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Abstract—Dynamic base station activation and transmission
power control are the key mechanisms to reduce energy consump-
tion in cellular networks. In this work, we consider employing
these methods for the purpose of minimizing long-term energy
cost in cellular networks. Based on the two-timescale Lyapunov
optimization technique, we formulate an online control problem
to ensure achieving minimal energy cost while stabilizing use
queues. While the control problem can be solved in a centralized
manner, we limit our attention to distributed solutions which
are highly attractive in the design of next generation mobile
networks. Due to the combinatorial nature of the problem and
the complex relation of achievable rates to interfering signals,
the problem is non-convex. Consequently, conventional duality
methods cannot be employed to achieve the distributed solution.
Thus, we design a distributed solution for the problem based
on Gibbs sampling method. The proposed algorithm can be
implemented in a fully distributed manner, does not depend on
the convexity or continuity of the energy cost functions, and
guarantees solution optimality. Numerical results are provided
to demonstrate the behavior of the solution in some example
network scenarios.

I. INTRODUCTION

A. Motivation

Over the past few years, the volume of cellular data traffic
has increased rapidly [1] forcing network operators to adopt
new technologies in order to cope with the increased wire-
less traffic demand. A promising trend is to employ small
cells such as microcells and picocells to increase capacity
and provide more fine-tuned coverage across the network.
Dense cell deployment, however, creates new challenges for
the operation and management of cellular networks. Firstly,
cellular providers face higher operational expenditure due
to increased number of BSs if the BSs are not operated
the right way For example, increasing the number of BSs
may result in a substantially higher electricity bill. Therefore,
energy efficiency has emerged as a critical performance metric
for cellular network operation [2]. Secondly, with a large
number of network elements spread in a large geographic
area, monitoring and optimizing their operation become a
cumbersome task. Hence, among the most important objectives
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of next generation mobile networks are self-organization and
self-optimization [3].

Previous studies [2] have shown that base stations account
for 60-80% of the total cellular network energy consumption.
A notable observation is that while cellular traffic exhibits peri-
odic behavior, the energy consumption approximately remains
the same [4]. This can be attributed to the fact that cellular
operators often deploy as many base stations as necessary to
satisfy the peak traffic demand, while keeping them active
all the time. In addition, due to various sources of energy
consumption in BS equipment (e.g., cooling system), trans-
mission power control mechanisms cannot compensate for BSs
being always active. Dynamic base station activation has been
considered as a viable solution to solve this problem [5].

In this paper, we investigate this idea with the aim of
minimizing the long-term energy cost of operating a cellular
network. This is a challenging problem as solving it requires
knowledge of future network conditions, e.g., traffic load.
Since this information is not available a priori, we seek online
control mechanisms which do not rely on such information.
To this end, we model the problem as a Lyapunov opti-
mization problem [6]. The presented solution only relies on
the information that is readily available in current cellular
networks, e.g., user queue backlogs and average power price.
In addition, due to importance of self-optimization, we focus
on distributed solutions that enable base stations (e.g., eNBs
in LTE) to autonomously decide about their configuration
without relying on a central control entity. By distributed,
we mean mechanisms in which communications are confined
within neighboring BSs. This requirement is necessary for the
scalability of the proposed solution.

As will be shown later, the formulated control problem is
not convex. The non-convexity is due to combinatorial nature
of BS activation and user association as well as complex
interaction of interfering signals. Thus, the problem does not
conform to conventional duality methods used typically to
obtain distributed algorithms for communication problems.
Therefore, to tackle the problem we employ a randomized
method namely Gibbs Sampling [7]. The method is attractive
as it does not limit the type of objective functions to convex
and continuous ones. In addition, convergence to optimal
solution is guaranteed if the algorithm runs for a sufficiently
long time. Our contributions in this paper can be summarized
as follows:978-1- 4799- 4852-9/14/$31.00 2014 IEEE



• Dynamic base station activation and transmission power
control is formulated with the objective of minimizing
long-term energy cost of a cellular network.

• Based on two-timescale Lyapunov optimization ap-
proach, a control decision problem is derived which
solving it and configuring system parameters based on
it ensures system stability as well as minimal energy
consumption.

• As the control problem is nonconvex, a distributed al-
gorithm called Gibbs Sampling-based Activation (GSA)
is proposed according which each base station decides
independently about its configuration, knowing only the
configurations of its neighbors.

There has recently been much attention paid to greening
cellular networks through base station activation. The most
relevant works to this paper in addition to some related works
on Lyapunov optimization and Gibbs sampling are mentioned
next.

B. Related Work

In [4], a location-dependent traffic profiling study is con-
ducted on real 3G network traces showing that 23-53% energy
saving is achievable via dynamic base station activation.
In [8], centralized and heuristic methods are presented for
deactivating the base station that has the lowest load in the
network. The joint problem of base station activation and user
association is studied in [5], where the objective is to minimize
a joint energy and delay cost function. What distinguishes our
work from the aforementioned works is that unlike them, we
develop distributed algorithms that do not rely on a centralized
controller. In [9], distributed base station activation is posed as
a network utility maximization problem to find the optimal BS
activation probabilities. As opposed to our work, the proposed
solution in [9] is unable to provide performance guarantees on
the system cost and does not optimize the long-term energy
cost.

There have been several recent works that modeled energy
cost reduction in data centers following the framework of two-
timescale Lyapunov optimization [6], [10]. In [6], an online
algorithm is presented to distribute the load among a set of
data centers, activate enough servers in each data center, and
scale their speeds so as to satisfy the load and stabilize the
system queues. In [10], employing multiple power sources
including long-term and real-time power market, renewable
green energy, and local power storage for reducing long-term
power cost are investigated. However, unlike [6], [10], the
problem in our work has a combinatorial nature (due to On/Off
behavior of base stations) which makes it different and more
challenging to solve.

Designing distributed algorithms using Gibbs sampling has
been recently investigated in wireless literature. User associ-
ation schemes based in this approach are discussed in [11].
More relevant to our work, [12] considered distributed power
control in OFDMA-based systems using Gibbs sampling. A
similar radio access system model as [12] is adopted in our

work whereas in addition to power control, we also consider
BS activation and user scheduling which changes the problem.

C. Paper Structure

The rest of the paper is organized as follows. In section II,
system model is described and the problem is formulated. In
section III, the control problem is derived following two-
timescale Lyapunov optimization approach. In section IV,
GSA algorithm is presented. Sample numerical results are
provided in section V. Finally, section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider downlink of an OFDMA-based cellular net-
work, e.g., downlink in an LTE network. The network consists
of the set B = {b1, . . . , bn} of base stations which collectively
provide service to the set U = {u1, . . . , um} of users. The
frequency bandwidth used for communication between BSs
and users is divided into set H = {h1, . . . , hk} of subcarriers.
The system operates on a discrete-time basis. BS activation is
performed at a timescale that is different from other network
operations. Therefore, time is divided into frames of size T
timeslots. The activation/de-activation decisions are made at
the beginning of each time frame. Other decisions (power
allocation, user scheduling) might change at each timeslot.

Notation. Bold letters are used to represent vectors, e.g.,
v = [vi]d denotes a d-dimensional vector. [v′i,v\vi] shows the
vector obtained by replacing i-th element of vector v with v′i.
Sets are shown by calligraphic letters. The cardinality of a set
S is denoted by |S|.

A. Energy Cost Model

Assume that base station bi consumes the total power Pbi(t)
at timeslot t. Energy cost incurred by bi at t is given by

Ci(t) = CP (t) · Pbi(t), (1)

where Cp(t) is the energy price at t. Cp(t) changes according
to an exogenous random process which is assumed to have a
stationary distribution. There exists a bound on the incurred
operational cost of BS bi such that Ci(t) ≤ Cmaxi . The total
power consumption Pbi consists of two parts [4] as follows

Pbi(t) = Ptx(t) + Pmisc(t), (2)

where Ptx(t) is the transmission power used to communicate
with users. The term Pmisc(t) accounts for the power spent
in cooling and power supply. Clearly, Ptx(t) depends on the
carried traffic load and can be approximated as follows [4]

Ptx(t) = Pα · µ(t) + Pβ , (3)

where µ(t) is the traffic load factor, of the base station. Overall
there is a base cost for activating a base station due to residual
factors Pmisc and Pβ and a traffic dependent part due to Pα.
As reported in [13], the base activation cost can take up to
50% of the total base station power consumption.



B. Power Allocation

The transmission power i.e., Ptx of an active base station
varies between minimum power Pmin and maximum power
Pmax. This power is distributed among the set of subcarriers
H. Let Pi(t) = [Pik(t)]|H| denote the power vector of bi,
where Pik(t) is the power allocated to k-th subcarrier from bi
at t. As the total transmission power of the BS does not exceed
Pmax, we have the following constraint on every vector Pi(t)∑

hk∈H

Pik(t) ≤ Pmax, ∀bi ∈ B . (4)

Activation of BSs in timeslot t is captured via binary vector
Y (t) = [yi(t)]|B|.

C. User Association

While include user association in the model is straight-
forward as shown in [12], for the sake of clarity, we make
some practical assumptions regarding user association that
simplifies the model. First, we consider a standard OFDMA
system without carrier aggregation capability presented in
LTE-Advanced [14]. In these systems, each mobile user is
served by at most one base station at a time. Second, as in
traditional deployments every mobile user associates to the BS
from which it receives the strongest signal strength, indicated
by the Reference Signal Received Power (RSRP). At frame
intervals, user associations may change. User association is
denoted by vector A(t) = [aij(t)]|B||U|.

D. Achievable Rates

Assume BS bi at timeslot t allocates power Pik(t) to
subcarrier hk on which it communicates with user uj . Let
gijk denote the power gain between bi and uj on hk which
is a function of distance and propagation environment. Power
gain is assumed to be fixed over the duration of a frame. Then,
the received power at uj is Pik(t) · gijk. User uj is under the
coverage of bi if the received power of the pilot signal from
bi at uj is higher than a pre-specified threshold. For future
reference, let Ui denote the subset of users that are under the
coverage of BS bi and Bj denote the set of all base stations
that cover user uj . According to our assumption regarding the
received power, the serving BS for each user is the active BS
with the closest distance to the user.

The achievable rate of a user has direct relation to the
received Signal-to-Noise-and-Interference Ratio (SINR). Fol-
lowing the above notation, the SINR of user uj when served
by BS bi on subcarrier hk is given by

SINRijk(t) =
Pik(t) · gijk∑

bi′ 6=bi
Pi′k(t) · gi′jk + η

, (5)

where η is the background noise power. The received rate of a
user is obtained from a rate function R(.) which is generally
increasing w.r.t the received SINR. A common choice is
the Shannon capacity formula which gives the following rate
function

R(SINRijk(t)) = Γ log(1 + SINRijk(t)), (6)

where Γ is the width of downlink channel. We assume that
subcarriers can be fractionally (i.e., in time) shared among
users using a technique like TDMA. Let 0 ≤ τijk(t) ≤ 1
denote the fraction of time that subcarrier hk of BS bi is
allocated to user uj . Then, the received rate at user uj is given
by

rj(t) =
∑
bi∈Bj

∑
hk∈H

aij(t)τijk(t)R(SINRijk(t)), uj ∈ U .

(7)
Moreover, the time fractions should satisfy the following

constraint ∑
uj∈U

τijk(t) ≤ 1, ∀bi ∈ B, hk ∈ H . (8)

E. Problem Formulation

The traffic intended for users is first received and stored in
user queues at base stations. Queue Qj(t) is kept for each
user uj in its associated base station. We denote the amount
of workload arrived at timeslot t for uj by wj(t) and the total
arrival vector by w(t) = [w1(t), . . . , wm(t)]. We assume the
arrival for user uj follows an i.i.d. distribution throughout the
whole frame while the average rate w̄j is known to the base
station (the base station can estimate this over each frame). In
addition, there exist bounds wmin and wmax such that wmin ≤
wj(t) ≤ wmax for all uj ∈ U .

The data stored in queue Qj will be transmitted to user uj
according to the associated BS’s resource allocation policy.
Let rj(t) denote the amount of uj’s workload transmitted to
the user at timeslot t. Let rmax denote a limit on the rate
that can be provided to each user such that the inequality
rj(t) ≤ rmax holds for all users uj ∈ U . Queues evolve
in consecutive timeslots according to the following queuing
dynamic,

Qj(t+ 1) = max[Qj(t)−
∑
bi∈B

yi(t)aij(t)rj(t), 0] + wj(t) .

(9)
We say that the system is stable if the following condition

holds on queue backlogs,

Q , lim sup
t→∞

1

t

t−1∑
τ=0

m∑
j=1

E{Qj(τ)} <∞ . (10)

The energy cost of the system at timeslot t is the sum of
the energy cost of all base stations, i.e.,

Cost(t) =
∑
bi∈B

Ci(t) . (11)

We aim to design an online control mechanism to determine
the set of active base stations Y (t), and allocate resources
(power P (t) and time fractions τ (t)) to users so as to
minimize the long-term cost of the system defined as follows,

P1: Minimize lim sup
t→∞

1

t

t−1∑
τ=0

E{Cost(τ)}

subject to: (4), (8), (10) .

(12)



In the next section, we describe the steps to derive the control
algorithm to solve (12).

III. ONLINE CONTROLLER DESIGN

Throughout this section, we focus on the changes in the
system over the span of a specific frame which starts from
timeslot t to timeslot t+T − 1. To develop the online control
algorithm, we first define the Lyapunov function L(t) as a
scalar measure of queue backlog in the system as follows,

L(t) =

m∑
j=1

1

2
[Qj(t)]

2 . (13)

It is desirable for our algorithm to push the system towards a
lower backlog state. Therefore, to observe the expected change
in the Lyapunov function over T timeslots, we define the T -
slot Lyapunov drift as follows,

∆T (t) = E{L(t+ T )− L(t)|Q(t)} . (14)

In addition, we would like to minimize the long-term energy
cost of the system as defined in (12). Hence, following the
drift-plus-penalty approach [15], we add the expected energy
cost of the system to (14), which results in the following drift-
plus-penalty expression,

∆T (t) + V · E{
t+T−1∑
τ=t

Cost(τ)}, (15)

where the parameter V is chosen so as to control the trade-
off between energy cost and congestion (reflected in queue
backlogs) in the network. The next derivation step in Lyapunov
optimization is to find an upper bound on this expression. We
show that the following theorem holds.

Lemma 1. Let V > 0 and t = kT for some k ∈ Z+. For any
set of possible BS activation, user association, and resource
allocation decisions that conform to the constraints of (12),
we have

∆T (t) + V · E{
t+T−1∑
τ=t

Cost(τ)} ≤ B1T−

E{
t+T−1∑
τ=t

∑
uj∈U

Qj(t)
[ ∑
bi∈B

yi(t)aij(t)rj(τ)− wj(τ)
]
|Q(t)}

+ V E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)Ci(τ)} .

(16)

where, B = 1
2m(w2

max + r2max) + T−1
2 mrmax[rmax−wmin].

Proof: The result is obtained by squaring the queuing dy-
namic (9), using inequalities

∑
bi∈B yi(t)aij(t)rj(τ) ≤ rmax

and wj(τ) ≤ wmax, and finally adding the cost based in the
definition of drift plus penalty (15).

Our goal is to minimize the right-hand side of (16) or
equivalently we seek to maximize

E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)
[ ∑
uj∈Ui

Qj(t)aij(t)rj(τ)−V Ci(τ)
]
|Q(t)} .

(17)
This is the joint problem of base station activation at the

beginning of each frame in addition to resource allocation at
each timeslot. Since we considered that power gains are fixed,
there exists an optimal solution to (17) in which the allocated
power and time-fractions remain fixed during the frame which
simplifies (17) as

E{
t+T−1∑
τ=t

∑
bi∈B

yi(t)
[ ∑
uj∈Ui

Qj(t)aij(t)rj(t)−V Ci(τ)
]
|Q(t)} .

(18)
This expression is a function of Y (t), P (t), τ (t), and Q(t)

which we call it the net utility of the system and denote it
by N(). Problem (18) is a non-convex integer optimization
program that is generally hard to solve. Hence, devising a
distributed solution would be a challenging task. Therefore,
to tackle the problem, we present a Gibbs Sampling-based
Activation algorithm to solve (18) in the following section.

IV. GSA ALGORITHM

In this section, we present our Gibbs Sampling-based Acti-
vation (GSA) algorithm to achieve maximum net utility (18).
At the end of each time frame, along with active base stations,
each inactive BS becomes active to examine its surrounding
network condition, participate in the algorithm, and decide
about its activation in the next frame. Note that we assume
that GSA runs in the background and until its completion and
computation of a new network configuration, only previously
active base stations provide service to users.

A. Power Allocation

Similar to [12], we assume that the transmission power of
a BS can vary from 0 to Pmax in small discrete steps of
size δ, i.e., 0, δ, 2δ, . . . , Pmax. Given a BS power vector, time
fractions of the associated users should be chosen so that the
maximal net utility is achieved to avoid wasting resources.
Therefore, the time fraction vector is specified by the power
vector. Accordingly, the state of a base station is defined as
its transmission power vector. For instance, the state of BS bi
is given by Pi. The set of all possible power vectors of BS
bi is represented by Pi and the set of possible configurations
(states) of the system is then given by F =

∏
bi∈BPi.

Two base stations bi and bi′ are considered neighbors,
denoted by bi ∼ bi′ , if there exists a user uj that is under the
coverage of both of them. The set of all one-hop neighbors
of bi is shown by N 1

i . To be able to compute the effect
of changing the power vector on the achievable rates of
itself and its neighbors, each BS needs to know the power
vectors of all its two-hop neighbors. Thus, we consider system
graph G = (B,N ) constructed such that each base station is
connected to all of its two-hop neighbors, that is, N = {Ni}



where Ni = ∪bi′∼biN
1
i′ . This way, the neighborhood of each

node forms a clique [12]. In addition, the net utility (17) can
be expressed as the summation of a net utilities over the set
of cliques Q(G), That is, for f ∈ F we have

N(f) =
∑

q∈Q(G)

Nq(f) (19)

where

Nq(f) =
∑

bi:Ni=q

E
{ t+T−1∑

τ=t

yi(t)×

[ ∑
uj∈Ui

Qj(t)aij(t)rj(t)− V Ci(τ)
]
|Q(t)

}
,

(20)

is the net utility of clique q.
The base station whose state is to be changed is selected

randomly and independently. The base station goes to a new
state with the following transition probability

P {Pi → P ′i } =
exp(Nq([P

′
i ,P \Pi)])/Θ)∑

P ′′
i ∈Pi

exp(Nq([P ′′i ,P \Pi)])/Θ)
. (21)

where q is the clique that contains bi, P is the vector of all
power vectors, and Θ is a constant called the temperature.

Any change to the local state is carried out in two steps.
First, the power vector is updated. This may also include
activating an inactive BS with the minimum power δ or
shutting down a BS with the minimum power. Second, the
time fraction vector that results in the optimal net utility for
the new power vector is chosen as the new time fraction vector.
Allocating time fractions to users of a BS does not affect users
associated to the neighboring BSs. Thus it is a local problem
that can be solved locally and efficiently by each BS. After
updating its transmission power, every base station informs all
its two-hop neighbors about its new power vector.

Following the above procedure, the system will eventually
reside in one of the maximum net utility states with high
probability when Θ → 0 [7]. The algorithm converges ge-
ometrically fast to the optimum solution [7].

V. NUMERICAL RESULTS

A. Simulation settings

The wireless parameters are adopted consistent with the
standard 3GPP propagation models [3]. The power gain be-
tween the sender and a receiver is g = f(d) where d is the
distance from the sender to the receiver in (km). Specifically,
f(d) = 10h0d−κ with path loss exponent κ = 3.5 and
h0 = −14.4. The background noise power is N0 = −174 dbm
(Hz−1). We consider a network of size 1.2 by 1.2 km. Base
stations are placed on a regular grid. The distance between
each two neighboring BSs is 200m. There are a total of 25
base stations in the network. A base station is able to cover
users which are up to 350m away from it. Users are distributed
non-uniformly in the network. To do so, nine crowded regions
are considered in the network where each one is a circle of
radius 160m. Users are divided equally among theses crowded

regions and distributed uniformly within each region. There
are in total 100 users in the network.

Transmission power of each BS varies from 0W to 16W
in steps of δ = 4W . The base power used for activating each
BS is assumed to be 16W . We assume that there are only 4
subcarriers and bandwidth per frequency is 1 MHz. The system
parameters are selected so as to allow exhaustive search of all
possible configurations and find the optimal one in a timely
manner as required for the comparison of GSA and the optimal
solution. However, The GSA algorithm can handle much larger
instances of the problem.

Our goal is to study the behavior of GSA algorithm. In
each iteration of the algorithm, one of the BSs is randomly
selected. The BS can choose from the following set of options:
(1) Activation by allocating the minimum transmission power
δ to some frequency band. (2) De-activation if its total trans-
mission power is equal to the minimum value δ. (3) Increasing
transmission power by δ. (4) Decreasing transmission power
by δ. Moreover, in the numerical results, a new state f ′ is
accepted with the following probability

min (1, exp(
N(f ′)−N(f)

Θ
)), (22)

where, (22) represents the Metropolis-Hastings sampler that
shows characteristics very similar to that of the Gibbs sampler.

B. GSA performance

In the first set of results, we compare the performance of
GSA versus the optimal solution in terms of the achieved
net utility. We consider only four base stations and 11 users
are associated to these base stations. Even for this small set
of BSs with the aforementioned set of parameters, there are
714 combinations for BS activation and power allocation that
should be considered to find the optimal solution. Queue
backlogs for the users are considered the same and set to
40Kb. Distribution of the energy price Cp has the expected
value of 6.

Figure 1 demonstrates the behavior of GSA algorithm when
temperature Θ is set to 50 and 0.1 respectively. The Optimal
line shows the optimal net utility of the considered set of
BSs achieved by exhaustive search. As seen in the figure,
the GSA result becomes very close to the optimal when
using a small value for Θ. Although the same performance
cannot be achieved when the temperature is high, convergence
happens faster in this case. Another notable observation is
that the algorithm shows more fluctuations in this case. Both
observations can be attributed to the higher temperature.

C. Energy cost vs delay

In this section, the behavior of GSA is studied in terms
of energy cost and delay trade-off. These parameters can be
approximated indirectly via the number of active BSs and
average queue sizes respectively. Each frame is assumed to
consist of 10 timeslots. Arrival traffic for each user follows a
Bernoulli process. Associated to each user uj is a probability
of acceptance pj . This probability is determined randomly and
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Fig. 1. Convergence of net utility.

independently for each user. With probability pj , 40Kb is
added to the queue of user uj in each timeslot. To demonstrate
how the algorithm responds to variation in the arrival traffic
by changing the set of active BSs, we divide frames into
framesets. In even-numbered framesets arrived data enters the
user queues as normal, whereas there is no arrival in odd-
numbered framesets. Each frameset consists of 5 frames. For
different values of control parameter V , average queue sizes
and the number of active BSs are depicted in Figure 2. As
can be seen in the figure, initially the queues are empty and
all BSs are inactive. During the first frame, the queues start
to grow in size as the arrival traffic enters and does not get
served. This lasts until the beginning of the next frame at
which some base stations are activated and queues start to
get served. Overall, during even-numbered framesets some
BSs are active and queues have some data. In odd-numbered
framesets, as there is no new arrival, queues gradually become
empty and BSs are turned off. A notable observation is that
by increasing V , the average queue sizes increase as well. On
the other hand, average number of active BSs is decreased. In
addition, queue sizes almost remain the same during a frameset
which indicates that GSA could stabilize the system. In this
set of results on average lower than 10 BSs are needed to
satisfy the aforementioned arrival traffic demand. This shows
great improvement in terms of energy consumption compared
to activating all 25 BSs in the network.

VI. CONCLUSION AND FUTURE WORK

In this paper, designing a distributed solution for base
station activation and power allocation with the aim of min-
imizing long-term energy cost of cellular network is investi-
gated. The problem is modeled following the framework of
two-timescale Lyapunov optimization and a provably-efficient
online control algorithm is proposed based on Gibbs sampling
method. In this paper, we assumed that users are static and
power gains are fixed which eliminates the need for fine-tuned
power allocation and scheduling at each timeslot. Extending
the framework by considering time-varying channel conditions
remains as a future work
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