taken between two sets of variables.
One set of variables is the set of receive beamformers uk’s,
and the other set includes ml

k and rk. First, we initialize ml
k’s

(line 1), and then there is an outer loop (lines 3-12). In each
iteration of the outer loop, the receive beamformers uk’s are
updated (line 4) using the last updated ml

k’s, which are either
from the initialization step or the previous iteration. Then with
the fixed updated uk’s, an inner loop (6-10) is executed. In
each iteration of the inner loop, the approximation points ϵ̃k’s
are calculated (line 7), and problem (33) is solved using QCQP
optimization. The purpose of the inner iteration is to make the
function value log(ϵk) obtained using Taylor approximation

closer to its actual value, and the purpose of the outer loop is
the iterative update of uk’s, ml

k’s, and rk’s. After completion
of the outer loop, the active RRHs are determined, and the JT-
clusters are refined. At the last stage, a bin-packing problem
is solved to find the active BBUs and BBU-RRH mappings.

We should note that one of the issues in the joint opti-
mization problems in wireless networks is the two-timescale
problem. This issue arises when different variables of the
problem should be determined in different timescales [6]. In
our problem, the beamforming variables are determined in fast
timescales (milliseconds), while RRH activation and BBU-
RRH mappings are performed in slow timescales (minutes
to hours) [26]. This issue can be solved using the standard
techniques such as sample average approximation [27], in
which the unknown channel is approximated using the known
channel distribution for use in the slow time scale problem
(i.e., BBU-RRH mappings and RRH activation). Then, at the
start of each fast timescale period, only the beamforming part
of Algorithm 1 is executed with fixed activated RRHs, JT-
clusters, and BBU-RRH mappings.

V. PERFORMANCE EVALUATION

We use simulations to study the performance of JRBC
and compare it with existing schemes. In the following sub-
sections, the simulation setting and results are described.

A. Simulation Setup

Simulation scenario. We mainly adopt the simulation param-
eters from [19], [28]. A C-RAN architecture composed of 21
RRHs is considered. The RRHs are uniformly placed over
an area of 2000 m by 2500 m resulting in an approximate
distance of 500 m between neighboring RRHs. Each RRH is
equipped with 2 transmit antennas. The locations of the users
are modeled using the spatial Poisson Point Process (PPP)
with the mean number of users ranging from 50 to 150 for
the entire area. The RRH and user distributions are illustrated
in Fig. 1. Each user is equipped with 1 receive antenna.
Three categories of users are considered, with minimum data
rate requirements of 2 Mb/s, 4 Mb/s, and 6 Mb/s with the
priority ratio 1:2:3. We assume the maximum transmit power
P tx
max = 40 dBm for each RRH and η = 0.36 [13]. System

bandwidth is assumed to be 10 MHz. The channel coefficients
are calculated following the path-loss model L[dB] = 128.1+
37.6 log10(d [km]), in which d is the distance between the
transmitter and the receiver. Log-normal shadowing variance is
set to 10 dB. In addition, it is assumed that the noise spectral
density is −83.98 dBm. Static power consumption of each
active BBU (i.e., P bbu

c ) is set to 40 W [5], and factor γ1
is assumed to be 1. We also assume that Cfh = 50 Mb/s
and Cbbu = 50 Mb/s [17]. The normalizing factors α and
βk,∀k ∈ K are set to 2.4 × 10−6 and 8 × 10−7 respectively.
Each point on the plots in the next sub-sections is averaged
over 20 simulation runs.

Implemented Schemes. The performance of JRBC is com-
pared to two baseline schemes:
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Fig. 1: RRH and user distribution: users are specified by ”+”.

• Non-Joint Radio and BBU resource allocation in C-RAN
(NRBC): In this scheme, allocation of radio resources and
allocation of BBU computing resources are completely
independent. The works such as [7] and [8] which only
study resource allocation in BBU side of C-RAN are
based on such an approach.

• Partially Joint Radio and BBU resource allocation in C-
RAN (PRBC): This category includes the joint resource
allocation studies in the literature, which end up sepa-
rating BBU-RRH mapping from the rest of the problem.
In this type of work, a part of the computing resource
allocation in the BBU pool is considered jointly with the
radio resource allocation side of the problem. The work
in [12] is a representative of studies in this category.

Since RRH activation is not considered in the above mentioned
schemes, we set P rrh

on to 0 in our simulations to provide a fair
comparison to those schemes. Also, the Best-Fit-Decreasing
(BFD) algorithm [12] is used as the bin-packing algorithm for
all schemes.

B. Results

We study the number of active BBUs under different net-
work loads. Fig. 2 illustrates the results of this experiment. As
shown in this figure, JRBC outperforms two other schemes
because it jointly considers data rates and BBU parameters,
resulting in choosing appropriate data rates which affect the
number of active BBUs.

The power consumption of the three schemes is shown
in Fig. 3. The power consumption is composed of transmit
power consumption, the processing power consumption, and
the power required for BBU activation. As it is seen in Fig. 3,
JRBC has the lowest power consumption compared to other
schemes. This is mainly because of the fewer number of active
BBUs and also because of better transmit power management
in the RRH side, which also affects the processing power
management in the BBU side in our joint approach.

The last performance metric that we study in our simulations
is system utility which is the weighted sum-rate minus power
consumption. Fig. 4 plots the system utility versus different
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Fig. 2: Number of active BBUs with different number of users.
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Fig. 3: Power consumption with different number of users.

network loads. As depicted in this figure, JRBC achieves
more than 20% of system utility improvement over PRBC and
NRBC in low and medium network loads. All three schemes
show close performance in high loads. The reason is that the
algorithms can utilize user diversity when the number of users
is high. However, for the two other approaches, this comes
with higher energy consumption as discussed above.

Overall, the simulation studies demonstrate the superiority
of JRBC over the schemes that are either non-joint or partially
joint approaches. Also, the simulations showed that less than
13 iterations of QCQP are required to achieve convergence in
JRBC for all samples in all scenarios. This is shown in Fig. 5.

VI. CONCLUSION

In this paper, we studied joint radio and BBU resource
allocation under C-RAN architecture. We formulated the
problem as a weighted sum rate minus power optimization
problem considering several RRH and BBU side constraints
and user QoS requirements. After convexifying the problem,
Lagrangian relaxation and KKT conditions were used to ana-
lyze the dependency between the user data rates in RRH side
and the BBU side parameters and constraints. Based on this
analysis, we designed an iterative algorithm to determine RRH
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configurations and BBU-RRH mappings. Simulation results
confirmed that the proposed joint scheme is more resource-
efficient than existing approaches. This work can be extended
by investigating more detailed models of signal processing on
BBUs.
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