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ABSTRACT
In content distribution networks, a key objective is the efficient
utilization of the network that interconnects geographically dis-
tributed datacenters.This is a challenging problem due to vastly dif-
ferent characteristics and requirements of bulk and realtime trans-
fers that share the interconnection network. Bulk transfers aim at
delivering a copy of a usually large file to multiple datacenters
before a deadline, while realtime transfers are absolutely delay-
intolerant with unsteady and dynamic demands. In this paper, we
consider the problem of multicasting deadline-critical bulk trans-
fers in an inter-datacenter network in the presence of unknown
and fluctuating demand by realtime transfers. Specifically, we de-
velop a joint admission control and routing algorithm called PMDx,
which anticipates future realtime demands and proactively reserves
just the right amount of network resources in order to serve future
realtime transfers without adversely affecting network utilization
or bulk transfer deadlines. We show that the PMDx algorithm is a
2/δ -approximation with probability 1− ε , and runs in polynomial
time proportional to ln(1/ε)/(1 − δ)2, for 0 < δ , ε < 1. We also
provide extensive model-driven simulation results to study the be-
haviour of our algorithms in real world network topologies. Our re-
sults confirm that PMDx is very close to the optimal, and improves
the utilization of the network by 14% compared to a recently pro-
posed algorithm.

CCS CONCEPTS
• Networks→ Network resources allocation; Network dynam-
ics; Network management.
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1 INTRODUCTION
1.1 Background and Motivation
Content distribution networks (CDNs) have emerged as the infras-
tructure of choice for global service delivery over the Internet. In
order to offer low-latency and dependable delivery of services, CDN
providers deploy several datacenters (DC) in different geographi-
cal locations. As such, the network that connects the geo-distribut-
ed DCs plays a critical role in the quality of services delivered via
a CDN. The performance of many CDN functions such as content
distribution, data synchronization, and remote back-up is directly
affected by the performance of the underlying inter-DC network.
Thus, it is vital for CDN providers to efficiently manage inter-DC
network resources (e.g., link bandwidth) in order to respond to
ever-increasing demand for their services.

To manage network resources efficiently, it is important to con-
sider the unique requirements and characteristics of data traffic in
an inter-DC network (IDCN). Based on a survey by Microsoft [7],
bulk data transfers that aremulticast in nature (e.g., database repli-
cation) constitute a sizable portion of traffic in IDCNs. While bulk
transfers are delay tolerant, they are typically deadline-critical, i.e.,
their transmission should be completed before a pre-specified dead-
line. A relatively small fraction of inter-DC traffic is constituted
by realtime transfers (e.g., video streams) that are delay sensitive.
These transfers have priority over bulk transfers and should be
scheduled and transmitted over the IDCN upon arrival.

Achieving high bandwidth utilization in an IDCN requires an ef-
ficient transfer scheduling algorithm to pack as many bulk transfers
in the IDCN as possible, while ensuring their deadlines are satis-
fied. Designing such a scheduling algorithm is a challenging task
due to unknown future realtime transfers, and entails addressing
the joint problem of admission control and routing of bulk trans-
fers. In an IDCN, the bandwidth demands of realtime transfers are
known only at runtime upon the arrival of the realtime transfer
requests. This means that, a scheduling algorithm has to schedule
deadline-critical bulk transfers without prior knowledge of future
realtime transfer demands. If the algorithm tightly schedules many
bulk transfers, once a realtime transfer arrives, it may be forced to
throttle bulk transfers in order to make room for the arriving re-
altime transfer, thus jeopardizing the deadlines of the bulk trans-
fers. In general, any algorithm that reactively throttles the ongoing
bulk transfers in response to changes in realtime transfer demands
(e.g., [7]) risks missing bulk transfers deadlines. Ideally, a schedul-
ing algorithm has to anticipate future realtime demands and proac-
tively reserve just the right amount of bandwidth for them in order
to avoid the need for adjusting bulk transfers on-the-fly.
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Most prior works on bulk transfer scheduling in IDCNs are fo-
cused on reactive algorithms. These works generally ignore bulk
transfer deadlines (e.g., [17]) in order to simplify the scheduling
problem.There exist only a few works on proactive transfer sched-
uling algorithms, where a portion of the IDCN’s bandwidth is re-
served to accommodate future realtime transfers (e.g., [22]). The
challenge in these works is how to determine the optimal amount
of reserved bandwidth to avoid over or under reservation. A com-
mon approach is to reserve sufficient amount of bandwidth to ac-
commodate theworst-case demands of realtime transfers (e.g., [22]).
Clearly, this approach results in under-utilization of the IDCN links.
Our objective in this paper is to systematically design a schedul-
ing algorithm that proactively reserves just the right amount of
bandwidth for future realtime transfers assuming that realtime de-
mands conform to an uncertainty set. Specifically, we consider mul-
ticast bulk transfers with deadline and design exact and approxi-
mate scheduling algorithms that perform well under general real-
time transfer demands (those consistent with the uncertainty set)
without requiring frequent re-provisioning of bulk transfers.

1.2 Related Work
A review of existing works that are more related to our work is
presented below.
Deadline-oblivious Unicasting. Instead of guaranteeing dead-
lines, some works consider a fair allocation of bandwidth to ensure
an acceptable performance and completion time for bulk transfers.
Google’s inter-DC method [6], called B4, uses a greedy heuristic
to ensure that competing transfers on each link receive a max-min
fair share of the link bandwidth. To accommodate high priority
flows, B4 uses a reactive mechanism in which the transmission
rates of low priority flows are throttled at the application level. Mi-
crosoft’s SWAN [5] is a reactive method that uses software-defined
networking to frequently re-configure IDCN’s data plane to match
the current traffic demand. A two-stage transfer scheduling algo-
rithm is proposed in [12], where in the first stage, it routes the high
priority transfers using 90%of links bandwidth, and then in the sec-
ond stage, packs the residual network with lower priority transfers
that are further tagged for potential dropping during transient loss
periods. These works, however, use unicast to transfer bulk data
with no native support for multicast.
Deadline-obliviousMulticasting.Multicast is an important com-
munication primitive for efficient data delivery in IDCNs.Themost
common technique for routing multicast traffic is to construct Stei-
ner trees. Exact algorithms for computing Steiner trees in a net-
work are presented in [11], while approximate algorithms are pre-
sented in [15, 21]. Under the assumption that link delays are fixed,
a distributed heuristic algorithm is presented in [9] to compute a
multicast tree with bounded delay from the source to every des-
tination. The problem of bandwidth allocation when each trans-
fer is allowed to use multiple Steiner trees is investigated in [17],
however, only one class of traffic is considered. Considering bulk
discount pricing, where the price of inter-DC transfers is reduced
as the data volume increases, an ILP-based periodic (e.g., every
5 minutes) traffic re-routing is proposed in [3] to minimize data
transfer costs. Multicast routing with end-to-end delay guarantee
and constrained link bandwidth is considered in [14], where the

Lagrangian relaxation technique is applied to solve the problem.
Load-balancing acrossmulticast bulk transfers is considered in [19],
where it is assumed that full knowledge about network resources
(e.g., available link bandwidth) is available. They compute mini-
mum weight Steiner trees and then schedule each transfer request
in a way that it can be finished as early as possible. Some of these
works restrict the maximum delay between the multicast source
and every destination, which is preferable for multimedia appli-
cations but not enough for inter-DC bulk transfers. Nevertheless,
none of them provide a guarantee to finish a bulk transfer before
a given deadline.

Deadline-aware Multicasting. Some works in this category ig-
nore dynamic changes in available network resources (due to real-
time transfers) [8, 16, 18]. The authors in [18] design a fast admis-
sion control for inter-DC unicast transfers that can guarantee dead-
lines based on the As-Late-As-Possible policy [13]. In [8], it is ar-
gued that it is possible to accommodate more transfers in IDCN by
using multiple Steiner trees. Their solution is based on a log-based
heuristic to find a sparse solution of the corresponding non-convex
optimization problem to keep the number of Steiner trees reason-
ably low. A unicast-based linear program is developed in [16] to
minimize the transfer completion time by allowing some transfer
destinations to receive data sooner, and then act as new transmis-
sion sources for other destinations. A few works have considered
dynamic demand fluctuations of realtime transfers, as it has a ma-
jor effect on deadlines for bulk transfers [7, 10, 22]. In [7], the real-
time traffic rates are estimated using historical usage data, which
are then fed to a linear program (LP) that guarantees deadlines.
However, because the LP does not consider future demand fluctua-
tions, this approach has to reactively perform adjustments when it
becomes necessary. To be able to absorb realtime traffic rate fluc-
tuations, a proactive algorithm is presented in [10], which tries
to under-allocate network bandwidth by spreading traffic across
paths and time. This approach maximizes the minimal fraction of
requests completed before their deadlines, but does not guaran-
tee deadlines. To address estimation errors when estimating real-
time traffic demands, the work [22] considers a fixed error mar-
gin (e.g., between 5% to 15%) and then performs an adaptive re-
scheduling periodically in order to reduce the amount of unused
(but, reserved) bandwidth.

1.3 Our Work
In this paper, we consider the problem of scheduling deadline-criti-
cal bulk multicast transfers in an IDCN, while considering demand
fluctuations of realtime transfers. Specifically, a set of bulk multi-
cast transfers are given as input, where serving each transfer pro-
vides a certain profit for the IDCN owner. The objective is to admit
a subset of the given transfers and optimally route them such that
the total profit is maximized, while the deadline of each admitted
transfer is guaranteed regardless of realtime transfers demands. To
avoid traffic duplication, we employ Steiner trees to route multi-
cast transfers, and allow routing a data transfer on multiple trees.

We consider a general model for deadlines in which each trans-
fer has two deadlines, namely a soft deadline and a hard deadline. If
a transfer is completed before its soft deadline, then the total profit
associated with that transfer is received. However, if the transfer
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is completed after its hard deadline, the received profit is zero. If
the transfer is completed after its soft deadline but before its hard
deadline, the received profit decreases linearly from its maximum
to zero.

To solve the bulk multicast problem, we develop exact and ap-
proximate algorithms that perform well under general service de-
mandswithout requiring frequent re-provisioning.We assume that
some knowledge about future realtime transfer demands is avail-
able (specifically, they belong to an uncertainty set) and formulate
the problem as a robust optimization problem. A key feature of
our algorithms is that they can achieve any desired trade-off be-
tween the algorithm proactivity and its profit. They can allocate
bandwidth such that the profit is maximized but cause frequent re-
provisioning at runtime. Alternatively, they can completely avoid
runtime re-provisioning at the cost of decreased profit.

Our main contributions in this paper are summarized below:

• We formulate the proactive bulk multicast problem with
deadline as a mixed-integer linear program (MILP), which
can be solved for small problem instances.
• To tackle the computational complexity of the MILP formu-
lation, we design an approximate algorithm called PMDx,
which attains the approximation ratio 2/δ with probability
1−ε , and runs in polynomial time proportional to ln(1/ε)/(1−
δ)2, for 0 < δ , ε < 1.
• Wepresent extensivemodel-driven simulation results to study
the behaviour of our algorithms in real world network topolo-
gies and demonstrate their ability to achieve any desired
proactivity-profit trade-off.We also compare our algorithms
against a recently proposed algorithm called Amoeba [22].

1.4 Paper Organization
We start by discussing the system model and assumptions in Sec-
tion 2.The derivation of our model and proactive algorithms is pre-
sented in Section 4. The evaluation results and their analyses are
presented in Section 5. Finally, concluding remarks are provided
in Section 6.

2 SYSTEM MODEL AND ASSUMPTIONS
2.1 Inter-DC Network
Consider a set of datacenters S that are connected through a wide-
area network. LetW andL, respectively, denote the set of switches
and links in the network. Each link ℓ ∈ L has bandwidthbℓ . Define
the setN = S∪W as the set of all nodes in the network (i.e., data-
centers and switches). The system works in a time-slotted fashion
where routing and bandwidth allocation during each time slot is
fixed and determined independent of other time slots. We assume
that the traffic between DCs belongs to one of the two classes [22]:
(1) bulk transfers, and (2) realtime transfers, as described below.

2.2 Bulk Transfers
Bulk transfers arrive to the system in batches, where each transfer
r in a batch R is considered to be a multicast data transfer of vol-
ume Qr from a source DC sr to multiple destination DCs that are
specified by the setDr = {dr |dr ∈ S\{sr }}. Note that, this model

supports unicast and broadcast transfer models as well. Each trans-
fer r can start its data transmission after time slot τr , and has a soft
deadline τ sr and a hard deadline τhr (as in [5, 10, 22]). More specifi-
cally, when r finishes before, τ sr it yields µr units of profit, which
can be interpreted as the money that the owner of r pays for trans-
ferring the data volume Qr . However, when the completion of r
is delayed beyond the time slot τhr , the achieved profit would be 0,
and from τ sr to τhr the profit degrades linearly. Each bulk transfer in
a batch should be admitted or rejected explicitly, where admission
implies that the hard deadline of the transfer is guaranteed. The
objective is to admit a subset of transfers that yield the maximum
profit.

2.3 Realtime Transfers
Realtime transfers have higher priority than bulk transfers and are
absolutely delay intolerant. We denote the set of realtime transfers
in time slot t byY(t), where each transfer y ∈ Y(t) is specified by
its source sy , destination dy , and transmission rate (i.e., bandwidth
demand) qy . In contrast to a bulk transfer whose transmission rate
is controlled by the scheduling algorithm, the exact transmission
rate of a realtime transfer is not known a priori and exhibits a sig-
nificant level of fluctuation over time. Thus, it is only reasonable
to assume that the actual value of qy is known up to some estima-
tion error (e.g., within a range). Given this uncertainty about qy ’s,
our goal is to route realtime transfers and proactively reserve suf-
ficient bandwidth for them to absorb their fluctuations. Note that,
due to the higher priority of realtime transfers, they can preempt
resources allocated to bulk transfers and prevent them from fin-
ishing before their hard deadlines (which is undesirable). On the
other hand, it is necessary to minimize the amount of bandwidth
that is reserved for realtime transfers to avoid wasting the inter-
DC bandwidth.

3 PROBLEM FORMULATION
In this section, we formally formulate the bulk multicast problem
introduced in Section 2.We call the problem the Proactive Multicast
with Deadline (PMD) problem. The mathematical notation used in
this section is summarized in Table 1. In Subsection 3.1, we present

Table 1: Important Mathematical Notations.

Inputs
[n] Set of integers 1 to n
N Union set of datacenters S and switchesW
L Set of inter-DC links
R Set of bulk transfers
Y(t) Set of realtime transfers at time t
µr Maximum profit of bulk transfer r
bℓ Bandwidth capacity of link ℓ ∈ L

Decision Variables
ar Admittance status of bulk transfer r
fr Finish time of bulk transfer r
ur Profit gained from bulk transfer r

pkr (t) Allocated bandwidth to bulk transfer r at time slot
t on the k-th tree
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the Linear Program (LP) formulation of the problem under the as-
sumption of known realtime flow rates at the time of scheduling
bulk transfers. In Subsection 3.2, we discuss re-routing as an im-
portant practical consideration. Then, in Subsection 3.3, we extend
the proposed formulation to consider fluctuations in realtime flow
rates.

3.1 LP Formulation
The formulation of the problem involves admitting bulk transfers,
routing of all traffic in the network, enforcing the bandwidth ca-
pacity of IDCN links, and finally deriving the objective function in
terms of the system profit. In the following, we elaborate on each
part separately.
Routing Bulk Transfers. In this work, we adopt the standard bi-
directed cut formulation of Steiner trees for multicast. In each time
slot t , we allow each transfer r to split its traffic among K Steiner
trees, where each tree spans all the terminal nodes {sr } ∪ Dr and
any number of switches inW.We can selectK based on the charac-
teristics of traffic to smoothly handle the effects of splitting traffic
(e.g., we can set K = 1 to avoid traffic splitting completely). We
use binary variables xr,k

ℓ
(t) to indicate whether the link ℓ is in

the k-th tree of transfer r at time t . Then, for each bulk transfer r ,
we compute all subsets U ⊆ N such that each subset contains at
least one of r ’s destinations andN −U includes r ’s source. LetUr
denote the set of all such subsets:

Ur = {U |U ⊆ N\{sr } : U ∩ Dr , ∅} . (1)

To compute the multicast trees, it is sufficient to have at least one
incoming edge for each U ∈ Ur to ensure that the source node is
connected to every multicast destination. That is,∑

ℓ∈δ−(U )

xr,k
ℓ

(t) ≥ 1, k ∈ [K ],∀U ∈ Ur , (2)

where, δ−(U ) denotes the set of directed links (v,u) going into
subsetU , i.e., v < U ∧ u ∈ U .
Routing Realtime Transfers. The realtime transfers are unicast
flows between DCs, therefore we only enforce the flow conserva-
tion constraints to route each of them over a single path. To this
end, we define binary variables zy

ℓ
(t) to show whether the link ℓ

is used by realtime transfer y in time slot t . We have,

∑
(i, j)∈L

z
y
(i, j)(t) −

∑
(j,i)∈L

z
y
(j,i)(t) =


1, i = sy
−1, i = dy
0, o.w.

∀t ,y, i (3)

Link Capacity Constraints. We only need to consider the ad-
mitted bulk transfers when enforcing the link capacity constraints.
Let the binary variable ar indicate whether transfer r is admitted.
Furthermore, we define continuous variables pkr (t) to specify the
traffic rate of bulk transfer r on its k-th tree in time slot t . The
capacity constraints of the IDCN’s links are enforced as follows,

x̆r,k
ℓ

(t) = pkr (t) × ar × xr,kℓ
(t), ∀r , ℓ,k, t (4)∑

k ∈[K ],
r ∈R

x̆r,k
ℓ

(t) +
∑

y∈Y(t)
qy × zyℓ (t) ≤ bℓ , ∀t , ℓ (5)

where, x̆r,k
ℓ

(t) is an auxiliary variable. Constraint (4) ensures that
we only consider the bulk transfers that are admitted (i.e., ar =
1), while constraint (5) ensures that the total bandwidth usage on
link ℓ is less than or equal to its capacity bℓ . Notice that, since
ar , xr,kl (t), and zy

ℓ
(t) are binary variables, we can simply linearize

the multiplications in constraint (4) to preserve the linearity of the
formulation.
DeadlineGuarantee. To guarantee that an admitted bulk transfer
r can send its entire data (Qr ) before its hard deadline, the sum
of its transferred data from its start time slot τr until before its
hard deadline, i.e., τhr − 1, should be equal to Qr . Without loss of
generality, we assume that the duration of each time slot is 1, thus
the amount of data transferred for r in time slot t over the k-th tree
is given by pkr (t). Then, we have the following constraint on the
total amount of data transferred by each bulk transfer:

ar ×Qr ≤
τ hr −1∑
t=τr

∑
k ∈[K ]

pkr (t). ∀r (6)

This constraint is also linearizable because ar is binary.
System Profit.The profit gain of each bulk transfer r depends on
its finish time, denoted by fr . To compute fr , we define binary
variable I r (t) to indicate whether the transfer r sends data during
time slot t , that is,

I r (t) =

{
1,

∑
k ∈[K ] p

k
r (t) > 0,

0, o.w.
(7)

Then, the finish time is computed as the maximum time slot in
which I r (t) is 1, that is,

fr = argmax
t

{
I r (t) × t

}
. ∀r (8)

Finally, given the linearity of the profit from τ sr to τhr , we can com-
pute the actual profit gained from serving the bulk transfer r as
follows:

ur = µr
(
1 −max

{ fr − τ sr
τhr − τ sr

, 0
})
, ∀r (9)

where, without loss of generality, we can assume that τ sr < τhr .
Note that, if the bulk transfer r is completed before its soft deadline
(i.e., fr ≤ τ sr ) the maximum profit is received (i.e., ur = µr ), and
when the completion time exceeds the hard deadline the received
profit is zero. Since, linearizing constraints (7), (8), and (9) is not
trivial, we provide their linearized versions in Appendix A. Finally,
the objective is to maximize the total profit gained from the set of
admitted bulk transfers, which is expressed as:

max
ar

∑
r ∈R

ur × ar . (10)

3.2 Traffic Re-routing
The formulation in Subsection 3.1 allows using a completely differ-
ent set of K Steiner trees in each time slot. However, changing the
routing configuration frequently can disturb the operation of the
network (e.g., due to packet re-ordering and delays involved when
updating the internal memory of switches [20]). Therefore, we in-
clude a mechanism to limit the changes in the set of the Steiner
trees used by each bulk transfer. Let the non-negative variable
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wr,k (t) indicate if the k-th Steiner tree of bulk transfer r changes
from time slot t − 1 to t . We have the following constraint,

wr,k (t) ≥ xr,k
ℓ

(t) − xr,k
ℓ

(t − 1). ∀r ,k, t , ℓ (11)

The value of wr,k (t) in time slot t is 1 if there is a new link in
the k-th tree that was not used in the previous time slot. Then,
by summing over the life-time of a bulk transfer, we can limit the
number of re-routings to a pre-defined constant T , as follows,

τ hr −1∑
t=τ

∑
k ∈[K ]

wr,k (t) ≤ T . ∀r (12)

3.3 Proactive LP Formulation
An important assumption of the optimization program presented
in Subsection 3.1 is that the actual transmission rates (i.e., band-
width demands) of realtime transfers are known at the time of
scheduling bulk transfers. Previous studies, however, show that
this is not a realistic assumption as the realtime transfers are bursty
and hard to predict accurately [22]. Therefore, it is more realistic
to model the transmission rates of realtime transfers (i.e., qy ) as
random variables instead of considering them as deterministic in-
put values. If the distribution of transmission rates is fully known,
we could re-write the LP of Subsection 3.1 as a stochastic optimiza-
tion program and compute a transfer schedule that preserves the
bulk transfer deadlines with some desired probability. However, as-
suming full knowledge of the distribution of transmission rates is
generally infeasible in real-world applications. A practical alterna-
tive is to assume that we only have limited statistical information
about the rates of realtime transfers. Specifically, we assume that
the transmission rate of realtime transfer qy belongs to an uncer-
tainty set, which is represented by an interval, i.e.,

qy ∈ [q̄y − q̂y , q̄y + q̂y ],

where, q̄y is the average rate and q̂y is the maximum rate fluctua-
tion. One can also state the value of q̂y as the fraction of average
rate, i.e., q̂y = γ q̄y , where γ ≥ 0. With no further knowledge
about realization of qy variables over time, the only option for
guaranteeing the deadlines is to consider the worst-case scenario
(i.e., qy = (1 + γ )q̄y ), which would result in significant under-
utilization of IDCN links. However, despite the fact that qy ’s are
independent random variables, it is unlikely that all realtime trans-
fers deviatemaximally from their average rates simultaneously. To
this end, we assume that at most Γ of the realtime transfers can
maximally deviate from their average rates, and re-write the con-
straint (5) as follows:∑

k ∈[K ],
r ∈R

x̆r,k
ℓ

(t) +
∑

y∈Y(t)
q̄y × zyℓ (t)

+ max
V(t)⊆Y(t)
|V(t) | ≤Γ

∑
y∈V(t)

γ q̄y × zyℓ (t) ≤ bℓ , ∀t , ℓ (13)

This constraint states that in each time slot t and on each link
ℓ at most Γ realtime transfers can maximally deviate from their
rates, and regardless of which Γ transfers deviate, the link capac-
ity constraints are respected. With this approach, throttling bulk

Program 1 PMD: Proactive Multicasting with Deadline

Max.
∑
r ∈R

ur × ar (15)

s.t.
∑

k∈[K ],
r ∈R

x̆ r ,k
ℓ

(t) +
∑

y∈Y(t)
qy × zyℓ (t)

+ λℓ(t)Γ +
∑

y∈Y(t)
φy
ℓ
(t) ≤ bℓ (15a)

φy
ℓ
(t) + λℓ(t) ≥ γqy × zyℓ (t) (15b)

λℓ(t), φ
y
ℓ
(t) ≥ 0 (15c)

(2), (3), (4), (6), (7), (8), (9), (11), (12)

transfers to deal with a sudden surge in realtime traffic is com-
pletely avoided. Notice that, setting Γ = 0 implies that the esti-
mates (i.e., q̄y ) are perfectly accurate, while Γ = |Y(t)| reduces
this approach to the worst-case approach which allocates the max-
imum (i.e., worst-case) bandwidth requirement to each transfer. In-
termediate values of Γ provide a wide range of resource allocation
options, where each option results in a different trade-off between
guaranteeing the bulk deadlines and optimal utilization of IDCN
links. Specifically, assume that the probability that a realtime trans-
fer hits its maximum rate is π . Assume the goal is to guarantee,
with probability of at least 1 − ϵ , that a transfer schedule is feasi-
ble under any realtime demand fluctuation without throttling bulk
transfers. Under the assumption of γ ≤ 1, which is usually the
case, the fluctuation interval would be symmetrical and the opti-
mal value of Γ, denoted by Γ∗, can be determined as follows,

Γ∗ = argmin
Γ

|Y(t) |∑
i=Γ+1

e−
Γ2

2i ×
(
|Y(t)|

i

)
π i (1 − π) |Y(t) |−i ≤ ϵ

(14)

where the term e−
Γ2

2i is the probability that the link capacity con-
straint (13) is violated if i > Γ realtime transfers deviate from their
average rates [1].

The next step is to replace constraint (5) with constraint (13),
which is non-linear due to the max operator. To preserve the lin-
earity of the model, using the theory of robust optimization [1], we
extract the non-linear term from (13) and re-write it as a separate
linear program, as follows.

max
∑

y∈Y(t)
γqy × zyℓ (t) ×v

y
ℓ
(t), (16)

s.t.
∑

y∈Y(t)
v
y
ℓ
(t) ≤ Γ, (16a)

0 ≤ vy
ℓ
(t) ≤ 1, (16b)

where, we introduce the new variable vy
ℓ
(t) to indicate if the real-

time transfer y maximally deviates on link ℓ in time slot t . Then,
constraint (16a) restricts the number of deviating transfers to Γ.
The next step in the process of linearization involves computing
the dual of linear program (16), which is also a linear program. De-
fine the dual variables λℓ(t) andφ

y
ℓ
(t), respectively, corresponding

to the constraints (16a) and (16b).The dual of (16) is then expressed
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as,

min λℓ(t)Γ +
∑

y∈Y(t)
φ
y
ℓ
(t), (17)

s.t. φy
ℓ
(t) + λℓ(t) ≥ γqy × z

y
ℓ
(t), (17a)

λℓ(t),φ
y
ℓ
(t) ≥ 0 . (17b)

Finally, we can substitute the objective of (17) for the non-linear
term in the constraint (13). The complete formulation of PMD is
presented in Program 1.

4 POLYNOMIAL-TIME SOLUTION
The formulation in Program 1 is an Integer Linear Program (ILP),
which is generally NP-hard. It means that computing the optimal
solution even for a moderate-size instance of the problem using
standard techniques such as Branch and Bound and Cutting Plane
incurs a prohibitively long time. Our goal, is to design an approx-
imate solution for the problem, which runs in polynomial time.
Specifically, we develop an algorithm to solve the problem using
the randomized rounding technique.This technique has two phases:
The first phase (i.e., relaxation) involves building a linear program
(LP) by removing the integrality constraints of the integer linear
program. In the second phase, a feasible solution to the original ILP
is constructed by rounding, in a randomized fashion, the solution
of the LP that is fractional but computable in polynomial time.

Another technical difficulty in designing a polynomial-time so-
lution is the exponentially many constraints for computing the
Steiner trees (i.e., constraint (2)). Although we can incorporate ex-
isting LP approximation approaches (like [2]) in our solution, pre-
vious studies have demonstrated that it is possible to achieve good
performance by using only a limited number of pre-computed trees
to serve the bulk requests [8].Thus, we assume that each bulk trans-
fer request is restricted to be served with a pre-computed set of
Steiner trees and present our LP-rounding-based algorithm called
PMDx to approximate PMD.

4.1 Algorithm Description
The PMDx algorithm, presented in Algorithm 1, receives a PMD in-
stance along with a performance-tuning parameters, i.e.,K which
will be explained in section 4.3, and produces a transfer schedule
as output. It starts by relaxing the integrality constraints on z

y
ℓ
(t)

and ar . Notice that, if we find integer values for zy
ℓ
(t) and ar that

are feasible in the PMD model, it is possible to compute an inte-
ger value for the variable I r (t) based on the value of the variable
pr,k (t) without affecting the feasibility of the solution. Thus, we
do not consider I r (t) when rounding and fixing other variables.
The rounding happens in two steps. In the first step, the routing
of realtime transfers is computed (RouteRealTime in Algorithm 2).
In the second step, we consider bulk transfers one-by-one and de-
termine their admission and resource allocation decision variables
(RouteBulk in Algorithm 3). The second step is repeated K times
to find a provably good solution with high probability.
RouteRealTime. After relaxation, the fractional values of vari-
ables zy

ℓ
(t) are interpreted as the probability of using the link ℓ

to construct the path of realtime transfer y at time t . Thus, we
approximate the optimal path of realtime transfer y by the path

Algorithm 1 PMDx: Approximate PMD
Input: PMD model, K ▷ Described in Problem 1
Output: Approximate solution for PMD
1: �PMD← relax integer constraints of PMD
2: RouteRealTime(�PMD)
3: Run RouteBulk(�PMD) K times and return the best result

that maximizes the minimum probability associated with its links.
Specifically, the path of transfer y at time t , denoted by ρy(t), is
given by:

ρy(t) = argmax
p∈Py

{
min
ℓ∈p

z
y
ℓ
(t)

}
, (18)

where, Py is the set of all paths from sy to dy . To this end, for each
flow y at time t , we assign the weight zy

ℓ
(t) to link ℓ in the IDCN

and use modified Dijkstra’s algorithm (see lines 3 to 9) to find the
path whose bottleneck link has the highest weight. The Dijkstra’s
algorithm starts from node sy and uses a priority queue to find
the path to dy . Each element in the priority queue has three com-
ponents: 1) a node id, 2) a path prefix that can connect sy to that
node, and 3) the minimum z

y
ℓ
(t) along that path prefix. The pri-

ority queue selects the element with the highest third component,
which consequently maximizes the minimum z

y
ℓ
(t). Then, the vari-

ables zy
ℓ
(t) are fixed to be 1 for all links in ρy(t).

Algorithm 2 RouteRealTime
Input: �PMD
Output: Routing of realtime transfers
1: Solve �PMD
2: for each realtime flow y do
3: q← PriorityQueue((sy, [], 1))
4: while c , dy do
5: c, e, u ← q.pop()
6: for n < ρy neighbour of c do
7: q.push((n, e .append(c ), min{u, zy

(c,n)(t)}))
8: end for
9: end while
10: ρy ← e.append(c )
11: Fix zy

ℓ
(t) = 1 for all ℓ ∈ ρy

12: end for

RouteBulk. Next, we iteratively process bulk transfers one-by-
one, where in each iteration a single bulk transfer is admitted or
rejected. Notice that, the LP solver may admit many bulk requests
partially (i.e., 0 < ar < 1) in order to maximize the system profit,
which means that it may violate some deadlines. Specifically, if
ar < 1, the bulk transfer r can only deliver a data volume of size
arQr , see constraint (6), and hence can not finish before its corre-
sponding deadline.Therefore, we choose some requests and explic-
itly reject them (i.e., set ar = 0) such that the available bandwidth
becomes sufficient to serve other requests. This step is also per-
formed iteratively because when we set 0 < ar < 1 to 0 for a
transfer r , it may be possible to round 0 < ar ′ < 1 to 1 for some
other transfer r ′. To select a request to reject when the available
bandwidth is not sufficient to serve all requests, we interpret ar ’s
as probabilities and reject a request with probability proportional
to 1−ar . To keep track of the requestsAr , a set with all admission
variables ar is created (see line 1). A request is removed from Ar
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when it is admitted or rejected. The algorithm considers the trans-
fers iteratively and rounds them using the randomized rounding
technique.That is, in each iteration, the algorithm selects the trans-
fer with the highest value of |ar − 0.5|, namely m, and admits it
with the probability of am , or reject it with probability 1−am (see
line 4 where rand() is a function that generates a random number
in [0, 1]). Note that, a larger value of |ar − 0.5| means that am is
either closer to 1 or 0, which means that we can admit or reject it
more confidently (all transfers whose admission decision variable
ar is equal to 1 or 0 will be fixed first.). There is a possibility that
there is not enough bandwidth capacity to serve am , which would
make the model infeasible. Thus, we check the feasibility of the
model and set am = 0 if the model becomes infeasible (see lines 5
to 9).

Algorithm 3 RouteBulk
Input: �PMD
Output: Routing of bulk transfers
1: Ar = {ar | r ∈ R}
2: while Ar is not empty do
3: am ← argmaxar ∈Ar |ar − 0.5 |
4: if rand() < am then
5: Set am = 1
6: Solve �PMD
7: if rPMDis infeasible then
8: Set am = 0
9: end if
10: else
11: Set am = 0
12: end if
13: Remove am from Ar
14: Solve �PMD
15: end while

4.2 Runtime Analysis
Define T̃ (n) to be the complexity of solving an LP with n decision
variables. RouteRealTime solves the relaxed PMD once and then
runs the Dijkstra’s algorithm once for each transfer. The time it
takes to solve the relaxed problem (which is LP) dominates the run-
ning time of the algorithm, thus the complexity of RouteRealTime
is O(T̃ (n)). RouteBulk iterates over the set of bulk transfers and
solves two LPs in each iteration resulting in time complexityT (n,R)
= O(2 |R | T̃ (n)). Therefore, the complexity of PMDx would be
O(KT (n,R)). Note that the number of variables and constraints
in our model is polynomial in the size of the problem (recall that
Steiner trees are pre-computed) which means that T̃ (n) is polyno-
mial in n. For example, using the interior method, we get T̃ (n) =
O(n3.5). As will be shown in Section 5, in practice, PMDx runs
very fast because in each iteration, it solves an LP which is slightly
different from the one solved in the previous iteration.

4.3 Approximation Analysis
The PMDx algorithm computes an approximate solution for the
original integer problem PMD. Our goal is to find the approxi-
mation factor of PMDx, to bound its performance deviation from

the optimal integer solution. Let ΦOPT and ΦPMDx, denote the to-
tal profit achieved by the optimal integer program PMD and ap-
proximate algorithm PMDx, respectively. We say PMDx is a (1/δ)-
approximation algorithm ifδΦOPT ≤ ΦPMDx ≤ ΦOPT, for some 0 <
δ < 1.

To this end, we first start by analyzing PMDx under the assump-
tion that τ sr = τhr − 1. After that, we analyze the effect of this
assumption on the solution computed by PMDx.
Part I. Let Φ̃ denote the total profit achieved by the linear pro-
gram that results from relaxing the integrality constraints in PMD
(without rounding). We have,

Φ̃ =
∑
r ∈R

µr ãr . (19)

Observation 1. If the original integer problem is feasible, i.e., at
least one of the bulk transfers in R can be routed, we have Φ̃ ≥
minr ∈R µr > 0. In general, if the cut capacity of the IDCN is Q,
then Φ̃ ≥ Q∑

r Qr

∑
r µr . By the definition, we also have Φ̃ ≤ ∑

r µr .

Observation 2.Any solution of the integer problem is also a solution
of the relaxed problem, thus ΦOPT ≤ Φ̃.
Consequently, in order to show that δΦOPT ≤ ΦPMDx, it is suffi-
cient to show that δΦ̃ ≤ ΦPMDx. To this end, define the random
variable Zr (corresponding to bulk transfer r ∈ R), as follows,

Zr =

{
µr , with probability ãr ,
0, with probability 1 − ãr .

We have, ΦPMDx =
∑
r ∈R Zr . That is, ΦPMDx is itself a random

variable given by the sum of random variables Zr . It then follows
that,

E [ΦPMDx] =
∑
r ∈R
E [Zr ] =

∑
r ∈R

µr ãr . (20)

Without loss of generality, we assume that profits µr are normal-
ized so that 0 < Zr < 1. We then apply the Chernoff bound to
random variable ΦPMDx, which yields,

P
{
δΦ̃ ≤ ΦPMDx

}
≥ 1 − e−

Φ̃(1−δ )2

2 ≥ 1 − e−
c0(1−δ )2

2 , (21)

where, c0 = Q∑
r Qr

∑
r µr > 0 is a constant dependent on the struc-

ture of the IDCN and problem instance, as described in Observa-
tion 2. By running the algorithm multiple times with independent
randomized rounding in each run, we can make the probability
P
{
δΦ̃ ≤ ΦPMDx

}
arbitrarily close to 1. Specifically, to achieve the

approximation ratio 1/δ with probability of 1 − ε , for 0 < ε < 1,
the required number of runs is given by K =

2 ln (1/ε)
c0(1−δ )2 .

Part II. Next, we investigate the effect of assuming τ sr = τhr − 1.
Those transfers that finish before their soft deadlines or after their
heard deadlines are not affected by this assumption. Thus, we fo-
cus on those transfers whose finish time falls within the interval
[τ sr +1,τhr −1] and assume that actual finish time is uniformly dis-
tributed in this interval. A geometric representation of the problem
is illustrated in Fig. 1. The shaded area in the figure shows the ad-
ditional profit accumulated by ΦPMDx. Clearly, this area is at most
equal to the non-shaded area, which is the profit that would have
been accumulated without the assumption τ sr = τhr − 1. Therefore,
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τ sr τhr

µr

Figure 1: Additional profit due to the assumption τ sr = τhr −1.

the total profit considered in the analysis of PMDx (i.e., ΦPMDx) is
overestimated by at most a factor of 2 due to this assumption.

Theorem 1. The PMDx algorithm runs inO
( 2 ln (1/ε)
c0(1−δ )2 ·T (n,R)

)
time and computes a 2

δ -approximate solution for the PMD problem
with probability 1 − ε , for any 0 < ε,δ < 1.

Proof. The proof follows from the analyzes presented in sub-
section 4.2 as well as Part I and Part II. □

5 PERFORMANCE EVALUATION
In this section, we use simulations to evaluate the performance of
the PMDx algorithm in terms of profit, proactivity, and scalabil-
ity. For comparison, we choose Amoeba [22], which is recently
proposed and is comparable to our algorithm in the sense that it
also considers hard and soft deadlines. However, Amoeba uses uni-
cast to implement multicast which is not bandwidth efficient. To
have a fair comparison, wemodified Amoeba to use the same set of
Steiner trees as those used in PMDx. We also present the optimal
results obtained by solving the PMD model using Gurobi [4]. All
algorithms are implemented in Python 2.7 and the computations
are carried out on a computer with an Intel® Core™ i7-4790 pro-
cessor at 3.60GHz and 8GB of RAM.Throughout the experiments,
we set K = 1, i.e., we do not target any guaranteed δ /ε .

5.1 Simulation Parameters
We use two real-world network topologies in our evaluations: USA
(24 nodes and 43 links) and G-Scale [6] (12 nodes and 19 links) (see
Fig. 2). The link bandwidths are sampled from a uniform distribu-
tion in the range [0.7, 1] Gbps. Each bulk transfer request desires
to send 1 to 3 Gbits of data to 2 to 5 destinations and the profit
of all requests are assumed to be 1 (i.e., µr = 1). The number of
pre-computed Steiner trees for routing each request, i.e., K , is set
to 10. In each time slot, there are 50 realtime transfers in the IDCN,
where their rates are randomly selected from the range [1, 3]Mbps.
The results reported in this section are obtained by averaging over
10 runs, where each run simulates 14 timeslots. The values of τr ,

(a) G-scale network [6]. (b) USA network.

Figure 2: Network topologies used for evaluation.
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Figure 3: Comparison of acceptance rate and profit.

τ sr , and τhr are selected randomly from [1, 14] with the constraint
τr < τ sr < τhr .

5.2 Performance Metrics
The following performance metrics are considered:

• Acceptance Rate: The fraction of bulk transfers that are
admitted with a guaranteed deadline.
• Profit:The average profit over all bulk transfer batches that
arrive to the system.
• Average Utilization: The average utilization of all links
used to serve data transfers in a time slot.
• Maximum Utilization: The maximum utilization among
all links used during the life-time of the system.
• Finish Time: The average completion time of all admitted
transfers in a batch.
• Runtime:The average time it takes to schedule a batch.

5.3 Full-knowledge Scenario
In this section, we assume that the bulk transfers are given to the
algorithms in batches of size 25 and the full knowledge about the
rate of realtime transfers is available to them. Figs. 3(a) and 3(b),
respectively, show the acceptance rate and profit of different algo-
rithms. We see that the capacity of the G-Scale network is not suf-
ficient to serve all requests, and thus about 25% of the requests are
rejected. The performance of PMDx is very close to PMD, where
it only rejects about 3 more requests. However, Amoeba performs
poorly and admits about 73% less requests compared to PMDx.The
capacity of the US network is larger, where PMD and PMDxmange
to admit almost all the requests, while Amoeba still achieves a low
acceptance rate. We also observe that PMDx significantly outper-
forms Amoeba in terms of profit. Specifically, PMDx achieves 56%
of the maximum profit obtained by PMD, while Amoeba can only
achieve about 18% of that.
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Figure 4: Average link utilization over time.
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Figure 5: G-Scale network: Comparison under partial-knowledge.
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Figure 6: USA network: Comparison under partial-knowledge.

Fig. 4 compares the average link utilization under each algo-
rithm.We observe that PMDx closely follows the behavior of PMD,
and achieves a utilization that is only 10% lower. Amoeba, on the
other hand, is not able to efficiently schedule bulk transfers across
time slots and thus rejects many requests until it can serve them
in a deadline guaranteed manner. This leads to an under-utilized
network with the average utilization of at most 30%.

5.4 Partial-knowledge Scenario
In this section, we evaluate the effect of proactive resource alloca-
tion on the performance of algorithms. We let the size of the trans-
fer batches vary from 16 to 30. The rate of each realtime transfer is
specified by its average, q̄yt , and maximum deviation percentage,
γ . We present the results for γ = 30% and γ = 70%. Throughout
the experiments,Γ is set to be 0 or 5. Amoeba, has a static proactive
policy in which it assumes 5% error for the near future predictions
and 15% error for the rest of traffic estimates. Our algorithms, on
the other hand, compute a suitable headroom for each link based
on the values of Γ and γ . The results obtained in G-Scale and USA
networks are similar. As such, we present the results for both net-
works, but only discuss the results for the G-Scale network.

Fig. 5(a) shows that when the demand fluctuation increases, all
algorithms admit fewer bulk requests to ensure the deadlines are
met. Similarly, in Fig. 5(b), it can be seen that all algorithms achieve
lower profit as they reserve more bandwidth to accommodate un-
foreseen fluctuations in realtime transmission rates. We observe
that PMDx and PMD can tolerate high levels of estimation errors
(up to 70%) for realtime rates, while only losing less than 7% of the
total profit. Amoeba, however, aggressively reserves bandwidth,
which leads to reduced acceptance rate and profit by 17% and 12%,
respectively. The effect of proactive resource allocation is clearly
observed in the average link utilization results depicted in Fig. 4.

We see that Amoeba has the highest bandwidth waste for handling
demand fluctuations of realtime transfers (about 23%). In compar-
ison, PMDx only reserves about 8% of bandwidth to fully accom-
modate realtime transfers. The maximum link utilization is shown
in Fig. 5(d). Notice that both PMD and PMDx achieve just under
100% link utilization even in the presence of demand fluctuations.
In contrast, the maximum link utilization of Amoeba is about 86%.
Finally, Fig. 5(e) presents the average finish time for each algo-
rithm. PMD admits more transfers and has the smallest average
finish time, which is the reason for its high overall profit. The fin-
ish time of Amoeba is smaller than that achieved by PMDx, how-
ever, it is mainly due to the fact that Amoeba accepts substantially
lower number of bulk transfers.

5.5 Scalability
Wemeasure the runtime of the algorithms when the size of request
batches increases from 16 to 30. Fig. 7(a) shows that PMDx solves
each batch, regardless of its size, in less than 6 seconds, which is
significantly faster than other algorithms. PMD and Amoeba, not
only take longer times to solve each batch, but also show a sharper
increase in runtime as the size of the batch increases.This behavior
implies that they are less scalable compared to PMDx. Specifically,
Amoeba’s runtime increases linearly from 10 to 41, while that of
PMD exhibits an exponential growth (due to the NP-hardness of
the problem) where it creases from 6 to 133 seconds.

An interesting behavior can be observed in Fig. 7(b), whereAmo-
eba takes more time than PMD.The reason is that Amoeba creates
a temporal-spatial graph which can become very large as the size
of the network or the number of time slots increases. However, be-
cause the runtime of PMD is exponential, eventually PMD takes
more time than Amoeba (e.g., when handling batches of size 30).



IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Mahdi Dolati, Majid Ghaderi, and Ahmad Khonsari

16 18 20 22 24 26 28 30
No. of reqs.

0

20

40

60

80

100

120

140

Ti
m

e

PMD PMDx Amoeba

(a)G-Scale network.

16 18 20 22 24 26 28 30
No. of reqs.

20

40

60

80

100

Ti
m

e

PMD PMDx Amoeba

(b)USA network.

Figure 7: Runtime for different batch sizes.

In all cases, PMDx is significantly faster than PMD and Amoeba
by at least 50%.

6 CONCLUSION
In this paper, we considered the problem of joint admission con-
trol and routing of bulk transfers in an inter-DC network. We pro-
posed a polynomial-time algorithm, called PMDx, to admit a set
of bulk transfers that maximizes the cumulative profit of the net-
work, while guaranteeing their deadlines in the presence of real-
time transfers with unknown fluctuating demands. We analyzed
the theoretical behaviour of PMDx and extensively evaluated its
practical performance against the optimal and a recently proposed
approach. An interesting direction for future research is to extend
our multicast model to the scenario where each multicast destina-
tion that receives a full copy of the data can become a source for
other receivers.
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A LINEARIZATIONS
We use the Big-M method to linearize constraint (7) as:

I r (t) ≥
∑
k ∈[K ] p

r,k (t)

M
,

where, M is a constant that satisfies M ≥ ∑
k ∈[K ] p

r,k (t), for all
requests and trees in all time slots. When

∑
k ∈[K ] p

r,k (t) is 0 the
solver automatically sets I r (t) to be 0, if possible, to reduce the
objective of the program, thus it is not necessary to enforce I r (t)
to be 0 in such a situation.

To linearize constraint (8), we can write:
fr ≥ I r (t) × t , (22)

where, fr is greater than any time slot t that its corresponding
I r (t) is 1. The multiplication is linearizable because I r (t) is binary.
Again, because having lower finish times aligns with the objective
of the optimization program, we do not need to enforce the equal-
ity in (22).

To linearize constraint (9), the max operator must be removed.
However, without the max operator, when fr is less than τ sr , the
value of ur becomes greater than µr . This problem is solved by
adding additional (upper-bound) constraint ur ≤ µr , for all re-
quests. Then the linearized version of the constraint can be ex-
pressed as:

ur ≤ µr
(
1 − fr − τ sr

τhr − τ sr

)
. (23)

Once again, we do not need to enforce the equality because increas-
ing ur is aligned with the objective of the optimization program.
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