
WebPro: A Proxy-Based Approach for Low Latency
Web Browsing on Mobile Devices

Ali Sehati and Majid Ghaderi
Department of Computer Science, University of Calgary

{asehati, mghaderi}@ucalgary.ca

Abstract—To load a webpage, a web browser first downloads
the base HTML file of the page in order to discover the list of
objects referenced in the page. This process takes roughly one
round-trip time and constitutes a significant portion of the web
browsing delay on mobile devices as wireless networks suffer
from longer transmission and access delays compared to wired
networks. In this work, we propose a solution for eliminating
this initial delay, which is transparent to end systems, does not
require modifying HTTP, and is well suited for web browsing
on mobile devices. Our solution, called WebPro, relies on a
network proxy that builds an up-to-date database of resource
lists for the websites visited frequently by network users. The
proxy resides in the wired part of the network, and hence can
afford to pro-actively build and refresh the resource list database
periodically. When a request for a webpage comes to the proxy,
it simultaneously fetches the base HTML and all referenced
objects required to render the webpage using the corresponding
resource list stored in the local database. We have built a working
prototype of WebPro and have conducted live experiments over
WiFi and LTE networks. Our results show an average of 26%
reduction in page load time for a mix of popular web sites chosen
from categories such as news, sports and shopping. Moreover, in
comparison to another best known proxy-based solution, WebPro
provides delay reductions ranging from 5% to 51% for a variety
of web sites.

Keywords—Web browsing, Mobile devices, Browsing delay.

I. INTRODUCTION

A. Motivation

Recent advances in cellular technology have given rise to
the widespread adoption of mobile devices such as smart-
phones and tablets. Among numerous mobile apps, web brows-
ing is still one of the most popular applications on mobile
devices. Due to limited bandwidth and longer access delays
in wireless networks (more specifically, cellular networks),
however, web browsing is generally slower on mobile devices,
which could frustrate users and lead to lost online business
opportunities. For example, it is estimated that a 2 second
increase in the load time of Bing’s home page can reduce
revenue per user by 4.3% [1].

Prior work [2], [3] has shown that different from desktop
computers, there is a new set of factors causing the slow
browsing experience on smartphones, which calls for solutions
tailored to mobile web browsing. Some of these factors are: (1)
Compared to the enterprise Ethernet typically used by desktop
computers, wireless hop has longer round-trip times (RTTs)
which dominate the end-to-end RTT. The long network RTT
makes resource loading the bottleneck of web browsing on

smartphones. On the contrary, compute intensive operations
such as scripting, style formatting and layout are the bottleneck
in desktop browsers. (2) Limited processing power of smart-
phones affects the resource loading process as it is associated
with network stack and OS services. (3) Many webpages are
not designed specifically for web browsing on mobile devices.
For example, analysis of the traces of 25 iPhone users in [3]
shows that over half of the webpages visited by smartphone
users are not optimized for mobile devices or are non-mobile
webpages.

Recently, there has been a significant amount of work on
reducing the latency of mobile web browsing [4]–[10]. Some
of these efforts rely on modifying the web access protocol. For
example, SPDY [9], a new protocol designed by Google, aims
to minimize the latency of web browsing by adding request
multiplexing, support for prioritization and a number of other
advanced features. However, this solution requires changing
the client and server side software which limits its widespread
adoption. There are also prior attempts that rely on client side
optimizations. This category includes solutions based on client
side caching [4] and prefetching [5], [6] along with a recently
proposed technique called speculative loading [7]. The short
expiration times of most web objects limit the efficiency of
caching techniques, while prefetching solutions suffer from
wasted wireless bandwidth and battery resources that result
from incorrect predictions (not a problem on wired desktop
browsing). On the other hand, speculative loading technique
relies on extensive changes to the mobile browser which is a
hurdle to its adoption.

Other noticeable solutions are those based on network
proxies. These solutions mostly try to reduce the computation
time or energy consumption of web browsing by delegating
some tasks involved in opening a page to a powerful entity
in the network such as a cloud-based proxy [8], [11]. One
of the major advantages of employing a network-based proxy
solution is that a proxy can offer a better improvement by
learning and exploiting the aggregate browsing behaviour of a
diverse mix of mobile users which is not possible in client-only
solutions.

Specifically, some network-based solutions such as
VMP [8] and Opera Mini [11] aim at offloading compute-
intensive operations of the page loading process to a proxy.
However, it has been shown that optimizing compute-intensive
operations leads to only marginal improvements in the overall
page load performance [3]. Thus, other solutions such as
EEP [12], [13] and PARCEL [14] try to offload resource
loading operations to an infrastructure-based proxy in order
to improve page load performance. Specifically, in these so-978-1-4673-7113-1/15/$31.00 c© 2015 IEEE

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Base HTML Fetch Time (msec)

C
D

F

Fig. 1: CDF of the time to fetch the base HTML file for Canada’s
top 100 websites. In the median case, it takes 430 ms to download
the base HTML file. However, this time can go beyond 1 second in
some cases.

lutions, proxy retrieves the base HTML file of the page and
parses it to discover referenced objects, which could be then
fetched and transmitted to the client in a bundle (in order to
reduce energy consumption of the mobile device).

One essential aspect of such proxy-based solutions is that
the proxy can build and transmit the bundle only after it has
finished downloading all the embedded objects of a page.
Considering the request-response nature of the HTTP protocol,
discovering the list of the referenced objects requires at least
one RTT in order to fetch and parse the base HTML file. Also,
one or more redirections might be involved before arriving at
the base HTML file which can further delay the realization of
the web objects.

To gain a better insight, we measured the latency of
downloading the base HTML file for the top 100 Canadian
websites [15] from a desktop computer connected to campus
Ethernet. Because of the redirections, this time might be dif-
ferent from the RTT between our device and the corresponding
web server. Figure 1 shows the cumulative distribution function
of the time to fetch the base HTML file of each site. In the
median case, it takes 430 ms to fetch the base HTML file.
However, over 6% of the cases experience latencies beyond
1 second. Also according to the measurement results in [16],
the base HTML fetch time constitutes the largest fraction of
the network time for loading a page. This implies that there
is a potential for optimizing mobile browser performance by
eliminating the initial fetch time.

B. Our Work

In an effort to reduce the latency of mobile web browsing,
we propose the design and implementation of a system that
aims at eliminating the initial round-trip time required to fetch
the base HTML file of a page. Our solution, called WebPro, is
built on two cooperating proxies, one of which resides in the
mobile device and the other one, remote proxy, is deployed
inside the network, preferably as close to the user as possible.
When a user wants to visit a page, the remote proxy will fetch
all the required objects on behalf of the mobile device. After
downloading all the objects, the remote proxy packs them in
a bundle and pushes it to the local proxy, which will serve all
browser’s requests locally. In this dual proxy architecture, not
only we are able to significantly reduce page load time but

 var f = document.getElementById("ex");
 f.src = 'http://g.org/h.png';

b.js:

<html>
 <head>
 <link rel='stylesheet'
 href ='a.css'>
 </head>
 <body>

 <script src='b.js'> </script>
 <iframe
 src='http://c.com/d.html'>
 </iframe>

 </body>
</html>

http://someSite/index.html:

http://someSite/index.html
http://someSite/a.css
http://someSite/b.js
http://c.com/d.html
http://someSite/e.jpg
http://g.org/h.png

Resource List:

Fig. 2: Resource list for an example webpage. This webpage contains
a CSS, a JavaScript, two images and an HTML iframe. Notice that the
embedded JavaScript file itself refers to another image file which can
be identified only after the JavaScript file is fetched and processed.

also reduce energy consumption by implementing bundling to
eliminate unnecessary power state promotions and demotions
in mobile’s radio for each of the small objects [12], [17].

In order to fetch all the required objects of a page, the
remote proxy employs the speculative loading technique [7].
The main idea behind this approach is to bypass the extra
time for fetching and parsing the base HTML file, by using
a previously recorded list of all the required objects for a
webpage, hereafter called the webpage “resource list”. Fig-
ure 2 presents the resource list for an example webpage. We
observed that the amount of change in the structure of the
webpages within a few hours is relatively low and hence it
should be feasible for a proxy to keep track of such changes
and maintain an updated resource list of the popular pages
(pages that are popular among its users). Note that maintaining
the resource lists of the webpages is different from caching the
actual web objects, the majority of which can not be cached
or have a short expiration time [7]. Nevertheless, such legacy
caching and prefetching techniques can be added to our system
if desired.

Maintaining an updated set of resource lists is achieved by
enhancing the remote proxy with a profiler that periodically
visits popular websites and records their resource lists in a
metadata repository. Considering that the proxy resides in
the wired part of the network, it can afford to pro-actively
fetch webpages and construct their resource lists for the most
popular websites in the network. Such a profiling module can
be easily integrated with the operational activities of high-
performance dedicated middle-boxes that are already deployed
by most mobile operators for caching, traffic monitoring and
optimization purposes [18].

This way, the first step in loading a page at the remote
proxy will become checking the metadata repository. In the
case the repository contains the resource list of the page, mul-
tiple parallel connections will be used to fetch all the objects
of the page from possibly different web servers. Otherwise,
the remote proxy will employ a web engine to load the page
by first fetching the base HTML file and then loading the
discovered objects. WebPro’s profiler employs a web engine
to perform all the steps involved in loading a page except

rendering. This way, profiler will be able to record all the
requests that result from parsing as well as script evaluations.
We also implemented a filtering module to prevent profiler
from recording changing URLs that result from third party
advertisements and tracking systems.

We emphasize that in contrast to client-based approaches
(e.g., [7]), WebPro is transparent to the end-points and does
not require any changes to the clients browser. As a proxy, it
exploits the common browsing activity across a diverse set of
mobile users and hence provides a faster browsing experience.
Moreover, in WebPro, the penalty of downloading wrong and
unusable objects is negligible compared to that of client-based
approaches as it resides in the wired part of the network. Thus,
it can afford to pro-actively update the resource lists, which is
very costly to implement on wireless clients.

We have implemented WebPro on Linux and have con-
ducted an extensive set of measurement experiments. We
believe that the common approach taken by proxy-based
solutions EEP [12], [13] and PARCEL [14] is the state of
the art and one of the most complete proxy-based solutions
for improving web browsing performance on mobile devices1.
We call this approach PBB (Proxy Based Browsing) and use
it as benchmark to evaluate the performance of WebPro. In
comparison to PBB, our scheme achieves lower page load
times. Specifically in the case of a workload consisting of the
20 popular webpages from different categories, our approach
loads 73% of the pages in less than two seconds while under
PBB, only 28% of the pages load in that time. To the best
of our knowledge, this paper is the first work to use the
speculative loading approach in a network-based proxy server
for improving mobile user experience.

C. Paper Organization

The rest of the paper is organized as follows. Section II in-
troduces our proposed solution and discusses different aspects
of it. Section III offers results on the performance evaluation
of the system. Section IV presents a detailed review of the
related work. Finally, the paper is concluded in Section V.

II. WEBPRO: PROXY-BASED SPECULATIVE LOADING

A. System Architecture

In order to eliminate the initial fetch time at the remote
proxy, we take advantage of the speculative loading approach.
The basic idea of speculative loading is to use the previously
recorded knowledge about the structure of a website during
the page load process. Our system, called WebPro, is depicted
in Figure 3. WebPro equips the remote proxy with a profiling
module that pro-actively and periodically loads webpages from
a set of top visited websites and records their resource lists
in a metadata repository. The list of top websites can be
inferred from the web browsing behaviour of the users of the
system. As will be discussed later, the memory footprint of
keeping resource lists is very low, which means that the proxy
can easily keep metadata for a large number (on the order
of hundreds if not thousands) of websites. Consequently, the
proxy does not need to employ any sophisticated mechanism

1The difference between EEP and PARCEL solutions is discussed in the
related work section of this paper.

Browser

Local Proxy

Mobile Device

Remote
Proxy

Metadata
Repository

Profiler

Proxy Server

1. Page Request (URL)

5. Page in Bundle

2. URL

3. Resource List

Page Structure
Information

4. Individual Objects

Web Servers

Internet

Fig. 3: High Level Architecture of WebPro.

for identifying top visited websites, which is an advantage
when implementing the system.

After receiving a request to load a webpage at the remote
proxy, if the resource list of that page already exists in the
metadata repository, multiple parallel connections will be used
to fetch the objects in the resource list. In case the remote
proxy receives a request for the first time and notices the
absence of the corresponding resource list, it will use the
legacy approach of PBB by loading the page in a web engine.
Once all the required objects of a webpage are fetched, remote
proxy packs them in a bundle and sends it to the local proxy.
Figure 4 shows the download pattern of this proxy-based
system.

A defining feature of WebPro is that the profiler on the
remote proxy can always keep a decent and fairly recent
version of the resource lists for user requested webpages.
However, the freshness of the maintained resource lists will
depend on the frequency of change in the structure of the
webpages. In Section III-D1, we will present measurement
results indicating that on average the amount of such change
within a few hours is relatively small. Therefore, given the
abundance of the computation and communication resources at
remote proxy, it should be feasible for the profiler to capture
the temporal changes in resource structures by updating its
metadata repository in a timely manner. Notice that doing so
on the mobile device using a client-based approach is not
feasible due to bandwidth and battery limitations. Also it is
noteworthy that an optimized implementation of the proxy will
not penalize the page load times in the case of websites with
the rapidly changing structures (such as social media news feed
sites), but it may not improve them either.

In order to learn and utilize the aggregate browsing activity
of users in WebPro, whenever the remote proxy loads a page
for the first time through the web engine, it also adds the
corresponding resource list to the metadata repository. This
way, the remote proxy will be able to exploit the common
browsing activity across different users.

It is important to note the difference between WebPro and
traditional proxy-based caching systems [19]. Those systems
cache the actual content of web objects, which limits their
efficiency as most web objects can not be cached or have a
short expiration time [7]. However, with WebPro, the remote

Browser Local Proxy Remote Proxy Web Server

Metadata
Repository

Compress and Bundle

Unbundle and
Decompress

Fig. 4: Downloading a Webpage with WebPro.

proxy just keeps a list of the referenced URLs and fetches a
fresh copy of the corresponding objects at each page request.
Despite this difference, WebPro could be augmented with
traditional caching as well in case some objects are usable
because there is plenty of storage/processing capacity available
at the remote proxy.

B. Circumventing Webpage Dependencies

In addition to eliminating the initial HTML fetch time,
there are other reasons that lead to a reduced page load time
in our approach. Those reasons are based on the fact that
the activities involved in the process of loading a page are
inter-dependent and can block each other [16]. For example,
some of the objects may be referenced by a JavaScript or
CSS file and loading those objects depends on evaluating
the referencing scripts. Also, downloading and evaluating a
synchronous JavaScript file blocks HTML parsing during the
page load process.

The immediate implication of such dependencies is that a
web engine’s resource loading operations are not fully parallel
and discovering web objects can be further delayed because of
script evaluations and other dependencies. However, WebPro
can use a previously recorded resource list and hence load
all the required objects of a page without going through such
dependent operations.

C. Practical Considerations

Webpage Customization: A growing number of websites
provide a mobile version of their content which contains
fewer and smaller images and short and concise text [2]. Also
browser-dependent code in some webpages can download
different set of objects for different browsers [14]. Therefore
in order to comply with users’ actual needs, the remote proxy
needs to be aware of the client attributes such as user-agent
and device’s screen information. To this end, client provides
this information to the proxy when it sends the initial request
for the page. By using such information, the proxy will be able
to imitate the client device when requesting objects from web
servers. This way, proxy can also incorporate the resource list
of the corresponding mobile website in its metadata repository.

Incremental Rendering: The bundling feature in WebPro

enables the mobile device to stay in low power state during the
entire time that remote proxy fetches the embedded objects of
a page. While this can reduce energy consumption of mobile
web browsing, it delays receiving the first set of objects by
the browser which is required for the partial rendering of the
page. To enable drawing intermediate displays in browser, we
can envision WebPro without bundling in which the proxy
forwards each object to the client as soon as it receives the
object from a web server. Clearly, such a scheme has the
potential to further reduce page load times with the cost of
increased energy consumption (compared to WebPro with
bundling).

Cost of Stale Records in Resource List: Notice that
a webpage’s structure can change since the last visit by the
profiler which can lead to staleness of some of the records
in its corresponding resource list. Considering the superior
network connectivity and processing power of remote proxy
we can ignore the overhead of fetching such stale objects on
the proxy. On the other hand, a recent study of object sizes
in the top 500 Alexa websites reveals that most of the web
objects are typically small to moderate, with the median size
being 18 KB [14]. Also because of selective compression
component in WebPro, some of those small objects will
be compressed before being included in the batch which is
usually around a few megabytes for popular webpages. As a
result, the overhead of stale objects for mobile device appears
as a few extra kilobytes added to the size of a typically large
batch file. However, the benefits of WebPro, and specifically
elimination of base HTML fetch time, far outweighs such a
negligible overhead. On the contrary, a client-only solution
may incur significant costs in terms of energy and delay as
fetching each of those stale objects can cause state promotion
and demotion in the radio of the device.

Profiling Overhead: In WebPro, it is expected that usually
the profiler’s visit to a page will occur at an earlier time
than serving a user request for that page. However in PBB,
each page request triggers a new process of identifying page
resources at proxy. Therefore in a setting that most webpages
already have a corresponding resource list at proxy, the
majority of user requests can be served without incurring any
overhead due to profiling.

Handling Asynchronous JavaScript Requests: Most
modern webpages use Asynchronous JavaScript requests
(AJAX) to dynamically load contents such as advertisements
even after the page is loaded (i.e., after the onload event).
Usually such requests are for session dependent content and
hence it would be better to fetch those objects directly from
the web servers rather than the proxy. To accomplish this,
the local proxy adopts a selective forwarding approach in
which it forwards the initial page request to the remote proxy
and after receiving the page batch from the remote proxy,
forwards all subsequent requests to the corresponding web
servers.

D. Prototype Implementation

Our current implementation of WebPro uses the Qt SDK
version 5.3. Especially, QWebKit class which is a result of
integration of WebKit into Qt enabled us to develop the

web engine component of the system. Also considering that
for evaluating WebPro, we compare its performance with
PBB, both approaches were implemented using the same Qt
libraries. Here we briefly introduce the important parts of our
implementation.

1) Resource Profiler: Profiler is responsible for construct-
ing and updating webpage resource lists and storing the
metadata information on the remote proxy. The Profiler is
basically a WebKit-based web engine which loads webpages
on demand. Note that loading a page in the profiler involves all
the steps of opening a webpage except rendering. This way, we
can obtain the list of all the objects whether they are resulted
from parsing or from JavaScript/CSS evaluations. In particular,
we intercept the network activity of this web engine and record
the corresponding URLs of all the HTTP requests.

As mentioned in Section II, webpages from the set of
popular websites should be loaded periodically in order to keep
an up-to-date repository of resource lists on the remote proxy.
This is achieved by a bash script that wakes up periodically
and iteratively invokes profiler with a URL from a list of top
visited websites.

A hash function of the URL determines the unique name
and directory of the file that stores its resource list in the
repository. In contrast to caching, storage overhead of this
approach is negligible because instead of storing actual content
of the objects, the proxy stores URLs of those objects. In
our experiments, the total space required to store the resource
lists of 20 popular websites was about 234 KB. As a result,
the entire repository of resource lists can be loaded in the
main memory during the operation of the proxy. Disk access
is required only for backup purposes.

2) Object Bundling: We use libtar library to implement
bundling in remote proxy and unbundling in the client proxy.
In our experiments, the time spent in bundling and unbundling
is negligible and has a minimal effect on page load times. For
example, in the case of an experiment with www.cnn.com
which contained 139 objects with a total size of 2.6 MB, the
time spent in bundling was only 32 milliseconds.

3) Selective Compression: According to the results re-
ported in [20], objects that have an image or video
content-type and also most objects with binary data (e.g.
app/octet-stream) already are in compressed form and there
is very little room for saving. On the other hand, text files
such as HTML, XML, JavaScript, and CSS can benefit greatly
from compression. In line with this, the remote proxy has a
selective compression component that uses the zlib [21] library
to compress the body of HTTP responses with the text MIME
type. We implemented bundling and selective compression in
the same way for PBB as well.

4) Filtering Dynamic URLs: Many websites these days
contain references to third party advertisement networks and
web tracking systems. Tracking or targeted advertising is done
by inclusion of a JavaScript code in a webpage that is executed
when a user visits that page. Usually such JavaScript codes
use random numbers or date information to create requests
with dynamic URLs (i.e., different URLs over different visits).
As a result, generated URL at the client’s browser will be
different from the recorded URL at the remote proxy. In other
words, these URLs will change at every request and hence

Web Servers

Proxy

AP

Laptop

BS

Internet

Fig. 5: Experimental Setup with the Remote Proxy.

the Profiler should avoid recording them. To this end, we
have implemented a module in our profiler that filters those
changing URLs during the profiling period. In particular, this
module detects changing URLs based on the prefixes in URLs
and also URLs belonging to a blacklist [22]. To ensure a fair
comparison with PBB, we also equipped PBB’s web engine in
the remote proxy with our filtering module.

Given that the advertisements fetched at different visits
of a page can be of varying sizes and/or belong to different
domains, we also incorporated the filtering module in our client
side proxy to eliminate such variabilities in object load times.

III. PERFORMANCE EVALUATION

In this section, we use our prototype implementation to
demonstrate the effectiveness of WebPro. Notice that we
compare WebPro to benchmark system PBB as opposed to
conventional web browsers, because the previous work [12],
[14] has already shown the superior performance of PBB in
comparison to traditional browsers.

A. Experimental Setup

Client Setup: Figure 5 depicts our experimental setup. We
chose an ASUS UX31A laptop running Ubuntu 14.04 with
built-in WiFi adapter as our mobile terminal. For cellular
measurements, we equipped the laptop device with an LTE
USB modem so that it can access the LTE network provided
by a major Canadian cellular carrier. As mentioned in [10],
the rationale for using laptops instead of smartphones is that
slower processors of smartphones can influence our results on
page load times. Also, by using laptops, we don’t have to
restrict our experiments to those websites that provide a mobile
version of their site.

On the client side, we developed our own browser using
QWebKit library. This way we can log detailed timing
information and also clear browser’s cache programmatically
before each experiment. In practice, any browser can benefit
from our proxy-based solution without any modifications.
It only requires configuring the browser to use the local proxy.

Infrastructure Setup: We performed WLAN measurements
using a Cisco Linksys EA2700 wireless router. The router
was connected to the proxy server through the campus LAN
(100 Mbps Ethernet). We also conducted cellular experiments
over the LTE network at a location with good signal strength.
In the cellular setting, proxy was configured with a public
IP address. The average TCP throughput between the mobile

Webpage
Size
(KB)

of
images

#
of
JS

#
of

CSS

#
of

other

Total #
of

objects
cnn.com 2712 90 36 1 12 139

espn.go.com 2404 76 13 3 5 97
mozilla.org 957 18 5 3 7 33
walmart.ca 3239 51 12 3 4 70
bbc.com 1599 43 24 3 3 73
ebay.ca 4078 132 4 3 9 148

shaw.ca/store 1944 26 20 2 10 58
go.com 3224 22 30 8 16 76

nytimes.com 2974 84 40 8 9 141
deviantart.com 2102 68 14 4 2 88

apple.com 1254 25 18 6 1 50
ikea.com/ca/en 2923 56 13 5 3 77

flickr.com 6736 24 4 2 8 38
ca.ign.com 2473 62 24 13 6 105

microsoft.com 1208 35 10 1 7 53
homedepot.ca 2180 32 12 5 11 60

Wikipedia Article 1932 80 9 2 1 92
cbssports.com 1535 37 26 2 5 70
tripadvisor.ca 3510 78 5 1 4 88

about.com 1437 43 5 2 3 53

TABLE I: Characteristics of the Websites Used in the Experiments.

device and the remote proxy, measured by iperf tool, was
about 52.5 Mbps and 2.5 Mbps in WiFi and Cellular settings,
respectively. Also the average ping RTT between the mobile
device and the remote proxy was about 10 ms and 117 ms
in WiFi and Cellular settings, respectively. The remote proxy
was hosted on a fairly typical machine running Ubuntu 14.04
with no special server capability. This machine is connected to
Internet using a 100 Mbps LAN connection. All experiments
were conducted in a lab environment.

B. Workload Characterization

We selected 20 webpages from top Canadian websites
listed on Alexa [15]. Similar to [10], we used desktop versions
of these websites instead of their mobile versions because
of widespread use of tablets and large screen smartphones.
These webpages were chosen from different categories such as
news, auction, sports, shopping, etc. Table I shows the detailed
properties of our selected webpages. The average page size is
2521.05 KB and the total number of objects ranges from 33 to
148. Anything other than image, JavaScript and CSS is counted
as other.

C. Performance Metrics Used

Page Load Time: We use page load time (PLT) as the primary
indicator of user-perceived performance. In our measurements,
page load time is the time elapsed between the initial page
request and the time when all associated objects of a page have
been downloaded and processed. This time is identified by the
occurrence of the onload event at the browser and includes
the time spent in executing CSS and synchronous JavaScript
files. In the proxy-based systems discussed here, PLT consists
of the following components:

1) Time to request the page from the remote proxy,
2) Time to download all the objects in the resource list

(in WebPro) or the time it takes for the remote proxy’s
web engine to load the page (in PBB),

3) Time to receive the bundle from the remote proxy,
and,

0 1 2 3 4 5 6 7 8
0.8

0.84

0.88

0.92

Hours Passed

A
v
e
ra

g
e
 H

it
 R

a
ti
o

Fig. 6: Temporal Change in Webpage Structures. Drop in the value
of the average hit ratio over time is an indication of the change in
the structure of the webpages. However, the amount of such change
is relatively low over an eight hour period.

4) Time to download all the objects that are missing in
the bundle until the entire webpage is loaded.

Hit Ratio: In order to capture the amount of change in
webpage structures, we use the hit ratio metric. The hit ratio
associated with a webpage’s resource list is the number of
objects from the resource list that are actually requested during
the page load process, divided by the total number of objects
in that resource list. It represents the fraction of the resource
list that is still valid and accurate. A high hit ratio means that
there has been little change in webpage’s structure since the
last time that the profiler visited the page.

D. Measurement Results

1) Change in Webpage Structures: The underlying hypoth-
esis in WebPro is that the resource structure of a website
changes less frequently than the actual content of the objects
and webpages. We note that web publishers usually choose a
short expiration time for web objects and also prevent web
resources from being cached by using “no-store” in the
cache-control HTTP header field.

In line with this, our first experiment studies the temporal
changes in webpage structures. In particular, it monitors the
average hit ratio of the resource lists of the websites presented
in Section III-B. As mentioned in Section III-C, a decline
in the value of the hit ratio associated with a resource list
corresponds to change in that page’s structure. Note that our
selected webpages are a combination of fast changing pages
such as news websites as well as stable homepages of large
companies such as Apple.

We conducted five experiments over the span of five weeks,
each separated by one week. In each experiment, we first
constructed the resource list of the webpages and then used
them to load the same pages every hour over an 8 hour period.
Figure 6 plots the average hit ratio of the webpages among all
the experiments as a function of the hours passed since loading
the page for the first time. We see that the highest amount
of hit ratio is achieved in the first hour, as expected. It can
be observed that the amount of change in webpage structures
over an eight hour period is relatively low. The difference
between the average hit ratio in the first and eighth hours is
less than 0.1 and the maximum amount of hour to hour change
in the average hit ratio is about 0.02. As a result, it should be

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page Load Time (msec)

C
D

F

WebPro

PBB

(a) WLAN Measurements

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page Load Time (msec)

C
D

F

WebPro

PBB

(b) Cellular Measurements

Fig. 7: Cumulative Distribution Function of Page Load Time. WebPro outperforms benchmark PBB. In the WLAN setting, under WebPro,
73% of the pages load in less than 2 seconds. However, in the PBB approach, 28% of the instances complete loading within 2 seconds. In the
cellular environment, under WebPro, 78% of the page loads complete within 6 seconds while under PBB, only 55% of the pages complete
loading in that time.

feasible for the remote proxy to capture the temporal changes
in webpage structures by updating its resource list repository
in a timely manner (every three hours in our experiments).

2) Comparison with Benchmark: Next we compare the
performance of WebPro and the benchmark PBB, using the
webpages presented in Section III-B. Because of the variability
in load times between consecutive page visits, we performed
ten back to back experiments with each page. Our experiments
were conducted during quiet times and the browser’s cache was
cleared programmatically before each experiment. Speculative
loading at the proxy involves using resource lists associated
with user-requested webpages and in our experiments, the
remote proxy used the resource lists that were constructed three
hours before the actual measurements. Given the abundance of
computation and communication resources at the proxy, it is
feasible for the proxy to update its resource list repository
of top visited webpages every three hours. Moreover, the
results of our experiment in the previous section show that the
amount of change in webpage structures within three hours is
negligible.

Figure 7 represents the cumulative distribution function of
page load time under these two approaches in WLAN and
cellular settings. It can be seen that WebPro performs better
in terms of page load time. Figure 7(a) shows that in the
WLAN environment, WebPro helps up to 73% of the pages to
load in less than 2 seconds, while with PBB only 28% of the
instances complete loading in that time. Similarly Figure 7(b)
shows that in the cellular environment, under WebPro, 78% of
the pages finish loading within 6 seconds, but under PBB,
only 55% of the instances finish loading in that time. In
general, across all the experiments performed in the WLAN
and cellular environments, our results indicate that an average
of 26% reduction in page load times can be achieved by using
WebPro. Figure 7(b) also confirms that in cellular networks,
the same webpages experience longer load times underscoring
the importance of page load time reduction in such networks.

Table II zooms into the details of these measurements
by listing two of the webpages with the lowest amount of
improvement and two of the pages with the highest reduction
in load time. It shows that the improvements can range from
5% to 51%. Note that the variability in improvement across

Webpage Page Load Time (ms) ImprovementPBB WebPro
www.tripadvisor.ca 3835 3623 5.5%

www.deviantart.com 10675 10070 5.7%
www.flickr.com 6717 3278 51.2%
www.about.com 4456 2166 51.4%

TABLE II: Improvement in Average Page Load Time.

websites results from several factors, of which we mention
only a few:

• The number of domains that web objects are spread
across which affects the number of unique connections
required to fetch all the objects.

• The size of the website as indicated by the total
number of bytes and also the number of objects.

• Website design which creates different set of depen-
dencies between operations of page load process [16].
This can impose different orders for retrieving web
objects.

• Topological proximity between the client and original
web server or an edge server from content distribution
networks (CDNs).

3) Effect of Page Hit Ratio: In a real deployment, it is
possible that the remote proxy will not have the resource lists
associated with all the user requests. In that case, it will load
the page in a web engine and will send the whole page in a
bundle to the client. That is, the remote proxy will employ a
combination of the web engine-based and speculative loading
approaches to satisfy user requests.

In light of this, our next experiment evaluates the improve-
ments in page load time in a more realistic scenario. Here we
gradually increase the hit ratio for the test webpages, that is
we increase the fraction of user requests with a corresponding
resource list at the proxy. To distinguish this fraction from the
hit ratio metric introduced in Section III-C, we call it page hit
ratio. Using the same webpages presented in Section III-B, we
conducted five experiment runs associated with each page hit
ratio. At each run, the remote proxy uses resource lists for a
random set of pages that are determined based on the page
hit ratio, and employs ordinary page loading for the rest of

0 20 40 60 80 100
30

35

40

45

50

55

60

Page Hit Ratio

A
v
e
ra

g
e
 T

o
ta

l
B

ro
w

s
in

g
 T

im
e
 (

s
e
c
)

(a) WLAN Measurements

0 20 40 60 80 100
70

80

90

100

110

120

130

140

Page Hit Ratio

A
v
e
ra

g
e
 T

o
ta

l
B

ro
w

s
in

g
 T

im
e
 (

s
e
c
)

(b) Cellular Measurements

Fig. 8: Back to Back load time for 20 popular webpages as a function of page hit ratio. An increase in the page hit ratio reduces the total
browsing time. In the case of WLAN and cellular measurements, there is a maximum reduction of 28% and 39%, respectively. The maximum
improvements are achieved at 100% page hit ratio.

the pages. As a clarifying example, assume that the remote
proxy is going to serve 20 distinct page requests. In the case
of 40% page hit ratio, for each run, proxy randomly selects 8
out of the 20 pages to load using resource lists and employs
web engine for loading the remaining 12 pages.

Figure 8 shows the average value for the total time to visit
all 20 webpages back to back as a function of the page hit ratio.
The results are represented with 95 percent confidence interval.
It can be seen that a higher page hit ratio leads to a greater
improvement in user’s browsing experience. The upper bound
of reduction in back to back page load time is 28% and 39%
in the case of WLAN and cellular measurements, respectively.
These upper bounds correspond to a 100% page hit ratio in
both experiments.

4) Effect of Concurrent Connections: As mentioned in
Section II, WebPro uses multiple concurrent connections to
fetch all objects in the resource list associated with a webpage.
Similarly, typical web engines use concurrent TCP connections
to avoid the head-of-line blocking problem and reduce page
load time [23]. However, in modern web engines there is a
limit on the number of concurrent connections per domain. For
example, the Chrome browser on Android mobile operating
system limits the number of simultaneous connections per
domain to 6. The WebKit-based web engine used in our
implementation also caps the number of parallel connection
per host/port combination to 6. This limitation is imposed by
Qt’s network access manager class and hence it is also applied
to our implementation of WebPro, which uses the same class
for network operations.

Our next experiment studies the effect of the number
of concurrent connections on the performance of WebPro
and PBB. Figure 9 shows the average page load time for a
Wikipedia article page under a varying number of maximum
concurrent connections. The results are averaged over 10 runs
and error bars represent 95% confidence intervals. We observe
a significant performance improvement in both approaches by
increasing the number of concurrent connections. Specifically,
increasing the concurrency limit from 2 to 8 results in 48%
and 23% faster page load time in the case of WebPro and
PBB, respectively. The justification for better performance of
WebPro is that an increased number of concurrent connections
allows more subresources to be fetched in parallel.

2 4 6 8
1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

Number of Concurrent Connections

A
v
e
ra

g
e
 P

a
g
e
 L

o
a
d
 T

im
e
 (

m
s
e
c
)

PBB

WebPro

Fig. 9: Average Page Load Time for a Wikipedia article page as a
function of the number of parallel connections. We see that increasing
the concurrency reduces page load time. The benefits are greater for
WebPro as it can fetch more subresources concurrently.

We also found that increasing the concurrency limit beyond
6 leads to marginal improvements in page load times. This can
be due to several factors creating a bottleneck for browsing
performance. For example, by increasing the concurrency
beyond a limit, each connection obtains less bandwidth, which
results in longer delays when downloading objects. On the
other hand, high concurrency requires more TCP connection
states and buffers to be maintained at the remote proxy and
hence increases the processing overhead on the proxy.

Figure 9 also shows that WebPro benefits more from
increased concurrency, compared to the PBB approach. In
particular, a 4% difference in page load time between two
approaches reaches 36%, by increasing the concurrency re-
striction from 2 to 8. This is due to the fact that processing
tasks such as JavaScript evaluation can serialize the page load
process in PBB’s web engine. However, by using the resource
list of a webpage, WebPro can utilize the full potential of
concurrent connections.

5) Effect of Network Delay: As mentioned in Section II,
WebPro improves the performance of mobile web browsing by
eliminating the initial RTT required to fetch the base HTML
file of a webpage. The length of this time can vary depending
on the distance between the remote proxy and web servers, and
the type of networks involved. Other factors such as queuing
delays or congested links can also contribute to the variability

100 200 300 400
2000

4000

6000

8000

10000

12000

14000

Extra Delay Added to RTT (msec)

A
v
e
ra

g
e
 P

a
g
e
 L

o
a
d
 T

im
e
 (

m
s
e
c
)

PBB

WebPro

Fig. 10: Average Page Load Time for a Wikipedia article page as
a function of network delay. We see that higher RTT values lead
to higher page load times. By increasing RTT, PBB incurs higher
latencies compared to WebPro.

in the end-to-end delay between the proxy and web servers. In
order to study the impact of network delay on page load time,
we conducted a set of experiments by artificially controlling
the amount of packet delay in our tests.

We used the dummynet network emulator [24] to inject
extra delay between the remote proxy and web servers. Specif-
ically, we added 100, 200, 300 and 400 ms extra delay to the
round trip time between our device and the servers hosting
the objects referenced in a Wikipedia article page. Figure 10
shows the average page load time under WebPro and PBB
as a function of the network delay. The results represent the
average of ten runs along with the 95% confidence intervals. It
is observed that increasing RTT (i.e., network delay) leads to a
slower browsing experience in both approaches. In particular,
raising the amount of injected delay from 100 ms to 400 ms
increases the average page load time by 136% and 164% in
WebPro and PBB, respectively.

Figure 10 also shows that in larger RTTs the amount of
savings achieved by WebPro increases. This can be explained
by the notions of dependency graph and critical path, in-
troduced in [16]. The dependency graph of a webpage is a
directed acyclic graph with load process activities as nodes.
The edges of this graph represent the dependencies between
those activities. Given that each node is associated with the
duration of completing its corresponding activity, the simplest
form of critical path is defined as the longest path in the
dependency graph. Since in PBB, the extra delay impacts all
the resource loading nodes of a critical path, the overall page
load time will be affected by the aggregate of those extra
delays. However, WebPro avoids traversing the critical path
by downloading the objects in the resource list of a page.

We note that the last two experiments study the behaviour
of WebPro and the PBB under different system conditions,
i.e. concurrency limit and network delay. Given that these
conditions only affect the wired part of the network between
the remote proxy and web servers, we only presented the
experimental results under WLAN setting. Similar behaviour
is expected in the cellular environment.

IV. RELATED WORK

There is a large body of work on improving the perfor-
mance, energy usage and wireless data consumption of web

browsing on mobile devices. Here, we classify the work that
is most relevant to ours.

Client-based Solutions. Traditional solutions based on client-
side caching and prefetching fall in this category. As an
example, the authors of [6] used a machine learning approach
to model the web browsing signature for each individual user.
This model can predict the future web access patterns, enabling
a prefetching scheme to download web content before the
actual user request. Wang et al. [7] used a web dataset to
assess the effectiveness of client-side caching and prefetching
in improving mobile browser speed. Their results indicate that
there is a limited efficiency gain due to caching and prefetching
when it comes to mobile web browsing. Consequently, they
proposed a new technique called speculative loading which
predicts and loads the required resources of a page in parallel
with the base HTML file of the page. However, their approach
requires changing the mobile browser extensively, which limits
its practical feasibility.

One major drawback of the client-only solutions is that
any incorrect prediction can lead to downloading data that
the user may never use. While not a significant problem
in wired networks, this can waste the scarce resources of
mobile battery and wireless bandwidth and hence harm user’s
experience rather than improving it in wireless networks. In
order to accurately balance costs and benefits of prefetching,
authors of [5] proposed a system level solution that provides
explicit prefetching support to mobile applications. However,
their solution requires extensive modifications of the existing
applications. Another drawback of client-only solutions is
that they cannot observe the aggregate behaviour of users and
benefit from their common browsing activities which is at the
heart of traditional caching techniques.

Protocol-based Solutions. SPDY by Google [9] is a
new application layer protocol primarily designed for
reducing latency of web browsing. SPDY multiplexes
multiple data streams over a single TCP connection. It also
enables unsolicited push of embedded objects by web servers
which can speed up the resource loading process in the
browser. Combined with other advanced features, SPDY can
be very effective in reducing the web browsing delay [9].
However this protocol relies on web server support and
given that only 3.4% of all websites support SPDY [25],
its impact so far has been rather limited. Also the next
generation HTTP protocol, HTTP/2, evolved from SPDY and
currently is in the process of being standardized by IETF [26].

Infrastructure-based Solutions. Some of the previous work
in this category has tried to improve the energy efficiency of
mobile web browsing. Aggrawal et. al. [27] proposed a cloud-
based proxy system to reduce the energy consumption of the
smartphone’s data communication by employing aggregation,
redundancy elimination and opportunistic scheduling when
downloading web objects from the network. Wang et. al. [12],
[13] presented a dual-proxy architecture called EEP that
utilizes bundling and compression to reduce the energy
consumption of web browsing in 3G/WLAN networks.

There are also studies that try to reduce both power
consumption and delay of mobile web browsing. For example,
Zhao et al. [8] proposed a Virtual-Machine based architecture

in which a VM-hosted proxy performs all the computation
expensive tasks of mobile browsing and sends a screen copy
of the rendered page to the smartphone. However, as men-
tioned in [3], offloading compute-intensive operations when
loading a webpage has negligible benefits compared to the
improvements resulting from resource loading optimizations.
Also Sivakumar et. al. [14] proposed PARCEL which uses the
same architecture as in EEP while providing the proxy with
the flexibility to optimize the bundle size in a cellular friendly
manner.

Finally, this category includes studies with the goal of
reducing latency of mobile web browsing. Some of them
achieve this goal by reducing the amount of data transmitted
because of web browsing [11], [28], while others employ
solutions that directly deal with network access delay [29]. For
example, Opera Mini [11] and Amazon Silk [28] are cloud-
based browsers that aim to reduce both latency and data usage
of mobile web browsing by offloading portions of the page load
process to the cloud-based proxies. However, a recent study
by Sivakumar et. al. [30] shows that cloud-based browsers
are not always superior in terms of responsiveness and energy
consumption, especially in dealing with client interactions.

The closest research to ours is EEP by Wang et. al. [12],
[13] and PARCEL by Sivakumar et. al. [14]. While their
focus is on reducing the energy consumption by batching and
compression [12]–[14], our main goal is latency reduction
using the speculative loading technique. These solutions are
orthogonal to each other and can be used in combination to
create a solution that is both energy efficient and low latency.

V. CONCLUSION

In this paper, we proposed a system called WebPro for
reducing the latency of mobile web browsing. WebPro is
designed to eliminate the initial round-trip time required to
discover the list of objects referenced in a webpage by using
a previously recorded resource list of the webpage. Using
measurements involving real world websites, we showed that
within a few hours, the amount of change in the structure
of webpages is relatively low, and hence it is feasible for
WebPro to maintain an updated resource list of the popular
websites. We performed a detailed set of experiments to
assess the efficiency of a prototype implementation of the
system. Our results indicate that WebPro outperforms state-
of-the-art in terms of the page load time, though the amount
of improvement varies between webpages. This work is a
step toward optimizing the existing wireless infrastructure and
mobile applications for an improved quality of experience. In
the future, we plan to incorporate opportunistic scheduling in
WebPro to further reduce the transmission energy consumption
on the mobile device during web browsing.

REFERENCES

[1] S. Souders. Velocity and the bottom line, (accessed February 14, 2015),
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html.

[2] J. Huang et al., “Anatomizing application performance differences on
smartphones,” in Proc. ACM MobiSys, 2010, pp. 165–178.

[3] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “Why are web browsers
slow on smartphones?” in Proc. ACM HotMobile, 2011, pp. 91–96.

[4] F. Qian et al., “Web caching on smartphones: ideal vs. reality,” in Proc.
ACM MobiSys, 2012, pp. 127–140.

[5] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson,
“Informed mobile prefetching,” in Proc. ACM MobiSys, 2012, pp. 155–
168.

[6] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas,
“Pocketweb: Instant web browsing for mobile devices,” in Proc. ACM
ASPLOS, 2012, pp. 1–12.

[7] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “How far can client-
only solutions go for mobile browser speed?” in Proc. ACM WWW,
2012, pp. 31–40.

[8] B. Zhao, B. C. Tak, and G. Cao, “Reducing the delay and power
consumption of web browsing on smartphones in 3G networks,” in
Proc. IEEE ICDCS, 2011, pp. 413–422.

[9] SPDY: An experimental protocol for a faster web, (accessed November
6, 2014), http://www.chromium.org/spdy/spdy-whitepaper.

[10] J. Erman, V. Gopalakrishnan, R. Jana, and K. Ramakrishnan, “Towards
a SPDY’ier mobile web,” in Proc. ACM CoNEXT, 2013, pp. 303–314.

[11] Opera mini browser, (accessed November 8, 2014),
http://www.opera.com/mobile.

[12] L. Wang and J. Manner, “Energy-efficient mobile web in a bundle,”
Computer Networks, vol. 57, no. 17, pp. 3581–3600, 2013.

[13] L. Wang, B. Yu, and J. Manner, “Proxies for energy-efficient web access
revisited,” in Proc. ACM e-Energy, 2011, pp. 55–58.

[14] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakrishnan, S. Lee,
S. Rao, and S. Sen, “PARCEL: Proxy assisted browsing in cellular
networks for energy and latency reduction,” in Proc. ACM CoNEXT,
2014, pp. 325–336.

[15] Alexa Internet Inc. “Top Sites in Canada”, (accessed November 8,
2014), http://www.alexa.com/topsites/countries/CA.

[16] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying page load performance with wprof,” in Proc. USENIX
NSDI, 2013.

[17] A. Gerber, S. Sen, and O. Spatscheck, “A call for more energy-efficient
apps,” AT&T Labs Research, 2011.

[18] R. Mahindra, H. Viswanathan, K. Sundaresan, M. Y. Arslan, and
S. Rangarajan, “A practical traffic management system for integrated
LTE-WiFi networks,” in Proc. ACM MobiCom, 2014, pp. 189–200.

[19] G. Barish and K. Obraczka, “World Wide Web Caching: Trends and
Techniques,” IEEE Communications Magazine, vol. 38, pp. 178–184,
2000.

[20] F. Qian, J. Huang, J. Erman, Z. M. Mao, S. Sen, and O. Spatscheck,
“How to reduce smartphone traffic volume by 30%?” in Proc. PAM,
2013, pp. 42–52.

[21] L. Deutsch and J. Gailly, “Rfc 1950: Zlib compressed data format
specification version 3.3,” IETF, May 1996.

[22] J. van den Brande and A. Pras, “The costs of web advertisements while
mobile browsing,” in Information and Communication Technologies.
Springer, 2012, pp. 412–422.

[23] B. Thomas, R. Jurdak, and I. Atkinson, “SPDYing up the web,”
Communications of the ACM, vol. 55, no. 12, pp. 64–73, 2012.

[24] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 2, pp. 12–20, 2010.

[25] Usage Statistics of SPDY for Websites, (accessed February 3, 2015),
http://w3techs.com/technologies/details/ce-spdy/all/all.

[26] D. Stenberg, “HTTP2 explained,” ACM SIGCOMM Computer Commu-
nication Review, vol. 44, no. 3, pp. 120–128, 2014.

[27] B. Aggarwal, P. Chitnis, A. Dey, K. Jain, V. Navda, V. N. Padmanabhan,
R. Ramjee, A. Schulman, and N. Spring, “Stratus: energy-efficient mo-
bile communication using cloud support,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 4, pp. 477–478, 2010.

[28] Amazon silk browser, (accessed November 8, 2014),
http://amazonsilk.wordpress.com/.

[29] R. Chakravorty, A. Clark, and I. Pratt, “Optimizing web delivery over
wireless links: design, implementation, and experiences,” Selected Areas
in Communications, IEEE Journal on, vol. 23, no. 2, pp. 402–416, 2005.

[30] A. Sivakumar, V. Gopalakrishnan, S. Lee, S. Rao, S. Sen, and
O. Spatscheck, “Cloud is not a silver bullet: A case study of cloud-
based mobile browsing,” in Proc. ACM HotMobile, 2014.

