
NeuroCAN: Contextual Anomaly Detection in
Controller Area Networks

Prashanth Balaji and Majid Ghaderi
Department of Computer Science, University of Calgary

{prashanth.balaji, mghaderi}@ucalgary.ca

Abstract—The Controller Area Network (CAN) is an estab-
lished standard for inter-connecting onboard Electronic Control
Units (ECUs) in a vehicle. Through sensors and actuators,
ECUs maintain critical vehicle functions such as transmission
and engine control. However, security was never a part of
CAN design and hence ECUs are susceptible to a wide range
of attacks. Thus, in recent years, several anomaly detection
systems have been proposed for the CAN bus in order to detect
anomalies caused by adversarial attacks or misbehaving sensors.
These systems generally try to detect deviations from individual
sensor’s expected behavior. As such, they are ineffective against
attacks that target multiple sensors to accomplish a collective
desired behavior without changing the expected behavior of
each individual sensor. In this paper, we focus on detecting
such attacks by identifying contextual CAN anomalies in real-
time. To this end, we present NeuroCAN, a deep learning-
based detection system that utilizes Linear embeddings and Long
Short Term Memory (LSTM) units to learn the spatio-temporal
correlations among sensor data on the CAN bus at a frame
level. By exploiting such correlations, NeuroCAN is able to detect
contextual anomalies that are otherwise difficult to detect by
analyzing individual sensor data. We evaluate NeuroCAN using
two publicly available CAN datasets and compare it against
existing approaches. Our results show that NeuroCAN achieves
over 95% detection accuracy and performs significantly better
than the existing baselines.

I. INTRODUCTION

Safe and efficient operation of a modern automobile relies
on the Electronic Control Units (ECUs) that maintain critical
vehicle functions such as transmission and engine control, lane
assist and collision warning. These units are inter-connected
over a central bus that forms a backbone through which
data is exchanged in real-time. The increasing complexity
of the software running on these units has pivoted the view
of vehicles from being a mere combination of mechanical
components to complex embedded systems capable of han-
dling multiple interactions simultaneously. The incorporation
of wireless technologies such as WiFi and Bluetooth has
also enabled vehicle-to-everything (V2X) communication, as
shown in Fig. 1, to support onboard navigation systems,
mobile interfaces and more [1]. The increased dependency on
these internal systems has been further driven by the addition
of intelligent features such as autonomous driving.

However, such integrations have resulted in a wider attack
surface for malicious actors to leverage. The inherent design
flaws if unnoticed, can be successfully exploited to gain access

This work was supported by Wedge Networks Inc., Alberta Innovates and
Natural Sciences and Engineering Research Council of Canada.

or worse create a cascade of system failures when the vehicle
is in operation. The Controller Area Network (CAN) is widely
used for in-vehicle networks due to its low cost and centralized
operation [2]. But it lacks basic security measures thereby per-
mitting attackers to easily gain unauthorized access to various
sub-systems onboard a vehicle. Specifically, CAN lacks any
authentication measures to verify the identity of the sender
of messages. Thus, an attacker can inject carefully crafted
messages either directly through the On-Board Diagnostics
port (OBD) or through other external interfaces such as the
infotainment or wireless communication system [3] to ma-
nipulate the vehicle behavior. Though message authentication
can be enforced by methods discussed in [4] [5], they either
involve altering the existing standard or by attaching additional
devices. Such approaches not only introduce additional cost
and overhead, but also may create compatibility issues with
the original CAN specification [6].

Message injection attacks on the CAN bus either focus
on flooding the bus with higher priority messages leading
to a DoS attack or by injecting certain payloads to cause
the desired effect. The effect of such attacks is that more
messages are seen on the bus than usual and therefore can
be detected by exploiting specific characteristics of the CAN
bus. A few such characteristics include: the frequency of IDs
on the bus [7], clock skews of ECUs [8], and differences
in entropy [9]. Apart from these approaches, the rapid rise
of deep learning has paved the way for “anomaly detection”
systems to precisely model the behaviour of an underlying
system. Prior works employing deep learning for anomaly
detection on the CAN bus are found in [10], [11]. However,
attackers have become more creative with their methods to
elude detection by performing malicious activities while still
adhering to the norms of the system. These attacks are more
subtle and can escape the purview of any deployed anomaly
detection system that either fails to analyze the payload or
that does not perform a collective analysis of the context of
the system. For example, an adversary who gains access to
the engine control unit could boost the engine RPM while the
vehicle is idle. By looking at the context of the system, i.e.
vehicle is in idle state, this condition can still be flagged as
anomalous even if the RPM is within the normal limits.

In this work, we focus on detecting these types of stealthy
attacks that can be identified only when considering the
collective behavior of the CAN bus. The basis of our approach
is guided by the reasoning that in a correlated system where

Fig. 1: High-level network topology of CAN.

data is driven by the occurrence of physical phenomena,
modifying an aspect of the system even within its limits would
cause a deviation to its overall state. While the previously
mentioned approaches are capable of detecting DoS, playback
and fuzzy attacks [10], [11], they fail to address this particular
type of attack that serves as our motivation. To this end, we
present NeuroCAN, a deep learning-based detection system
that utilizes Linear embeddings and Long Short Term Memory
(LSTM) units to learn the spatio-temporal correlations among
sensor data on the CAN bus at a frame level. By exploiting
such correlations, NeuroCAN is able to detect contextual
anomalies that are otherwise difficult to detect by analyzing
individual sensor data.

The main contributions of this work are:
1) We present NeuroCAN, a deep learning model that ex-

ploits the correlations between sensor readings to identify
contextual anomalies in an automotive CAN bus. Our
model works with raw CAN data and does not require
signal decoding.

2) We train and evaluate the proposed model with frame-
level CAN bus traces rather than with decoded signal
values as the translation rules are proprietary to every
manufacturer.

3) We also train a baseline for comparison and further
perform additional experiments to comprehend the impact
of the context provided by other ECUs in the detection
process. Our results show that NeuroCAN achieves over
95% detection accuracy and performs significantly bet-
ter than the baseline, which does not consider spatio-
temporal sensor correlations.

The rest of the paper is organized as follows. Section II
provides an overview of the CAN protocol. We review some
of the closely related work in Section III. In Section IV,
we present the design of NeuroCAN. We discuss the dataset
specifications, evaluation metrics and the obtained results in
Section V. Finally, Section VI concludes the paper.

II. CAN OVERVIEW

CAN Bus. A modern car comprises 50 to 70 ECUs that
are connected through the CAN bus along a central gateway
[12]. An ECU can be connected to one or more sensors
and actuators. Inputs from the sensors are utilized to drive

!"# $% &'&
$()*+,-,).
/0+)*1,2*

.3 %45 %6+6

5
&
5

7
5
8

/
"
#

96:;26(/..2.<=2*+.2;7.>,+.6+,2*<6*(<52*+.2;

Fig. 2: Standard CAN frame structure.

the actuators to perform the necessary operation through the
implemented firmware logic. Typically, two CAN buses are
present on-board, one with a higher bandwidth of 500kbps
for carrying time-critical data and another with 125kbps for
data related to the passenger compartment and other fault-
tolerant systems [11]. Unlike most systems where a logic
high is driven by 1 and logic low is driven by 0, CAN
implements inverted logic states where a 0 on the bus drives
high and a 1 drives low. These states are formally termed as
dominant and recessive in the CAN standard [6]. The structure
of the dataframe implemented in the standard CAN protocol
is shown in Fig. 2. As illustrated, a CAN frame comprises
ten sections which are as follows: Start of Frame (1 bit),
ID (11 bits), Remote Transmission Request (1 bit), Identifier
Extension (1 bit), Reserved (1 bit), Data Length Code (4
bits), Data/Payload (8 bytes), Cyclic Redundancy Check (16
bits), Acknowledgement (2 bits), End of Frame (7 bits). The
appropriate fields are set to relay the occurrence of events on
the bus.

Bus Control. When an ECU decides to transmit, it first needs
to win control of the bus through an arbitration process where
all ECUs transmit an identifier bit by bit. The combined state
of the bus is the collective AND of all the transmitted bits at
an instant. The transmission window is synchronized by means
of an internal clock in every ECU. While contending, a lower
value identifier always receives a higher priority to acquire
control of the bus. If an ECU that transmits a recessive bit
reads the state of the bus to be dominant, it withdraws from
contention as a lower value ID is active. As a result, one ECU
will win the arbitration process at the end. Once control has
been acquired, an ECU transmits the rest of the frame in order.
The receiving ECUs can either choose to accept or discard
the transmitted frame based on the acceptance mask set on
the node. The acceptance mask allows an ECU to filter all
the transmitted frames and accept those that are relevant to it.
Later, every receiving node sends an acknowledgment bit to
the sender after transmission to indicate proper reception. If
an error is noticed by any receiving node, a series of six bits,
also known as an error frame, is sent to destroy the content of
the transmitted frame. The nature of the error frame is based
on the current error state of the node transmitting it. The error
state of all ECUs is updated after a transmission cycle on the
bus. Repeated errors can force an ECU into the bus off state
where it refrains from transmitting as that could interfere with
the normal operation of the bus.

Data Encoding. In this work, we focus on utilizing only the
payloads in the frame for training our deep learning model.

A single payload from an ECU can have a maximum size of
8 bytes comprising one or more signals. As a result, the size
of the data payload transmitted by an ECU is not fixed. An
inherent difficulty in applying detection methods analyzing the
payload field is due to the varying bit boundaries that define
the number of bits needed for a signal. These boundaries are
set by equipment manufacturers through custom rules that can
vary widely between multiple vehicles. The traffic seen on
the bus is therefore encoded and requires these rules from
the manufacturer to extract individual signals. However, being
data driven, NeuroCAN is capable of learning the structure of
the data in any format and hence does not require any prior
knowledge of the signals contained in the payload.

III. RELATED WORKS

In this section, we review several works that have employed
deep learning for anomaly detection on CAN bus. In contrast
to our work, these works do not utilize spatio-temporal de-
pendencies in sensor readings and do not focus on detecting
stealthy attacks at a frame level. Further, some of them operate
with decoded CAN payloads, which limits their application.

LSTM-based Models. The authors in [2] modeled anomaly
detection on the CAN bus as a supervised, binary and multi-
label classification problem. The network employing LSTMs
was built through a systematic process by experimenting with
different number of layers, learning rates and activation func-
tions. The obtained results indicate that the network is capable
of identifying DoS and spoofing attacks with 100% accuracy
while fuzzy attacks yield a few false positives and false
negatives. In [13], the authors trained a model for detecting
modified signals corresponding to the braking system. The
network was later deployed as part of an in-vehicle Software-
Defined Network to allow the detection module control data
flows for taking appropriate steps after detection. A classifica-
tion model with Convolutional LSTMs was presented in [11]
for identifying DoS attacks. Further, one-shot learning was
performed to train new models for identifying fuzzy attacks.
In [10], a stacked LSTM predictor model was trained to detect
the bit value in the data field of subsequent CAN frames.
Additionally, the authors also propose five different methods
for deriving an anomaly score over which the performance
of the network is determined. The authors in [12] focused on
predicting individual signal values such as vehicle speed with
LSTMs. However, unlike [10], the implementation relies on
decoded signal values as opposed to an unformatted bitstream.

Autoencoder-based Models. The authors in [14] proposed
a deep contractive autoencoder focused on detecting fuzzy
attacks. Models with different loss functions were developed
and evaluated. In [1], a GRU-based autoencoder acting on
individual signals in a CAN message was explored. A few
other variants were also developed to analyze the importance
of individual layers. In [15], the authors proposed a deep
autoencoder comprising a single encoder and decoder struc-
ture. Additionally, the data was explicitly filtered to remove
sequences of identifiers that are independent. Further, three

models were developed with different reconstruction metrics
and their performances were evaluated. In [16], a standard
autoencoder with LSTM embeddings was proposed to identify
flooding and continuous data change attacks. The authors
in [17] developed a deep multi-task learning-based anomaly
detection system where each task acted as a regularizer for
the other. The architecture is composed of an LSTM encoder
with two decoders: one working on reconstructing the input
and the other on predicting the next maneuver of the vehicle.

Generic Network Models. In [18], the authors presented a
detection model based on a feed forward neural network.
Additionally, a feature extraction technique computing the
probability distributions of every bit symbol was investigated.
A multi-layer perceptron ensemble was employed in [19] for
detecting data-content modifications in the CAN payload along
with K-means clustering for preprocessing. A deep neural
network with the triplet loss function was proposed in [20].
During training, the loss function focuses on minimizing the
difference between the anchor and the positive sample. On
evaluation, it was concluded that the network provides higher
performance with increasing number of layers and loss func-
tions other than the Softmax. An Intrusion Detection System
based on Generative Adversarial Networks was proposed in
[21]. The architecture comprised two different discriminators
for the detection of well-known and zero-day attacks.

IV. NEUROCAN DESIGN

Overview. NeuroCAN is a deep learning model capable of
learning the collective behavior of ECUs on a CAN bus.
Although a set of standards have been employed in structuring
a CAN frame, proprietary encodings and custom identifiers
introduced by manufacturers make it cumbersome to design
a single model capable of handling frames from multiple
control units. Therefore a separate network is trained for every
identifier. However, unlike [10] and [2] where the network is
trained with data from a single CAN identifier, NeuroCAN
architecture is designed to collectively operate on inputs from
various sensors at an instant. As events inside a vehicle are
often correlated, it is important to analyze the state of all
ECUs when looking for stealthy attacks. Such attacks are
more difficult to detect and can circumvent existing safeguards
unless the observation in question is jointly evaluated with
respect to spatio-temporal correlations among sensor readings
on the bus.

Background on LSTMs. NeuroCAN employs LSTMs to
learn spatio-temporal sensor correlations. The ability of feed
forward neural networks is limited when applied for time
series forecasting as the architecture lacks the means to
remember the previous inputs. Recurrent Neural Networks
(RNN) are better suited in this scenario as the output ht at
an instant t is dependent on the previous hidden state ht−1

as well as the current input xt. However, while training, the
incorporated feed-back design that introduces the previous
state either causes gradients to shrink or grow rapidly and
therefore RNNs struggle to learn long term dependencies.

!"#$%& !

!"#$%& "

!"#$%& #

!"#$%&$

!

!

!

'()*)+,!-

'().)+/!-

'()0)+1!-

'()2)+3!-

'()4)+5!-

!6789:;$<<"#=>

!"#$%&*

?@AB@A

!

!

C

%
D

&'()

&'()

E!"#

F!"#
F!

E!

!!
+5! G)/$

%-)C);

F!

HI&=$A)
=%A$

'#B@A)
=%A$

?@AB@A)
=%A$

! !

!"# !$#

Fig. 3: NeuroCAN network structure.

LSTMs address this limitation by controlling the current state
through three gates namely, 1) Forget gate 2) Input gate and
3) Output gate. These gates act on the current inputs and
the previous cell state to explicitly regulate the magnitude of
information that is retained across time. Fig. 3(b) depicts an
architecture of an LSTM cell. The signals from the input and
forget gate are given by

it = σ(Wixt + Uiht−1 + bi), (1)
ft = σ(Wfxt + Ufht−1 + bf). (2)

where W, U are the weight matrices and b is the bias. The
new cell state ct is derived as a combination of ct−1, it and
ft, where ct−1 is the previous cell state:

ct = ftct−1 + itc̃t, (3)
c̃t = tanh(Wcxt + Ucht−1 + bc). (4)

The output of the cell is then combined with current cell state
to serve as input for the next time step.

ot = σ(Woxt + Uoht−1 + bo), (5)
ht = ot tanh(ct). (6)

A. System Architecture

The high-level architecture of an anomaly detection system
based on NeuroCAN is presented in Fig. 4. We consider a
generic automotive CAN bus through which multiple control
units relay sensor readings and other diagnostic data. These
data points are generally consumed by other connected entities
on the bus or a service technician attempting to pinpoint a fault
in the vehicle. We assume that no hardware faults are present
on the bus and the vehicle is not operated in abnormal envi-
ronments or conditions that are unseen in its daily operation.
Since our work focuses on identifying contextual anomalies,
it is quintessential to determine a point in the network where
data from every connection is visible. Therefore we consider
deploying the trained models on the gateway as opposed to
the distributed approach seen in [1]. Further, we assume that

Fig. 4: System architecture: NeuroCAN runs on the CAN gateway.

the adversary has already compromised a connected ECU
or has access to a device on the bus capable of inserting
fabricated messages at specific instances. We do not discuss
the techniques to gain access to the CAN bus as existing works
[3], [22] have already proven its feasibility.

B. NeuroCAN Network Structure

NeuroCAN design comprises two fundamental components
that are jointly trained with multidimensional time-series data.
The structure of the NeuroCAN network is shown in Fig. 3.
The initial section is an embedding layer following which is
a single LSTM layer that acts on the derived embeddings to
capture temporal relations in the data. Given that we train a
network for every CAN ID, our model utilizes the current pay-
load of the identifier and from other ECUs transmitting within
the subsequent time step to predict the next payload sequence.
Inputs from the other control units serve as additional context
for NeuroCAN to infer the current state of an ECU relative to
the collective behavior of other active ECUs on the bus.
Embedding Layer. As mentioned in Section II, the data
field associated with each CAN ID varies depending on the
transmitting ECU. Therefore, the data is first projected onto the
embedding layer to obtain a fixed size vector for further pro-
cessing. The embedding layer applies a linear transformation,
shown in Fig. 3(a) over which sigmoid activation is applied
to scale values between 0 and 1. The output from the individual
embedding units is then cumulated and passed to the LSTM
layer. During backpropagation, the weight matrices of only
those emebedding units whose IDs were present in the current
input sequence are updated. This ensures that a prediction
given by the network is not dependent on other control units
that did not transmit any frames during the current cycle.
Our intuition is that since there exist multiple sensor readings
within a single payload, developing individual embeddings for
every identifier would allow the network to learn dependencies
within an ECU while the LSTM layer focuses on capturing
inter-ECU correlations.
LSTM Layer. This layer comprises a standard LSTM cell
with sigmoid and tanh activations. The input to the
LSTM layer is a scaled matrix of eight columns each rep-
resenting a byte on the CAN payload and variable-size
rows depending on the available context between two sub-
sequent time steps. To elaborate, given an ID X , with n
time sequences {X1, X2, X3, ..., Xn}, the network predicts
Xt+1 given Wt, Xt, Yt and Zt at an instant t. Here,
{t = 1, 2, 3, ..., n} and Wt, Yt and Zt are data sequences

TABLE I: Dataset overview.

Dataset Messages Normal Injected
Dataset 1 4,443,142 3,845,890 597,252
Dataset 2 4,621,702 3,966,805 654,897

TABLE II: Experimental results.

Dataset Model TPR FPR F1 score

Dataset 1 NeuroCAN 0.9 0.000065 0.95
Baseline 0.89 0.23 0.83

Dataset 2 NeuroCAN 1 0 1
Baseline 0.86 0.19 0.86

transmitted by other ECUs between the interval t and t + 1.
Further, Xt = [xt1, xt2, xt3,, xtk] is an encoded vector of
k sensor readings from an ECU at time step t. Whenever a
set of sequences is passed through the network, each payload
is first forwarded to its corresponding unit in the embedding
layer. The output from the embedding network, described by
Et = [EWt , EXt , EYt , EZt] is then passed to the LSTM layer
and finally to the output layer with sigmoid activation. The
output layer also applies a linear transformation similar to the
embedding layer and calibrates the final output. The predicted
result is then compared against the expected sequence and the
loss is computed using the Mean Squared Error (MSE) as

MSE(X, X̂) = 1/k
∑k

i=1(xi − x̂i)2 . (7)
As a result, the individual byte losses are squared and averaged
over the entire sequence. Finally, a signal is invoked if the
computed anomaly score is greater than the determined thresh-
old. We discuss the utilized approach for threshold estimation
in the next section. The final network architecture was selected
through repeated trials, experimenting with different number
of LSTM units and activation functions.

V. EXPERIMENTS AND RESULTS

In this section, we first describe our experimental setup and
provide an overview of the utilized datasets. Later, we present
our results and compare them against an existing baseline.

A. Baseline

We establish the detection ability of NeuroCAN by com-
paring its performance against that of the network presented
in [10] that serves as our baseline. Contrary to NeuroCAN,
the baseline incorporates stacked LSTM layers with a higher
number of hidden units. Unlike our approach, the payload from
a CAN frame is first preprocessed into a binary matrix and is
implemented over a rolling window. While training, the error
produced by the network is computed with Binary Log Loss
and an anomaly score is determined by taking the maximum
of all losses in the given input. Further, a network for every
CAN ID is trained with data only from that identifier and thus
ECU correlations are not taken into consideration.

B. Training Setup and Parameters

For our experiments, we implemented and trained the
models with PyTorch [23]. Additionally, we used pandas

(a) Dataset 1.

(b) Dataset 2.

Fig. 5: RoC curves for different models.

[24] and scikit-learn [25] for data preprocessing and
evaluation. Training was performed on a Linux CentOS 8
machine, powered with an NVIDIA Tesla V100 and 32 giga-
bytes of memory. We trained our model with data sequences
only from normal CAN frames. The final hyperparameters
were chosen through repeated experimentation and testing.
We applied mini-batch training with a batch size of one. The
number of iterations was set to 50 epochs. Further, the Adam
optimizer was utilized with a fixed learning rate of 0.001 [26].

C. Dataset Specification and Preprocessing

We evaluated our approach on two data sets obtained from
the Hacking and Countermeasure Research Lab [21]. The
datasets were developed by logging CAN traffic through the
OBD port while injecting fabricated CAN messages. Specifi-
cally, messages related to the gear module and the RPM gauge
were modified. For simplicity, we refer to these datasets as
Dataset 1 and Dataset 2 in the remainder of the paper. An
overview of the number of samples in each dataset is given in
Table 1. Each dataset comprises thirty to forty minutes of CAN
traffic. The attack window varied between three to five seconds
and an attack was performed for every millisecond during this
period. A sample in a dataset comprised a timestamp, CAN
identifier, DLC, data and a label to indicate the nature of the
sample. As the dataset in its regular state was not adequate
for training, a few preprocessing steps were applied. First,
each dataset was split with 70 percent allocated for training
and the rest for testing. Further, all hexadecimal values were
converted and normalized. Finally, the training and test sets
were transformed by splitting the data field into eight features,
each representing a byte on the CAN payload.

(a) NeuroCAN with Dataset 1. (b) Baseline with Dataset 1.

(c) NeuroCAN with Dataset 2. (d) Baseline with Dataset 2.

Fig. 6: Detection effectiveness for different models.

D. Evaluation Metrics and Threshold Estimation

The attack detection performance of the network was evalu-
ated with the area under the Receiver Operating Characteristics
(ROC) curve. The ROC curve is a plot of the false positive
rate against the true positive rate under various thresholds. The
selection of a reasonable threshold plays a critical role in the
efficiency of NeuroCAN. We determined an optimal threshold
for each model through enumeration of F1-scores, given by

F1 score = 2× precision×recall
precision+recall . (8)

The F1-score is a weighted average of the precision and recall
and is utilized to estimate the machine learning performance
when there exists an imbalance in the predicted classes.
Ranging between 0 and 1, a score closer to one indicates a
stronger model. Compared to other heuristic-based threshold
moving approaches, we found that determining the threshold
with the F1-score resulted in fewer false positives.

E. Results and Discussion

Attack Detection. The true positive rate, false positive rate
and F1 scores of NeuroCAN and the baseline for both datasets
are summarized in Table II. We specifically turn our focus to
the true and false positive rates as the cost of misclassifying
an anomalous sequence is much higher and possess severe
consequences. The ROC curves in Fig. 5(a) and Fig. 5(b)
compare the detection performance of the model and the
baseline when evaluated with each dataset. As seen in the
plots, NeuroCAN considerably outperforms the baseline in all
cases. Furthermore, with Dataset 2, the trained network results
in a perfect classifier capable of detecting all anomalies in the

test set with zero false positives and false negatives. Also,
we observed that the model misclassified a small fraction of
normal sequences as anomalies in Dataset 1. This can be
attributed to the imbalance in the training set caused by the
nature of the payload on the CAN bus as not all sequences
are transmitted at the same frequency.

Hyperparameter Tuning. In this experiment, we studied the
variation in the performance of NeuroCAN by varying the
size of the hidden state in the LSTM layer. Specifically, we
evaluated the model by setting the number of hidden units to
8, 16, 32 and 64. As seen in Table III, there is no change in
performance with the model trained on Dataset 2 in any case.
With Dataset 1, we observed that the model with 8 hidden units
showed higher classification performance when compared to
hidden sizes of 32 and 64. However, it incurred the highest
number of false positives while the others yielded significantly
lower numbers.

Model Efficacy. The effectiveness of a deployed anomaly
detection system is mainly dependent on its ability to establish
a clear boundary to identify anomalies and the time it takes
for detection as performing evasive maneuvers is time critical
when the vehicle is in operation. As seen in Fig. 6(a) and
Fig. 6(c), NeuroCAN establishes a clear boundary to distin-
guish the abnormal payloads. With Dataset 1, we observed
a larger margin of difference resulting in the prediction error
being very close to zero for normal CAN traces. This validates
the ability of our system to learn the structure of the encoded
data field and as such leads to higher prediction errors for
the injected payloads. Further, we observed a smaller margin

TABLE III: Results of hyperparameter tuning.

Dataset Hidden units TPR FPR F1 score

Dataset 1

8 0.92 0.015 0.951
16 1.0 0.0 0.947
32 0.9 0.000065 0.951
64 0.9 0.00049 0.948

Dataset 2

8 1.0 0.0 1.0
16 1.0 0.0 1.0
32 1.0 0.0 1.0
64 1.0 0.0 1.0

of difference in the baseline models, shown in Fig. 6(b)
and Fig. 6(d) resulting in more misclassifications. During the
detection phase, we also noticed that our model took close to
half the time taken by the baseline to provide an inference. In
particular, NeuroCAN took 1.7 milliseconds on average while
the baseline took 3 milliseconds to predict the next sequence.
Effect of Context. To further comprehend the impact of
the pairwise correlations present between multiple ECUs, we
modified the NeuroCAN structure by removing the embedding
layer and trained the model with sequences from only the
targeted identifiers. Though the model was able to detect most
of the injected samples, we observed a slight decrease in
performance with increased number of false negatives. Fig. 7
illustrates the effect of sensor context shown by the variation
in detection accuracy.

Fig. 7: Impact of sensor context on detection accuracy.

VI. CONCLUSION

With the ongoing rise of autonomous vehicles, safeguard-
ing on-board systems such as the CAN bus is a growing
concern for vehicle manufacturers. In this paper, we propose
NeuroCAN, a deep learning-based system to primarily detect
contextual anomalies caused by stealthy attacks in the CAN
bus. The results indicate that NeuroCAN achieves a low false-
positive rate and can identify such attacks with 95% accuracy.
Furthermore, NeuroCAN performs considerably better than the
studied baseline. However, the current model has not been
subjected to retraining over time. As a result, the system might
fail to be in sync with the transmitted parameters that can
change due to replaced parts, wear and tear etc. Therefore it
is imperative to incorporate online training which entails our
future work.

REFERENCES

[1] V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “INDRA: Intrusion de-
tection using recurrent autoencoders in automotive embedded systems,”
arXiv preprint arXiv:2007.08795, 2020.

[2] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi,
“LSTM-based Intrusion Detection System for in-vehicle CAN bus
communications,” IEEE Access, vol. 8, 2020.

[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces,”
in Proc. USENIX Security Symposium, vol. 4, 2011.

[4] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth-a
simple, backward compatible broadcast authentication protocol for CAN
bus,” in Proc. ECRYPT Workshop on Lightweight Cryptography, vol.
2011, 2011.

[5] E. Wang, W. Xu, S. Sastry, S. Liu, and K. Zeng, “Hardware module-
based message authentication in intra-vehicle networks,” in Proc.
ACM/IEEE ICCPS, 2017.

[6] R. Bosch et al., “CAN specification version 2.0,” Robert Bousch GmbH,
Postfach, vol. 300240, 1991.

[7] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive
intrusion detection based on constant CAN message frequencies across
vehicle driving modes,” in Proc. ACM Workshop on Automotive Cyber-
security, 2019.

[8] K. T. Cho and K. G. Shin, “Fingerprinting Electronic Control Units for
vehicle intrusion detection,” in Proc. USENIX Security Symposium, Aug.
2016.

[9] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle
networks,” in Proc. IEEE Intelligent Vehicles Symposium, 2011.

[10] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with Long Short-Term Memory Networks,”
in Proc. IEEE DSAA, 2016.

[11] S. Tariq, S. Lee, and S. S. Woo, “CANTransfer: transfer learning based
intrusion detection on a Controller Area Network using convolutional
LSTM network,” in Proc. Annual ACM Symposium on Applied Comput-
ing, 2020.

[12] M. Abbas, M. Safar, and A. Salem, “Anomaly detection system for
altered signal values within the intra-vehicle network,” in Proc. IEEE
DTIS, 2020.

[13] Z. Khan, M. Chowdhury, M. Islam, C.-Y. Huang, and M. Rahman,
“Long Short-Term Memory neural networks for false information attack
detection in Software-Defined in-vehicle network,” arXiv, 2019.

[14] S. F. Lokman, A. T. Othman, S. Musa, and M. H. A. Bakar, “Deep con-
tractive autoencoder-based anomaly detection for in-vehicle Controller
Area Network,” in Progress in Engineering Technology. Springer, 2019.

[15] T. He, L. Zhang, F. Kong, and A. Salekin, “Exploring inherent sensor
redundancy for automotive anomaly detection,” in Proc. ACM/IEEE
DAC, 2020.

[16] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “CANet: an
unsupervised intrusion detection system for high dimensional CAN bus
data,” IEEE Access, vol. 8, 2020.

[17] V. Sadhu, T. Misu, and D. Pompili, “Deep multi-task learning for
anomalous driving detection using CAN bus scalar sensor data,” arXiv
preprint arXiv:1907.00749, 2019.

[18] M. J. Kang and J. W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PloS one, vol. 11, no. 6,
2016.

[19] S. Boumiza and R. Braham, “An anomaly detector for CAN bus
networks in autonomous cars based on neural networks,” in Proc. IEEE
WiMob, 2019.

[20] A. Zhou, Z. Li, and Y. Shen, “Anomaly detection of CAN bus messages
using a neural network for autonomous vehicles,” Applied Sciences,
vol. 9, no. 15, 2019.

[21] E. Seo, H. M. Song, and H. K. Kim, “GIDS: GAN based intrusion
detection system for in-vehicle network,” in Proc. Annual Conference
on Privacy, Security and Trust, 2018.

[22] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, no. S 91, 2015.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems
32, 2019.

[24] The pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020.
[25] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa et al., “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, 2011.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

