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Abstract—In this paper, we study resource reservation in vir-
tual wireless networks with the aim of minimizing the operational
cost. With this regard, the main constraint facing the operator
is that only limited information about future traffic demand is
typically available to the operator. To address this issue, we
investigate reservation policies that are robust to the worst-
case traffic demand which fits the available information i.e., the
policies that minimize the worst-case expected operational cost.

The problem is formulated for several resource reservation
options that are commonly offered in practice. For each case,
convexity of the problem is discussed and the its dual form
is presented as a semidefinite program. While, semidefinite
programs can be solved in polynomial time, the optimal closed-
form reservation policies are obtained for several practical cases.
Moreover, the worst-case cost of these policies are analytically
compared to the expected cost of the algorithm that has full
knowledge of the future demand.

The theoretical analysis is supplemented with numerical results
to demonstrate the behavior of our algorithms in terms of cost
in some example traffic scenarios.

I. INTRODUCTION

Over the past few years, due to proliferation of high-end
hand-held devices e.g., smartphones and tablets, the amount of
data traffic on cellular networks has grown exponentially [1].
This trend is expected to continue in the coming years as the
amount of traffic in 2019 is predicted to increase tenfold over
2014 [2]. To keep up with the traffic demand, mobile operators
are constantly enhancing the cellular network capacity by
moving towards denser deployment of base stations (BSs)
[3] in addition to adopting more advanced communication
techniques [4]. Doing so, fewer users are associated to each
BS which in turn provide them with higher data rates.

Evolving towards dense small cell deployment of the cellu-
lar network imposes higher capital and operational expenditure
on mobile operators. Furthermore, as cellular traffic changes
from voice-dominated to data-dominated the revenue per bit
transferred is decreasing at a fast rate [1]. This motivates
designing new mechanisms to save and reduce the operational
cost of cellular networks [5], [6]. Among these mechanisms,
sharing the network infrastructure is particularly interest-
ing [3], [6] as it allows to statistically multiplex multiple
isolated and customized services or operators on the same
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physical infrastructure which results in better utilization of
resources and hence reduced capital and operational expendi-
ture.

The key enabling technology that could facilitate network
sharing is virtualization [7], [8] which refers to providing an
abstraction of hardware, computing, or spectrum resources
of the network and slicing them to virtual resources. This
abstraction mechanism allows a virtual operator to utilize the
cellular network and provide wireless access service to its
subscribers without becoming involved in the physical and
operational details of the underlying infrastructure. However,
this model presents new challenges that need to be addressed.
Most importantly, as virtual operators typically provide users
with customized or low-cost services, their operational cost
should be low to make their service economical. Thus, the
essential challenge is to find policies for acquiring virtual
resources that lead to minimizing the monetary cost that is
paid by the mobile virtual network operators (MVNOs) to
the cellular Infrastructure Provider (InP). These policies would
naturally depend on the resource pricing mechanisms that are
implemented by the cellular InPs. In this paper, we consider
a pricing mechanism where the cellular InP offers the option
of reserving virtual resources at a cost that is lower than the
cost of acquiring resources online. Reservation-based pricing
mechanisms are common in other domains and are currently
offered by many Infrastructure-as-a-Service (IaaS) providers
including Amazon EC2 and IBM SmartCloud Enterprise.

To make accurate resource reservation, an MVNO needs
to have some information about future traffic demand, which
normally is not available in a live operational network. How-
ever, as highlighted in [5], [9], the cellular traffic exhibits
periodic behavior. In [9], it is shown that a multi-order Markov
model is able to predict the day-ahead aggregate traffic at
per hour granularity with reasonably small mean squared
error. Hence, we can assume that the MVNO has access
to simple statistical information regarding the future traffic
demand distribution e.g., its mean and variance. Accordingly,
the uncertainty in the future demand can be described by
the set of traffic distributions that are compatible with such
prior information [10]. A sensible approach for an MVNO
to hedge against this uncertainty is to follow the so-called
ditributionally robust optimization [10], [11] framework that
considers the worst-case distribution. This way, the operator
chooses the reservation policy that minimizes the worst-case
expected cost of the operation. An interesting feature of978-1-4673-7113-1/15/$31.00 c©2015 IEEE



this approach is that no assumption is made about the real
distribution of traffic.

To the best of our knowledge, reservation-based resource
acquisition has not been investigated in the context of mobile
virtual networks. Most related to our work are [12]–[14].
In [12] reservation of computing instances in IaaS providers
without any statistical information is investigated. The problem
is shown to be a generalization of the well-studied ski-rental
problem [15] which it admits to constant-factor approximation.
The effect of various statistical information on the optimal
solution to the ski-rental problem is investigated in [13], [14].
In contrast to the above works that allow the decision maker
to buy the ski (reserve the required resources) at any point
during the time frame of the operation, we allow the MVNO
to reserve virtual resources only at the beginning of the time
frame. This model is similar to the one employed in electricity
markets [16] where a utility company can purchase electricity
either from the day-ahead market or the real-time market.
Consequently, the algorithms and performance guarantees pre-
sented in [12]–[14] do not apply to our problem.

Our contributions in this work can be summarized as
follows:
• We present several virtual resource reservation models

that are offered in practice. For each model, we formulate
the minimax optimization problem that is associated with
minimizing the worst-case expected cost of the system.

• Solving the dual problem associated with the worst-case
expected cost of each model, we present the correspond-
ing closed-form optimal reservation policy where the
statistical information is limited to the mean and variance
of the traffic distribution.

• We study the effect of having higher order statistics on
the performance of the proposed policies and show that
even having access to variance information in addition
to the mean information could significantly improve the
performance of the presented algorithms.

The paper is organized as follows. In Section II, the system
model is introduced and the minimax reservation problem is
formulated. In Sections III, IV, and V, the problem is solved
for each of the considered reservation models. Section VI
discusses extension of the model to higher order statistics.
Sample numerical results are presented in Section VII. Finally,
Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system consisting of a cellular InP and a
MVNO. The InP owns a set of BSs covering the network
and their backhaul connection to the Internet. The MVNO
acquires virtual resources from the InP and provides service
to its users. We focus on the operation of the MVNO on a
single base station. Time is divided into equal size frames.
The frame duration is chosen so that statistical characteristics
of the traffic demand remain fairly consistent e.g.,an hour [9].
A frame is further divided into equal size times e.g., 10-minute
intervals.

Fig. 1. Illustration of demand and reservation in each frame..

Reservation can only take place at the beginning of each
frame. However, if the reserved bandwidth 1 does not satisfy
the demand at a specific timeslot, the MVNO can acquire
additional bandwidth at the online price. We assume that there
exists a bound D on the traffic demand in every timeslot.

Since we assume the traffic distribution remains the same
during a frame, the optimal reserved bandwidth is the same
for all the timeslots of the frame. This model is exemplified
in Figure. II. The figure demonstrates two frames of size 6
timeslots. As can be seen, in the first frame, the reserved
bandwidth B1 does not satisfy the demand in timeslots t0−t1,
t3 − t4, t4 − t5, and t5 − t6, thus, the operator is forced
to purchase more bandwidth in these timeslots. In addition,
demand is predicted to be higher in the next frame, thus, the
reserved bandwidth (B2) is larger in the second frame.

A. Reservation models

We consider three reservation models that are offered in
practice:
• Reservation with No Usage Fee (NUF). In this model,

the virtual operator pays an upfront fee for the reserved
bandwidth B. The usage up to this limit is free of charge.
However, if additional bandwidth is required, it can be
purchased at the online price. This model is similar to
electricity market pricing where the utility company can
procure the required electricity either in the day-ahead
or real-time markets [16], [17]. Typically, the average
price in the day-ahead market is lower than the real-time
market. In this model, the cost incurred to satisfy demand
x at a timeslot where bandwidth B is reserved in the
corresponding frame is given by

costNUF (x,B, pB , pO) = pBB + pOmax(x−B, 0)
= pB(B + ρmax(x−B, 0)),

(1)

where pB and pO are the base (reservation) and average
online prices per timeslot, respectively, and ρ denotes the
ratio of these prices i.e., ρ = pO

pB
.

1We use the terms virtual resource and bandwidth interchangeably from
now on.



TABLE I
AMAZON EC2 PRICING FOR AN INSTANCE OF LINUX MACHINE AT US

EAST AS OF FEB 23, 2015. RESERVATION PRICES ARE FOR 1-YEAR
INSTANCE RESERVE.

Instance Type Payment Option Upfront Hourly
Small On demand 0 0.026

Partial upfront 102 0.0059
All upfront 151 0

Medium On demand 0 0.026
Partial upfront 218 0.004
All upfront 303 0

• Reservation with Discounted Usage Price (DUP). In
this model, the virtual operator pays a smaller upfront
fee for the reserved bandwidth B compared to reservation
with NUF. However, the operator also pays for utilizing
the reserved bandwidth albeit at a discounted price.
As before, additional bandwidth can be acquired at the
online price. This model is particularly common among
Infrastructure-as-a-Service (IaaS) providers e.g., Amazon
EC2 [18]. Table I shows how Amazon EC2 charges
users for a medium-sized Linux machine instance. As
demonstrated, other than on demand pricing, there is
an all upfront option which is similar to reservation
with NUF and there is a partial upfront option which is
similar to reservation with DUP. In this model, the cost
of satisfying demand x where bandwidth B is reserved
is as follows

costDUP (x,B, d,pB , pO) = pBB + 1{x≤B}dpOx+

1{x>B}pO(dB + (x−B)),
(2)

where 1E is the indicator function for event E and 0 <
d < 1 denotes the price discount factor (i.e., the ratio
between the charged and online price). Note that if x ≤
B, other than the reservation cost, the operator only pays
the discounted price for usage. However, if x > B, up
to B, the usage price is discounted while the additional
bandwidth i.e., x − B is purchased at the online price.
This cost function can be simplified as

costDUF (x,B, d, pB ,pO) = pBB + pdx+

(pO − pd)max(x−B, 0)
= pB(B + αx+ βmax(x−B, 0)),

(3)

where pd = dpO and β = ρ− α = pO−pd
pB

.
• Reservation with Discounted Online Price (DOP). In

this model, usage of the reserved bandwidth is free of
charge. In addition, as more bandwidth is reserved, the
virtual operator receives more discount on the online
price of the additionally required resources. This model is
motivated by the data plans offered by mobile operators
e.g., Koodo mobile [19] and Fido [20] in Canada. For
example, Table II depicts the monthly plans offered
by Koodo mobile [19]. As demonstrated, going from a
35$/month plan to a 60$/month plan reduces the cost of

additional data from 5$/100 MB to 5$/250 MB. In this
model, the cost of satisfying demand x can be formulated
as

costDOF (x,B, pB , pO) = pB(B+ρ
D −B
D

max(x−B, 0)) .
(4)

The online price is proportional to D−B
D . Thus, for every

two reservations B1 and B2 such that B2 > B1, we have
D−B2

D < D−B1

D .

B. Problem formulation

At the beginning of a frame, the operator can only observe
limited information about the future traffic distribution. This
information includes first k moments µ = [µ1, µ2, . . . , µk] of
the distribution. The moment vector µ defines the set f(µ)
of traffic distributions that fit this vector i.e.,

f(µ) = {f(x)|f(x) ≥ 0,

∫
f(x) = 1,

∫
xif(x) = µi} .

(5)

As the operator is not aware of the actual distribution,
it should plan for the worst-case distribution. Assume that
reservation pricing is performed according to some model R
(one of the previously introduced models). Then, the worst-
case expected cost of the system for the reserved bandwidth
B and the moment vector µ is defined as

COSTR(B,µ,Rp) = max
f(µ)

∫ D

0

f(x)costR(x,B,Rp)dx,

(6)
where costR(x,B,Rp) denotes the cost of satisfying demand
x based on reservation model R given the reserved bandwidth
B. Rp denotes the associated parameters vector e.g., base
price, etc.Then, the goal of the operator is to find the optimal
reserved bandwidth B∗ such that

B∗ = argmin
B

COSTR(B,µ,Rp) . (7)

In the following sections, we solve this problem for all of
the above reservation models where the available information
is limited to the first and second moment. To do so, we utilize
the following observations.

Observation 1. If f(x) is a probability distribution i.e.,
f(x) ≥ 0,

∫
f(x)dx = 1, φ1(B) is a function of B, and

φ2(x,B) is a function of x and B, then∫
f(x)

[
φ1(B)+φ2(x,B)

]
dx = φ1(B)+

∫
f(x)φ2(x,B)dx .

(8)

Observation 2. If f(x) is a probability distribution, f(x) is
a set of distributions, φ1(B) and φ3(B) are functions of B,
and φ2(x,B) is a function of x and B, then

max
f(x)
{
∫
f(x)

[
φ1(B)+φ3(B)φ2(x,B)

]
dx} =

φ1(B) + φ3(B)max
f(x)
{
∫
f(x)φ2(x,B)dx} .

(9)



TABLE II
KOODO MOBILE’S CANADA-WIDE DATA PLANS AS OF FEB 23, 2015.

Mnthly Fee 35$ 40$ 45$ 50$ 60$
Anytime Minutes 200 300 500 750 UNLIMITED
Data UP TO 50 MB UP TO 300 MB UP TO 500 MB UP TO 750 MB UP TO 1 GB
Additional Data $5/50 MB $5/100 MB $5/100 MB $5/100 MB $5/2500 MB

C. Evaluation metrics

Following the literature on online algorithms [15], the
performance of the proposed reservation policies is evaluated
w.r.t the optimal offline algorithm that knows the exact amount
of future traffic during the frame. Let costR(x,B∗,Rp) denote
the cost satisfying demand x based on reservation model
R given the optimal reserved bandwidth B∗ and associated
parameters vector Rp. The metrics are as follows:
• Expectation of ratio (EoR). The worst-case expected

ratio of the cost incurred by the optimal reservation policy
B∗ and the cost of the offline algorithm i.e.,

EoRR = max
f(µ)

E
[costR(x,B∗,Rp)
costoff (x,Rp)

]
. (10)

• Ratio of expectation (RoE). The worst-case ratio of the
expected cost incurred by the optimal reservation policy
B∗ and the expected cost of the offline algorithm i.e.,

RoER = max
f(µ)

E[costR(x,B∗,Rp)]
E[costoff (x,Rp)]

. (11)

In the following sections, we find the optimal reservation
policy for each of the above-mentioned reservation models and
discuss their characteristics w.r.t the evaluation metrics.

III. RESERVATION WITH NUF

Without loss of generality, we assume pB = 1. We aim to
find the optimal reserved bandwidth B∗ for reservation with
NUF model which is defined as

B∗ = argmin
B

COSTNUF (B, ρ,µ), (12)

where COSTNUF (B, ρ,µ) is given by

max
f(µ)
{
∫ D

0

f(x)[B + ρmax(x−B, 0)]dx}

= B + ρmax
f(µ)

∫ D

0

f(x)max(x−B, 0)dx} .
(13)

First, we prove some of the properties of (13).

Theorem 1. The cost of reservation with NUF (13) is convex
w.r.t B.

Proof: First, we show that for a specific f(x) ∈ f(µ),
the objective of (13) is convex w.r.t B. B is linear w.r.t B and
ρ is positive so it suffices to show that∫ D

0

f(x)max(x−B, 0)dx

is convex w.r.t B. To do so, we confirm that its second
derivative is nonnegative w.r.t B [21]. First, based on Leibniz
integral rule [22], we have

d

dB

∫ D

0

f(x)max(x−B, 0)dx

=
d

dB
[

∫ B

0

0dx] +
d

dB
[

∫ D

B

f(x)(x−B)dx]

= −
∫ D

B

f(x)dx+ f(D)(D −B) · 0− f(B)(B −B) · 1

= −
∫ D

B

f(x)dx .

Then, we find the second derivative as follows

d

dB2

∫ D

0

f(x)max(x−B, 0)dx =

= − d

dB
[

∫ D

B

f(x)dx]

= −[
∫ D

B

0dx+ f(D) · 0− f(B) · 1]

= −[−f(B)] = f(B) .

Thus, d
dB2

∫D
0
f(x)max(x − B, 0)dx = f(B) ≥ 0, which

proves the convexity of the objective.
Second, we take max operation over the set of all traffic

distribution functions that satisfy the moment vector µ. Note
that the max function is a convex function [21] i.e., if
f1(x), f2(x), . . . , fn(x) are all convex functions then

max{f1(x), f2(x), . . . , fn(x)}

is a convex function. This completes the proof.
Problem (12) has some integral constraints. In the next

section, we show how they are eliminated through duality.

A. Dual formulation

To find COSTNUF (B, ρ,µ), we should solve the following
problem

max

∫ D

0

f(x)[B + ρmax(x−B, 0)]dx

s.t:
∫ D

0

f(x)dx = 1,∫ D

0

xif(x)dx = µi, 1 ≤ i ≤ k .

(14)



Associating the Lagrange multiplier λ0 to the first constraint
and multiplier λi to each µi constraint, the Lagrangian asso-
ciated with the problem (14), is found as

L(λ, x) = λ0 +

k∑
i=1

λiµi+

∫ D

0

f(x)
[
B + ρmax(x−B, 0)−

k∑
i=0

λix
i
]
dx .

(15)

Also, the dual function is defined as

g(λ) = sup
x
L(λ) . (16)

Note that if
∑k
i=0 λix

i < B+ρmax(x−B, 0) for some x1,
we can set f(x1) = ∞ and achieve g(λ) = ∞ 2. Therefore,
the dual function is defined as follows

g(λ) =


λ0 +

∑k
i=1 λiµi, if

∑k
i=o λix

i ≥
B + ρmax(x−B, 0)

∞, otherwise,

which results in the following dual problem for (14)

min
λ

λ0 +

k∑
i=1

λiµi

s.t:
k∑
i=0

λix
i ≥ B + ρmax(x−B, 0), 0 ≤ x ≤ D .

(17)

With a similar argument, we can state the following obser-
vation.

Observation 3. The solution to maxf(µ) E{φ(x)} for µ =
[µ1, . . . , µk] is given by the following program

min λ0 +

k∑
i=1

λiµi

s.t:
k∑
i=0

λix
i ≥ φ(x), 0 ≤ x ≤ D .

(18)

The dual problem has an infinite-dimensional constraint
that includes the polynomial

∑k
i=0 λix

i. These constraints
typically could be transformed to constraints over semidefinite
matrices [23]. Therefore, the dual problem is a semidefinite
program.

B. No reservation policy results in EoRNUF < ρ.

According to the definition of EoR (10), we would like to
find B such that the expected ratio of the optimal reserva-
tion policy and the optimal offline algorithm is minimized.
Suppose that x denotes the demand. The optimal algorithm
always knows the demand exactly, thus, it can reserve the
required bandwidth at the base price which is 1. Therefore

2Recall that the only constraint on f(x) is that it should be nonnegative
and the other constraints of the probability distribution function f(x) have
already been included in the formulation.

its cost would be x while the cost of reservation with NUF is
B+ρmax(x−B, 0). Therefore, we aim to solve the following

min
B

{
max
f(µ)
{
∫ D

0

f(x)
B + ρmax(x−B, 0)

x
dx}

}
. (19)

Based on the duality observation 3, the inner maximization
equals to

min λ0 +

n∑
i=1

λiµi

s.t:
n∑
i=0

λix
i ≥ B + ρmax(x−B, 0)

x
0 ≤ x ≤ D .

Consequently, the dual constraint can be expressed as
n∑
i=0

λix
i+1 ≥ B + ρmax(x−B, 0), 0 ≤ x ≤ D .

Satisfying the constraint for x = 0, we obtain B ≤ 0 which
along with the constraint 0 ≤ B ≤ D results in B = 0.
Therefore, maximizing the inner problem would lead to no
reservation. In this case, the optimal reservation policy always
buys the required resources online which consistently cost ρ
times the offline algorithm. This completes the proof. Note that
this result holds irrespective of the amount of information (the
number of moments) that is available to the virtual operator.
Following a similar argument, the same result (EoR ≮ ρ)
could be obtained for the DUP and DOP models.

C. Reservation with NUF: first moment constraint

In this section, we solve the problem (12) assuming that
the operator is only aware of the traffic mean at the beginning
of th frame. In this case, based on the dual problem formula-
tion (17), COSTNUF (B, ρ, µ) is given by

min
λ

λ0 + λ1µ

st: λ0 + λ1x ≥ B + ρmax(x−B, 0), 0 ≤ x ≤ D .
(20)

The infinite-dimensional constraint of (20) can be separated
into infinite-dimensional constraint

λ1x+ λ0 ≥ B, 0 ≤ x ≤ B (21)

and
λ1x+ λ0 ≥ ρx+ (1− ρ)B, B ≤ x ≤ D . (22)

Based on the endpoint values of x in (21) i.e., x = 0 and
x = B, the former constraint (21) is reduced to the following
linear constraints

λ0 ≥ B
λ1B + λ0 ≥ B .

(23)

For any other point 0 < x < B, constraint (21) can be repre-
sented as a convex combination of λ0 ≥ B and λ1B+λ0 ≥ B.
In addition, based on the end point values, constraint (22) is
reduced to the following set of linear constraints

λ1B + λ0 ≥ B
λ1D + λ0 ≥ ρD + (1− ρ)B

(24)



in which the constraint λ1B + λ0 ≥ B is redundant. Overall,
by the sets of constraints (23) and (24), the following holds
on λ0 and λ1

λ0 ≥ B

λ1 ≥ max{1− λ0
B
, ρ+

(1− ρ)B − λ0
D

} .

Accordingly, problem (20) is transformed to

min
λ0

λ0 + µmax{1− λ0
B
, ρ+

(1− ρ)B − λ0
D

}

st: λ0 ≥ B .
(25)

Observation 4. Given ρ > 1, λ0 ≥ B ≥ 0 , and B ≤ D, the
following holds

1− λ0
B
≤ ρ+ (1− ρ)B − λ0

D
.

Proof: Since 0 ≤ B ≤ D, we have ( 1
D −

1
B ) ≤ 0 and

(1− B
D ) ≥ 0. Also, based on the assumption, we have 1−ρ ≤

0. Therefore, since λ0 ≥ 0, we have

λ0(
1

D
− 1

B
) + (1− ρ)(1− B

D
) ≤ 0

which implies

1− λ0
B
− ρ− (1− ρ)B − λ0

D
≤ 0

or, alternatively;

1− λ0
B
≤ ρ+ (1− ρ)B − λ0

D

Now, assume that

λ0(
1

D
− 1

B
) + (1− ρ)(1− B

D
) > 0

which according to the observation might happen where ρ < 1.
This expression is simplified to

λ0 >
(1− ρ)(1− B

D )

( 1
D −

1
B )

= (ρ− 1)B

which is a looser constraint in comparison to λ0 ≥ B since
ρ− 1 < 0. Therefore, for all ρ > 0, the following constraints

λ0 ≥ B

λ1 ≥ ρ+
(1− ρ)B − λ0

D

(26)

completely specify the domain of the possible solutions
of (20). Thus, the objective of (20) is represented as follows

λ0+µ
(
ρ+

(1− ρ)B − λ0
D

)
= µρ+(1−ρ)Bµ

D
+λ0(1−

µ

D
)

Since the derivative of the objective i.e., (1 − µ
D ) is pos-

itive w.r.t λ0, its minimum is attained at λ0 = B. Thus,
COSTNUF (B, ρ, µ) is given by

COSTNUF (B, ρ, µ) = µρ+B(1− µρ

D
)

Next, we would like to find B∗ that minimizes this cost. The
solution depends on the derivative of the cost w.r.t B which

is 1 − µρ
D . Then, based on the sign of the derivative, B∗ is

obtained as follows

B∗ =

{
0, D > µρ

D, D ≤ µρ.
(27)

Remark. If we have no limit on the maximum demand i.e.,
D =∞, no bandwidth is reserved.

Remark. If the average online price is lower than the base
price i.e., ρ < 1, no bandwidth is reserved.

Theorem 2. Based on the first moment information, RoENUF

is no less than ρ.

Proof: The set of possible distributions is limited to those
that have the mean value of µ. The optimal offline algorithm
knows exactly the amount of traffic demand and reserves it
at the base price at the beginning of the frame. Therefore
for all distributions, the expected cost of the optimal offline
algorithm is µ. Therefore, the denominator in (11) is constant
and for achieving the maximal ratio, the worst-case expected
cost should be considered. On the other hand, based on the
optimal policy (27), where D > µρ, no bandwidth is reserved,
thus, all the required resources are acquired at the online price
which expectedly costs µρ. Therefore, RoENUF = ρ.

D. Reservation with NUF: first and second moment con-
straints

Here, we assume that the operator could observe both mean
µ and variance σ2 of the traffic distribution (µ = [µ, µ2+σ2])
and would like to find B∗ that minimizes the following

COSTNUF (B, ρ,µ) = B+ρmax
f(µ)
{
∫ D

0

f(x)max(x−B, 0)dx} .
(28)

The formulation of (28) corresponds to the European call
option pricing investigated in economics literature [24]–
[26]. The problem is defined as follows. An option provides
the holder with the right to buy a specified quantity of an
underlying asset at a fixed price (called a strike price) at the
expiration date of the option. Then, the expected option price
is defined as follows

Ef{max(x− k, 0)}

where k is the constant strike price and f is the distribution of
the underlying value of the asset x. Lo [25] found the upper
bounds on the European option price where only mean and
variance of the asset distribution is known. The bounds are as
follows

max
f(µ,σ)

{E{max(x− k, 0)}} ={
1
2

[
(µ− k) +

√
σ2 + (µ− k)2

]
, k ≥ µ2+σ2

2µ

µ− k + k σ2

µ2+σ2 , k < µ2+σ2

2µ .

(29)

To find the optimal reserved bandwidth B∗, in the rest
of this section we replace max{

∫D
0
f(x)max(x − B, 0)dx}

in (28) with the above bounds and find the optimal reservation
policy for each bound and compare the results.



First case: B ∈ [µ
2+σ2

2µ , D]. According to (29) we have

COSTNUF1 (B, ρ,µ) = B+
ρ

2

[
(µ−B)+

√
σ2 + (µ−B)2

]
.

(30)
To minimize COSTNUF1 (B, ρ,µ), we take its derivative

w.r.t B which gives

dCOSTNUF1 (B, ρ,µ)

dB
= 1− ρ

2

(
1 +

µ−B√
(µ−B)2 + σ2

)
.

(31)
By setting the derivative to 0, the optimal reserved band-

width is found as follows

B∗ = µ+ σ
ρ− 2

2
√
ρ− 1

. (32)

Let κ = ρ−2
2
√
ρ−1 . Then, COSTNUF1 (B∗, ρ,µ) is obtained

as

COSTNUF1 (B∗, ρ,µ) = µ+ σ[κ+
ρ

2
[
√
1 + κ2 − κ]] .

(33)

Theorem 3. Given B∗ = µ+σκ, RoENUF is of order θ(
√
ρ).

Proof: Recall from the proof of theorem 2 that the
expected value of the optimal offline algorithm is µ. To show
that for B∗, RoENUF is asymptotically equal to

√
ρ, we take

the limit of ratio of both expressions when ρ→∞ i.e.,

lim
ρ→∞

µ+σ
√
ρ[ κ√ρ+

ρ
2 [
√
1+κ2−κ]]

µ√
ρ

=

lim
ρ→∞

1 + σ
µ

√
ρ

√
ρ

=
σ

µ
,

(34)

where the simplification comes from the following

lim
x→∞

(x− 2)

2
√
x− 1

√
x
+

√
x

2

[√
1 +

(x− 2)2

4(x− 1)
− x− 2

4
√
x− 1

]
= 1 .

(35)

Since the achieved ratio is a constant σ
µ > 0, the proof is

complete.
Second case: B ∈ [0, µ

2+σ2

2µ ]. According to (29),
COSTNUF2 (B, ρ,µ) is found as follows

COSTNUF2 (B, ρ,µ) = B + ρ[µ−B +B
σ2

µ2 + σ2
]

= ρµ+B[1 + ρ(
σ2

σ2 + µ2
− 1)]

= ρµ+B[1− ρ µ2

σ2 + µ2
] .

(36)

To obtain the minimum value of COSTNUF2 (B, ρ,µ), we
take its derivate w.r.t B which is given by

dCOSTNUF2 (B, ρ,µ)

dB
= 1− ρ µ2

σ2 + µ2
.

Based on the sign of the derivative, there are two options
for the optimal reserved bandwidth B∗ as follows

• ρ < 1 + σ2

µ2 . In this case, dCOSTNUF2 (B,ρ,µ)
dB > 0 and B

should be set to the minimum possible value i.e., B∗ = 0
which results in COSTNUF2 (B∗, ρ,µ) = ρµ.

• ρ ≥ 1 + σ2

µ2 . In this case B∗ is set to the maximum
possible value i.e.,

B∗ =
µ2 + σ2

2µ

which results in COSTNUF2 (B∗, ρ,µ) = ρµ2 + µ2+σ2

2µ .

In both cases, the expressions of COSTNUF2 (B∗, ρ,µ) are
linearly dependent on ρ i.e., are of the order θ(ρ) which is
asymptotically greater than the result obtained in the analysis
of COSTNUF1 (B∗, ρ,µ) i.e., θ(

√
ρ). Therefore, the optimal

reservation policy is to choose B∗ according to (32).

IV. RESERVATION WITH DUP

The cost function for reservation with DUP model is
defined in (3). In this section, our goal is to find
COSTDUP (B,α, β,µ) for the cases where µ = [µ] and
µ = [µ, µ2 + σ2]. As will be demonstrated in the rest of
the section, although the cost function is different from the
reservation with NUF model, the optimal reservation policies
are very similar.

First, COSTDUP (B,α, β,µ) can be simplified as follows

COSTDUP (B,α, β,µ)

= max
f(µ)
{
∫ D

0

f(x)[B + αx+ βmax(x−B)]dx}

= B +max
f(µ)
{α
∫ D

0

xf(x)dx+ β

∫ D

0

f(x)max(x−B)dx}

= B +max
f(µ)
{αµ+ βE{max(x−B)dx}}

= αµ+B + βmax
f(µ)

E{max(x−B)dx}

.

(37)

The simplification comes from the fact that the virtual
operator at least knows the mean of traffic distribution i.e.,∫D
0
f(x)x = µ. As could be noticed, COSTDUP (B,α, β,µ)

is similar to (13) except for the addition of the term αµ and
the change of ρ to β. Therefore, we can use the results of
section III to obtain optimal policies for reservation with DUP
model. Note that the term αµ is constant w.r.t B, therefore, its
addition to the cost function (13) does not change the proposed
optimal reservation policy. Thus, the optimal reservation policy
for DUP with the first moment constraint is as follows

B∗ =

{
0, D > βµ

D, D ≤ βµ.

Moreover, if D > βµ, no bandwidth would be reserved
which results in the total cost of αµ+βµ = ρµ. The following
holds on RoEDUP .

Theorem 4. Based on the first moment information, RoEDUP

is no less than ρ.



For the case where the available moment vector is µ =
[µ, µ2 + σ2], the worst-case expected cost is found according
to (37) and Lo’s bounds (29). The cost is as follows

COSTDUP (B,α, β,µ) = αµ+B

+
β

2

[
(µ−B) +

√
(µ−B)2 + σ2

] .
(38)

Similar to (32), the optimal reservation policy for DUP with
the first and second moment constraints is given by

B∗ = µ+ σ
(β − 2)

2
√
β − 1

. (39)

The similarity of the above reservation policy to the one for
the NUF model allows us to state the following. The proof is
omitted due to lack of space.

Theorem 5. Given B∗ = µ+ σ (β−2)
2
√
β−1 , RoEDUP is of order

θ(
√
β).

V. RESERVATION WITH DOP

The reservation cost function is defined in (4). In this
section, we find COSTDOP (B, ρ,µ), for the cases where the
known moment vector µ is limited to the first and second
moments.

A. Reservation with DOP: first moment constraint

Based on the dual formulation (3), COSTDOP (B, ρ, µ) is
given by the following optimization program

min
λ

λ0 + λ1µ

s.t: λ0 + λ1x ≥ B + ρ
D −B
D

max(x−B, 0), 0 ≤ x ≤ D .

The constraint can be reduced to

λ0 ≥ B, λ1B + λ0 ≥ B, λ1D + λ0 ≥ B + ρ
(D −B)2

D
,

or equivalently the following constraints on λ0 and λ1,

λ0 ≥ B

λ1 ≥ max{1− λ0
B
,
B

D
+ ρ

(D −B)2

D2
− λ0
D
}

Observation 5. For λ0 ≥ B and B ≤ D, the following holds

B

D
+ ρ

(D −B)2

D2
− λ0
D

> 1− λ0
B
.

Therefore, the problem can be represented as

min
λ0

λ0(1−
µ

D
) + µ[

B

D
+ ρ

(D −B)2

D2
]

s.t: λ0 ≥ B .
(40)

Since (1 − µ
D ) > 0, the minimum objective is attained at

λ0 = B. Therefore, the solution to (40) is given by

COSTDOP (B, ρ, µ) = B + ρ
(D −B)2

D2
µ . (41)

The optimal reservation policy is obtained by taking the
derivative of (41) i.e., 1

D2 (D
2 − 2ρ(D − B)µ) and setting it

to 0. The optimal reserved bandwidth is as follows

B∗ =
D(2ρµ−D)

2ρµ
. (42)

B. Reservation with DOP: first and second moment con-
straints

Here, the observed moment vector is µ = [µ, µ2 + σ2].
According to observation 2, the worst-case expected cost of
reservation with DOP is given by

B + ρ
D −B
D

max
f(µ)

E{max(x−B, 0)}

This allows to use Lo’s maximal bounds (29) on max(x−
B, 0) directly. Doing so, a closed-form solution for the worst-
case expected cost is obtained as

COSTDOP (B, ρ,µ) =B + ρ
D −B
2D

[(µ−B)+√
(µ−B)2 + σ2]

(43)

The minimal value of (43) is achieved at B∗ which satisfies
the following relation

dCOSTDOP (B∗, ρ,µ)

dB
= 0

However, the derivative of 43 is given by the following
complicated expression

dCOSTDOP (B, ρ,µ)

dB
= 1−

(D −B)ρ

(
1 + µ−B√

(µ−B)2+σ2

)
2D

−
ρ
(
µ−B +

√
(µ−B)2 + σ2

)
2D

(44)

which does not easily admit to a closed-form solution. How-
ever, there are standard techniques for solving such equation
numerically, e.g. gradient descent method [21].

VI. DISCUSSION AND EXTENSION

A. Higher order statistics

While the information that is available to the operator
at the time of reservation is typically limited to low order
statistics e.g., mean and variance of the traffic distribution,
in general information about the higher moments can also
be incorporated in decision making process. To do so, the
dual problem (3) is transformed to a semidefinite optimization
program [26]. For example, having the k-moment vector µ,
COSTNUF (B, ρ,µ) is given by the following program

min
λ

λ0 +

k∑
i=1

λiµi

s.t:
k∑
i=0

λix
i ≥ B + ρmax(x−B, 0), 0 ≤ x ≤ D



where the constraint can be decomposed as

(λ0 −B) +

k∑
i=1

λix
i ≥ 0, 0 ≤ x ≤ B

(λ0 + (ρ− 1)B) + (λ1 − ρ)x+

k∑
i=2

λix
i ≥ 0, B < x < D.

(45)

Each of the constraints is a polynomial constraint that can
be expressed as a condition on a positive semidefinite matrix.
Let λ

′′

0 = λ0 − B and λ
′′

i = λi for 1 ≤ i ≤ k. Moreover,
Let λ′0 = λ0 + (ρ− 1)B and λ′1 = (λ1 − ρ) and λ′i = λi for
2 ≤ i ≤ k. Then, the first constraint is satisfied [23], [26] if
there exists a positive semidefinite matrix X = [xij ] such that∑

i+j=2l−1

xij = 0, 1 ≤ l ≤ k

∑
i+j=2l

xij =

l∑
r=2

λ
′′

r

(
k − r
l − r

)
Br, 0 ≤ l ≤ k

(46)

Also the second constraint is satisfied [26] if there exists a
positive semidefinite matrix Z = [zij ] such that∑

i+j=2l−1

zij = 0, 1 ≤ l ≤ k

∑
i+j=2l

zij =

k∑
r=l

λ′r

(
r

l

)
Br, 0 ≤ l ≤ k

(47)

All in all, the value of COSTNUF (B, ρ,µ) for a specific B
can be obtained by solving a semidefinite program. Therefore,
the optimal reserved bandwidth B∗ can be found following a
numerical search method e.g., Golden section search [27] in
which the above-mentioned semidefinite program is called in
each iteration.

VII. NUMERICAL RESULTS

In this section, we conduct a numerical study to further
investigate the properties of the proposed reservation policies.

First, we demonstrate how the costs incurred by the pro-
posed optimal reservation policies are compared to the optimal
offline cost i.e., where the operator knows the exact distri-
bution of the traffic. We assume that pricing is done based
on the NUF model. The frame size is considered to be 1000
timeslots. The traffic demand in each timeslot is generated
from a Poisson distribution with mean of λ = 1000 request
where the maximum demand is considered to be D = 5000
per timeslot. The total cost of a frame is the cost of bandwidth
reservation plus the cost of acquiring additional required band-
width averaged over all the timeslots. The optimal reservation
policies in the case of availability of the mean or the mean
and variance are developed in section III. The resulting total
cost incurred by these policies are denoted by COST-mean
and COST-var respectively.

To provide a baseline for our comparison, we also consider
the optimal offline algorithm. When the traffic distribution

is known to the operator the reservation policy that lead to
minimal expected cost is to reserve bandwidth as follows3

B∗ = F−1(1− 1

ρ
)

where F is the CDF of the traffic distribution and ρ is the ratio
of the online price and base price. The cost incurred by the
optimal algorithm is denoted by COST-optimal. We assume
the base price per unit of bandwidth per timeslot is 1. The
online price is increased from 1 to 10, therefore, the ratio of
the online to the base price i.e., ρ is increased from 1 to 10
as well. The result is demonstrated in Figure 2.
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Fig. 2. Frame cost vs the online price in reservation with NUM model.

As can be seen in the figure, for small values of ρ, COST-
mean is linearly dependent on ρ, while, for large values of ρ,
it reserves all the possible allocable bandwidth. Including the
variance in the decision-making process has a significant im-
pact on the cost as COST-var shows a square root dependency
in terms of ρ. In addition, the cost incurred by the optimal
algorithm remains indifferent of the changes in the value of
ρ.
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Fig. 3. Ratio of frame cost to the optimal cost.

Figure 3 depicts the ratio of COST−mean
COST−opt and COST−var

COST−opt
which we call them numerical RoE here. An interesting
observation is that even for large values of ρ (up to ρ ≤ 8),
COST-var incurs at most twice the cost of the optimal offline
algorithm.

In the second set of results, we demonstrate the reservation
behavior of the proposed policies by changing the online price.

3This can be easily shown by taking the derivative of B +
ρ
∫
f(x)max(x − B, 0)dx and solving the equation achieved by setting to

0.



The base price for the three reservation models NUF, DUP,
and DOP are considered to be 1, 0.6, and 1.2 respectively. As
before, we assume that the traffic mean is µ = 1000 arrival
per timeslot and the maximum demand is D = 5000. Also, in
DUP the users receive 80% discount over the online price if
the used bandwidth is already reserved. The optimal reserved
bandwidth for these models are demonstrated in Figures 4
and 5. As can be seen in Figure 4, the optimal policy in NUF
and DUP models has an ON/OFF nature, that is, while the ratio
of the online price and the base price is small, no bandwidth
is reserved. On the other hand, if this ratio is large, all the
available bandwidth is reserved. However, in the DOP model,
the reserved bandwidth scales almost linearly w.r.t ρ except for
the smaller values of this ratio. Moreover, Figure 5 asserts that
when information about the variance is available, the optimal
bandwidth reservation scales as

√
ρ.
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Fig. 4. Reservation based on the traffic mean.

VIII. CONCLUSION

In this paper, we studied resource reservation problem in
mobile virtual networks. We presented a minimax optimization
framework that aims to minimize the worst-case expected
operational cost of the system knowing only low order statis-
tics of the future traffic demand. Given the first and second
moment statistics, the closed-form reservation policies are
proposed. Our numerical results shows that given the variance
information, for practical pricing scenarios (where the ratio
of average online price and base price is lower than 10), the
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Fig. 5. Reservation based on the traffic mean and variance.

performance of the proposed policies are within a small factor
(≈ 2) of that of the optimal offline policy.
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