
DeepFlow: Abnormal Traffic Flow Detection

Using Siamese Networks

Sepehr Sabour, Sanjeev Rao and Majid Ghaderi

Department of Computer Science, University of Calgary

{sepehr.sabour, sanjeev.rao, mghaderi}@ucalgary.ca

Abstract—Nowadays, many cities are equipped with surveil-
lance systems and traffic control centers to monitor vehicular
traffic for road safety and efficiency. The monitoring process
is mostly done manually which is inefficient and expensive. In
recent years, several data-driven solutions have been proposed
in the literature to automatically analyze traffic flow data using
machine learning techniques. However, existing solutions require
large and comprehensive datasets for training which are not
readily available, thus limiting their application. In this paper,
we develop a traffic anomaly detection system, referred to as
DeepFlow, based on Siamese neural networks, which are suitable
in scenarios where only small datasets are available for training.
Our model can detect abnormal traffic flows by analyzing the
trajectory data collected from the vehicles in a fleet. To evaluate
DeepFlow, we use realistic vehicular traffic simulations in SUMO.
Our results show that DeepFlow detects abnormal traffic patterns
with an F1 score of 78%, while outperforming other existing
approaches including: Dynamic Time Warping (DTW), Global
Alignment Kernels (GAK), and iForest.

I. INTRODUCTION

Motivation. Driving safety continues to be a challenging prob-

lem in city management. Based on a road safety plan published

by Canadian Council of Motor Transport Administrators,

about 2000 people are killed, and 165, 000 are injured in car

accidents annually in Canada [1]. Distracted driving leads to

unusual actions such as sudden accelerations, decelerations,

and lane changes that other vehicles cannot predict, which can

result in collisions. Technology is expected to play a significant

role in road safety to lead the transportation system toward

zero fatal accidents [1]. An Intelligent Transportation System

(ITS) makes use of technologies such as vehicular networks,

cloud computing, and artificial intelligence to solve traffic flow

problems. For example, ITSs employ Vehicle to Everything

(V2X) communications [2] to collect information related to

vehicles, pedestrians, and road conditions. This data can be

used to analyze traffic flows and driver behavior in order to

detect abnormal driving patterns. Detecting abnormal behavior

in vehicular traffic, apart from improving transportation safety,

significantly impacts evaluation of driving skills, including that

of autonomous vehicles. For instance, insurance companies

can base their premiums on one’s driving behavior. Also,

understanding the misbehavior of autonomous vehicles can

help analyze the risks involved in detaching human drivers

from vehicles.

This work was supported by Wedge Networks Inc., Alberta Innovates and
Natural Sciences and Engineering Research Council of Canada.

The emergence of Machine Learning (ML) has paved the

way for more efficient solutions for many of the challenges

faced in various fields such as fraud detection, cyberattack

prevention and anomaly detection. ML solutions can help

reduce the system dependence on human-in-the-loop processes

in order to boost performance and reduce cost. Traffic man-

agement in cities can benefit from this idea too. A modern

traffic control center is equipped with several display devices

to monitor daily traffic flows in a city. The operators in these

centers continuously watch for abnormal events on the roads to

make sure traffic flows are steady and safe. In addition, these

centers provide helpful information to the emergency units in

case of accidents. However, manually checking traffic cameras

in a city is inefficient and expensive. An automated system to

check for traffic anomalies is essential for continuous and real-

time analysis of vehicular traffic.

Existing solutions such as [3]–[7] use a dataset of normal

driving patterns, and mark any unseen pattern as an anomaly.

However, several factors like weather condition, road side con-

structions and traffic load can change the behavior of vehicles.

Therefore, a huge dataset of normal patterns is required, which

is not easy to acquire. Other solutions rely on finding outliers

in traffic flows [8], [9]. These approaches are based on two

assumptions. First, the driving data (e.g. trajectory, speed, and

acceleration) of abnormal vehicles diverges from normal ones.

Second, normal vehicles form the majority of a given traffic

flow. However, the behavior of normal vehicles in a fleet varies

over time, which makes it challenging for such approaches

to distinguish between normal and abnormal patterns. For

example, drivers may usually drive within ±10% of the speed

limit and still be considered to be driving normally.

Our Work. In this work, we introduce DeepFlow, an anomaly

detection system which detects abnormal traffic flows by

analyzing vehicle trajectories in a fleet. We use a small set

of normal cases to train our model, and test it with a dataset

containing previously unseen patterns. We show that DeepFlow

can address the challenges faced by existing approaches. The

model learns the similarity between vehicles, assigns a score

based on that, and classifies flows based on this similarity

score. Our realistic experiments show DeepFlow is effective

even when a comprehensive dataset is not available for

training.

The main idea behind our solution is that vehicles in a

normal traffic flow have similar trajectory data, so the presence

of any abnormal cases can be detected by measuring the

average similarity between vehicles. For example, when a car

drives with a higher speed and acceleration than other ones or

abnormally changes lanes, its trajectory data is different than

others. To measure this similarity, we use neural networks to

compress the data-series from each vehicle into a latent vector,

and we measure the distances between them.

Our main contributions in this paper are:

• We present the design of DeepFlow, a traffic anomaly

detection system, and describe its various components

including data collection, anomaly detection and appli-

cation.

• We design, implement and evaluate a semi-supervised

Siamese network to measure the abnormality score of

traffic flows within a fleet of vehicles.

• We use realistic traffic simulations in SUMO to obtain

datasets for training and testing DeepFlow. Our results

show that DeepFlow detects abnormal traffic patterns with

78% F1 score and outperforms other existing approaches

including: Dynamic Time Warping (DTW), Fast Global

Alignment Kernels (GAK) and iForest.

Paper Organization. We review recent work on traffic

anomaly detection in Section II. The design of DeepFlow is

discussed in Section III. The anomaly detection engine used in

DeepFlow is presented in Section IV. In Section V, we describe

the simulation process and our datasets. Evaluation results are

presented in Section VI, while Section VII concludes the paper.

II. RELATED WORKS

In the following, we briefly review several representative

papers on traffic anomaly detection that are most relevant to

our work. We categorize available works into history-based

and outlier-detection approaches.

History-Based Approaches. In this approach, the behav-

ioral history of vehicles is used to check for the presence

of anomalies in real-time. For instance, SafeDrive [3] is a

driving anomaly detection approach that uses historical data

to generate a state graph in which states represent the value

(or its range) of sensor data, and weighted edges show the

likelihood of transitions between the states. At the beginning

of the driving path, the vehicle is in the starting state, and by

receiving the real-time driving events, the state changes. One

can measure the driver’s anomaly score by aggregating the

weight of the traveled edges. Similarly, authors in [4] employ

a graph-based approach and reinforcement learning techniques

to detect abnormal trajectories.

Neural networks such as autoencoders [10] and LSTMs [11]

have also been used for history-based anomaly detection. For

example, a technique for detecting anomalies using autoen-

coders is proposed in [5]. Similarly, authors in [6] propose

an anomaly management system which uses autoencoders

to find abnormal drivers in a collaborating transportation

system. Driving behavior prediction is another approach to

identify anomalies. To give an example, authors in [7] apply

two different solutions containing a recurrent neural network

Data Collection

E
m

e
r
g
e

n
c
y

U
n

its

Application

S
e
lf

R

e
p

o
rt

in
g

C
o

ll
a

b
o

ra
ti

v
e

R
e
p

o
rt

in
g

S
u

r
v

e
il

la
n

c
e

R
e
p

o
rt

in
g

T
r
a

ffic
 C

o
n

tr
o

l
C

e
n

te
r
s

E
n

fo
r
c
e

m
e

n
t

 u
n

its

Anomaly Detection

Fig. 1: High-level design of DeepFlow.

(RNN) and a long short-term memory (LSTM) to predict

driver’s actions, and mark behaviors that are varying from the

predicted ones.

Outlier-Detection Approaches. These approaches compare

the behavior of vehicles and mark outliers. For instance, in [8],

three ML algorithms, namely Support Vector Machine (SVM),

Isolation Forest (iForest), and K-Nearest Neighbors (K-NN),

are used to detect outlier drivers. Also, the authors of [9]

present a reckless driver detection framework which uses

vehicular collaboration to collect data and then apply support

vector machine (SVM) and decision-tree models to measure

every vehicle’s driving performance.

In general, history-based approaches require a large dataset.

On the other hand, SVM and K-NN are supervised approaches,

which need a dataset containing abnormal cases for training.

However, DeepFlow can operate with a small dataset, and

because it is a semi-supervised method, no datasets containing

abnormal cases are required for training.

III. DEEPFLOW DESIGN

Fig. 1 shows the high-level design of DeepFlow. As shown

in the figure, DeepFlow contains three components including

data collection, anomaly detection and application. In the

following, we describe each of these components.

A. Data Collection

We feed DeepFlow with time-series data collected from a

group of vehicles; this contains information such as speed,

location and steering angle. The data can be gathered using

one or a combination of the following approaches:

Self Reporting. Most modern vehicles are equipped with sen-

sors and onboard communication devices due to the industry-

wide push towards more automated vehicles. These sensors

measure the speed, location, and gap between a vehicle and

the surrounding objects. Vehicles can report their data to the

server for anomaly detection. The self-reported data to the

server is more accurate than other approaches. Nevertheless,

it demands that all vehicles have the required hardware. Also,

an abnormal vehicle can manipulate or avoid sending data to

stay hidden from the anomaly detection system.

Collaborative Reporting. In this approach, each vehicle

measures the state of the adjacent vehicles and reports it to

the server. The information inferred by the other neighbors

Fig. 2: Tracking vehicles using a surveillance camera [12], [13].

may be inaccurate; however, participating vehicles can reach

a consensus on its validity using vehicle to vehicle (V2V)

communication. Therefore, the system understands the correct

state of the traffic flow even if an adversarial vehicle blocks

or changes the data. However, like any other wireless network

solution, jamming and corrupting the communication signals

is possible.

Surveillance Reporting. Surveillance systems such as traffic

cameras and road sensors can capture information like the

speed and location of the vehicles. Image processing tech-

niques can be used to process the collected video feeds and

extract traffic flow information. For example, Fig. 2 shows a

demo of such a vehicle tracking system [12], [13]. Despite

the processing overhead of this approach, it does not require

any hardware installed on the vehicles. Also, since there is

a direct connection between the surveillance devices and the

cloud server, it has a lower security risk.

B. Anomaly Detection

At the core of DeepFlow is a Siamese network, as depicted

in Fig. 3. A Siamese network contains two identical neural

networks with the same weights. This model is used to

measure the similarity of two vectors by feeding them to

the twin networks and comparing their outputs [14]. Siamese

networks are very useful in applications where no compre-

hensive dataset exists for training. The anomaly detection

component applies a pre-trained machine learning model on

each vehicle’s trajectory data and outputs an anomaly score

for it. The detector can function on a cloud or an edge server.

For the sake of privacy requirements and decreasing the cost of

storage requirements, the server can eliminate all the processed

data after making the required computations. In Section IV, we

delve into the structure of the applied machine learning model

in this component.

C. Application

The output of the anomaly detection can be used in multiple

applications as described below.

Traffic Flow Analysis. By employing this system we can

measure the average abnormality score of traffic flows in

streets, junctions and highways, which can help optimize the

vehicular movements in these areas.

Enforcement of Traffic Laws. Enforcement units make use

of this system to detect aggressive and distracted drivers. The

Tr ain ing Phase

Reconstruction
Er ror

Simi lar i ty
Score

Optimize
Model

Simi lar i ty
Post

processing
Threshold

Check

Compressor

Detector

Autoencoder

Reconstructed
Input

Latent
Vector

Opt im ized Weights

Anom aly
 Yes/No

Test PhaseTrajector y data of the
vehicles in a f leet

Fig. 3: Structure of DeepFlow’s Siamese network.

detected abnormal drivers can be penalized based on their

anomaly scores.

Emergency Situation Detection. Traffic accidents can affect

the abnormality score of a flow, which makes DeepFlow able to

mark sudden changes in scores and notify nearby emergency

units.

This paper mainly focuses on implementation and evalua-

tion of the anomaly detection component. Therefore, elabora-

tion of the data collection and application components is out

of the scope of this article.

IV. ANOMALY DETECTION ENGINE

DeepFlow employs a semi-supervised machine learning ap-

proach based on a Siamese network to detect abnormal traffic

patterns. Fig. 3 shows the architecture of this network. The

input of the network is a set of trajectory data-series col-

lected from vehicles driving in a fleet. At the first step, the

Compressor converts the data from each vehicle to a latent

vector. Then, the Detector measures the distance between

the vectors, specifies a similarity score for each one, and

finally measures the abnormality score of the flow. In the

following sub-sections, we explain the architecture, objectives,

and functionality of each component in detail.

A. Compressor

The compressor is intended to shrink the input into a

compressed “latent representation”, which is accomplished

by using an autoencoder (AE). An autoencoder is a type of

artificial neural network trained to compress the input and then

decompress it with minimal distortion. These neural networks

are composed of two parts, an encoder that imposes a bottle-

neck and compresses the data, followed by a decoder which

reconstructs the input from the compressed representation [10].

Usually, the only objective of an AE is to minimize the

reconstruction error. In our system, we use the Mean Squared

Error (MSE) to measure the error. Also, to simplify the

learning process, we use a tanh function to limit the error

value in a range between 0 and 1. Thus, the reconstruction

loss function in DeepFlow can be expressed as follows:

RLoss(Y, Ŷ) = tanh
(1

n

n∑

i=1

(Yi − Ŷi)
2
)
, (1)

H : LSTM hidden state size
L : Latent vector size

X: Input data sequence length
F: Number of Features

LSTM 1[X,F] LSTM 2[X,H] [1,L]
Latent
Space

LSTM 3LSTM 4
l inear

tr ansformation

[1,L]
[X,L][X,H][X,F]

Input Data

Reconstructed
Input

Fig. 4: Structure of DeepFlow autoencoder. The arrows show the flow
of data and indicate the input and output dimensions at each point in
the network.

where Yi and Ŷi are the ith actual and the ith reconstructed

values of the input vector with size n, respectively.

To use the latent representation for outlier detection, we

consider the compressed representation of an outlier pattern

to be different from the regular patterns. In the training phase,

we use a dataset containing only normal trajectories to train

our model to maximize the similarity of latent vectors. Hence,

we add a second error function, similar to the first one, to

measure the distance between latent spaces:

Sim(Li, Lj) = tanh
(1

n

n∑

k=1

(Li[k]− Lj [k])
2

)
, (2)

where Li and Lj are the latent vectors, created for vehicles i
and j, respectively. In DeepFlow, we calculate the aggregated

loss in each training iteration and optimize the neural networks

to minimize this value. We use the following expression to

determine the aggregated loss:

Loss =
1

m

m∑

i=1

RLoss(Yi, Ŷi)

+
2λ

m(m− 1)

m∑

i=1

m∑

j=i+1

Sim(Li, Lj),

(3)

where Yi, Ŷi and Li are the input, reconstructed input, and

latent representation of vehicle i, respectively. Also, m is the

number of vehicles in the fleet, and λ indicates the importance

of reconstruction accuracy over the similarity score.

As shown in Fig. 4, DeepFlow’s autoencoder consists of four

LSTMs and one linear neural network. LSTMs use a shared

state between the nodes to remember the changes in the input

over time. In each step, a sequence of mathematical processes

decides which part of the data should be remembered through

the shared state and which part should be eliminated [11]. The

first two networks in our autoencoder change the dimension

of the input data and convert it to the latent vector. Then,

the next two LSTMs increase the size of the vector; finally,

the linear neural network unit reconstructs the input. The

compressor unit has two outputs: the latent representation and

the reconstructed input. In the training phase, we use both

outputs to optimize the model using (3). However, we only

use the first output in the testing phase and pass the latent

vector to the detector unit.

B. Detector

After training the compressor, the system can be used to

detect anomalies. The Detector compares the latent space of

each time-series data using an MSE function which is similar

to the loss function used in the training phase. We use the

following expression to calculate the abnormality score of

traffic flows:

AS = 1− 1

m(m− 1)

m∑

i=1

m∑

j=i+1

Sim(Li, Lj) . (4)

After calculating the score, we compare it with a threshold

to decide whether the traffic is normal or not. A high score

suggests low similarity between the behavior of the vehicles,

which indicates an anomaly is present. Therefore, finding an

optimal threshold is critical. In Section IV, we study two

approaches for finding a suitable threshold.

C. Implementation

The model is implemented in Python using PyTorch as

explained below.

PyTorch. To implement the model, we use Python3 program-

ming language and PyTorch [15]. PyTorch is an open source

deep learning library which facilitates building ML models

by providing basic machine learning modules such as LSTMs

and linear neural networks. We use the predefined models in

PyTorch to construct the Siamese network 1 in DeepFlow.

PyTorch Lightning. This library [16] allows us to run neural

network models on any hardware (CPU, GPU, TPU) with no

changes required in the source code. This feature is helpful as

our development is done on a desktop computer, while model

training is conducted on an Ubuntu Linux server with two

V100 GPUs.

Weights & Biases. One of the main challenges in this work

was finding the proper number of epochs for training our

model. This is important because, first, we try to find the

minimal loss value which is important to prevent the model

from over-fitting the training dataset. Second, we should

monitor the value of the two loss functions. At the beginning

of the training phase, the value of the reconstruction error

is significantly higher than the similarity error. After several

iterations, the model learns to reduce the first loss value and

proceeds to minimize the second one. Therefore, we need

to monitor these values to stop the training after a suitable

number of iterations. For this, we used Weights & Biases

(WandB) [17] to monitor the training process.

V. TRAFFIC FLOW DATASET

The input of DeepFlow is trajectory data collected from a

group of vehicles in a fleet. Due to the difficulty in obtaining

a dataset from a group of vehicles in an actual scenario, we

generated the necessary datasets using simulation. The datasets

used in our evaluations are generated using the road traffic sim-

ulator software Simulation of Urban Mobility (SUMO) [18],

1Our source code is available at: https://github.com/pesehr/DeepFlow

4

1

2

3

Fig. 5: Simulated City of Calgary traffic flow using SUMO. The
highlighted paths are used for generating the test dataset.

which is an open-source traffic simulator capable of simulating

different components involved in a traffic scenario such as

roads, vehicles and pedestrians.

A. Traffic Simulation

In order to use this software, the following elements should

be specified:

• Network File: The location and shape of each road,

junction, and sidewalk. Also, the network file indicates

the traffic rules such as direction, priority, and speed limit

of each path.

• Traffic Demand File: Determines how many vehicles

are in the system and describes their behavior. Also, each

driver’s arrival and departure time, and the path taken by

them should be defined in the traffic demand file.

SUMO includes several tools to help with the simulation

process. We use the following tools in our work:

OSMWebWizard. A Python script implemented to work with

OpenStreetMap [19] which extracts network data from the

actual street map. In this work, we use it to simulate downtown

Calgary and the surrounding regions. We select this area due

to the variety of available streets. Fig. 5 shows the area of the

city which is simulated.

TraCI. An interface implemented by SUMO to get data

values from simulated vehicles and control their behavior. It

is available as a Python library and employs a TCP-based

client-server architecture to access the simulator [20]. We use

TraCI to manipulate the speed of the vehicles and create the

scenarios that are used in our training dataset.

B. Collected Data

We generated two different datasets for the training and

testing process. The training dataset contains trajectory data

of 6660 normal vehicles (across 1332 groups of cars) driving

in a straight street. The initial assigned speed of each vehicle

is distributed randomly according to a Gaussian distribution

(parameters are in Table I), and it changes based on one of

the three scenarios in Fig. 9.

In the first scenario, we simulate a group of vehicles driving

with a constant speed limit; the second and third involve an

0 10 20 30 40 50 60
time (s)

12.0

12.5

13.0

13.5

14.0

14.5

Sp
ee

d
(m

/s
)

Vehicle #1
Vehicle #2
Vehicle #3
Vehicle #4
Vehicle #5

Fig. 6: Constant speed limit.

0 10 20 30 40 50
time (s)

12

13

14

15

16

17

Sp
ee

d
(m

/s
)

Vehicle #1
Vehicle #2
Vehicle #3
Vehicle #4
Vehicle #5

Fig. 7: Speed limit raise.

0 10 20 30 40 50 60 70
time (s)

9

10

11

12

13

14

Sp
ee

d
(m

/s
)

Vehicle #1
Vehicle #2
Vehicle #3
Vehicle #4
Vehicle #5

Fig. 8: Speed limit decline.

Fig. 9: Driving scenarios simulated for the training dataset.

increase and decrease of the speed limit in a road. We use

these scenarios to help our model learn how a group of normal

vehicles changes their behavior when it is necessary.

We also use simulated traffic in four streets (highlighted in

Fig. 5) with different shapes, number of lanes and speed limits

in the city to test our model. Path #1 is located in a residential

area and contains one lane with a speed limit of 40 km/h.

Paths #2 and #3 are two main streets with two lanes, with

maximum permitted driving speed of 50 km/h. Also, vehicles

can drive up to 80 km/h in the three lanes of path #3.

This dataset contains the trajectory data of 16320 vehicles

with 1020 abnormal cases. Each abnormal case consists of a

vehicle either over-speeding or under-speeding (as shown in

Table I). Similar to normal cases, the speed of each abnormal

case is chosen randomly. Table I shows the parameters of the

Gaussian distribution used for each speed class. The numbers

in the table are multiplied by the speed limit of a street, for

example the speed of a normal vehicle cannot exceed the street

speed limit by more than 10%.

TABLE I: Speed classes for each vehicle.

SpeedClass σ µ min max

× Speed Limit of streets

Normal 1.0 0.1 0.9 1.1
Over Speed 1.25 0.1 1.2 1.3

Under Speed 0.75 0.1 0.7 0.8

VI. EVALUATION RESULTS

In this section, we evaluate the anomaly detection perfor-

mance of DeepFlow and compare it with three baseline meth-

ods: Dynamic Time Warping (DTW) [21], Global Alignment

Kernels (GAK) [22], and iForest [23].

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

DeepFlow + MSE (F1:0.783)
DeepFlow + Cosine (F1:0.681)
GAK (F1:0.707)

iForest (F1:0.567)
DTW (F1:0.667)

Fig. 10: ROC curve for DeepFlow, DTW, GAK, and iForest.

0.0 0.2 0.4 0.6 0.8 1.0
Recall (Sensitivity)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

 (P
PV

)

DeepFlow + MSE (F1:0.783)
DeepFlow + Cosine (F1:0.681)
GAK (F1:0.707)

iForest (F1:0.567)
DTW (F1:0.667)

Fig. 11: Precision-Recall curve for DeepFlow, DTW, GAK, and
iForest.

A. Implemented Approaches

DTW and GAK are two techniques to compare two or

more time series with unequal length, which find an optimal

alignment between the points on the two sequences. We use a

Python package called TsLearn [24] which provides machine

learning tools for the analysis of time series to implement

these two methods. Additionally, iForest is an unsupervised

anomaly detection technique that works based on isolating the

outlier cases. We implement it using Sklearn [25], an open

source machine learning library which contains various tools

for supervised and unsupervised learning.

Additionally, we use a Cosine similarity function instead

of (2) and study its performance compared to MSE. To

calculate the similarity of two latent vectors A and B using

the Cosine similarity, we use the following expression:

cos(A,B) =
∑

i=1

n
AiBi√∑

i=1

n
A2

i

√∑
i=1

n
B2

i

(5)

B. Performance Metrics

Undetected abnormal vehicles in the system are a threat to

traffic safety; on the other hand, marking normal vehicles as

abnormal is not desirable either. Therefore, finding a proper

threshold has a significant impact on the True Positive and

False Positive rate of the system. We employ a Receiver

Operating Characteristic (ROC) curve to show DeepFlow’s

performance compared to other solutions; this displays the

True Positive rate (TPR) versus False Negative rate (FNR)

when we change the anomaly score threshold. TPR shows the

proportion of abnormal cases which are detected, and FNR

indicates the proportion of normal cases which are marked

incorrectly.

TABLE II: Performance evaluation.

Method Recall Precision F1 Time

DeepFlow (MSE) 71.27% 86.96% 78.34%
96ms

DeepFlow (Cosine) 67.84% 68.38% 68.11%
GAK 70.88% 70.54% 70.71% 33ms
DTW 78.92% 41.40% 66.75% 136ms
iForest 89.90% 57.83% 56.69% 154ms

727

692

723

917

805

109

320

302

1298

587

1535

1324

1342

346

1057

293

328

297

103

215

DeepFlow
MSE

DeepFlow
Cosine

GAK

iForest

DTW

0% 25% 50% 75% 100%

True Positive False Positive True Negative False Negative

Fig. 12: TP, FP, TN, and FN for DeepFlow, DTW, GAK, and iForest.

We also use the Precision-Recall metric to evaluate the

quality of our detector. Precision-Recall is an important mea-

sure when we use an imbalanced dataset. Precision is defined

as the ratio of between the number of true positives and the

number of detected anomalies, while recall determines the

proportion of the actual abnormal cases that are identified

correctly. A high value in both metrics is a sign of good

performance for the detector. To consider Precision and Recall

metrics in our evaluations, we use F1 Score as it places equal

weights on both precision and recall; this can be expressed as

follows:

F1 = 2× precision×recall
precision+recall

(6)

C. Results and Discussion

Performance Comparison. We use the dataset that is de-

scribed in Section V. The results, shown in Fig. 10, Fig. 11

and Table II, indicate that DeepFlow (with MSE) outperforms

other solutions.

Based on Fig. 10, there is a threshold where DeepFlow

detects 70% of the abnormal cases or a 6% FN rate. However,

achieving the same TP rate using GAK or DTW will result

in an FN rate of 18% and 26%, respectively. Likewise, the

Precision-Recall curve in Fig. 11 shows that DeepFlow can

achieve both greater precision and recall than other methods.

In addition, Table II shows that DeepFlow can reach the highest

F1 score among all the evaluated approaches. Also, we show

the average anomaly detection time for each traffic flow in the

table.

Microscopic Behavior. As Fig. 12 shows, DeepFlow achieved

the lowest number of false positives and detected more than

700 abnormal cases. Although iForest and DTW detected more

abnormal cases than DeepFlow, a large number of normal cases

are incorrectly marked by these approaches. The reason is

that the random distribution of the vehicles speeds makes it

TABLE III: DeepFlow F1 score for streets shown in Fig. 5.

Path Indiv. Com. Feature

1 81.4% 74.9% Includes turnings
2 82.5% 60.0% Curved and longest
3 95.4% 86.4% Straight (similar to training)
4 78.0% 76.4% North to south

difficult for these classifiers to distinguish between the normal

and abnormal cases, thus resulting in high false positive rates.

However, DeepFlow learns the pattern of similarity between

the normal behaviors, which help it detect anomalies more

accurately.

Anomaly Threshold. Finding a proper threshold value can

affect the accuracy of the system noticeably. This value can

be selected for each street individually or a common value can

be used. Table III shows that finding a threshold specifically

for each street increases the F1 score. However, it requires

providing a dataset containing abnormal cases for each path

and calculating the corresponding threshold value. Therefore,

we suggest using a common threshold for the majority of the

paths in cities and only assign individual thresholds for streets

with greater importance, e.g. highways.

Road Characteristics. From Table III, we can observe that

the performance of DeepFlow is dependent on the shape and

length of the street that is being monitored. For example, street

#2 is the longest simulated path which results in our model

being unable to detect abnormal cases as accurately as in other

paths. Also, street #3 has the most similar structure to the

training dataset among other paths, so our model is able to

detect anomalies with a higher F1 score on this path.

Parameter Tuning. We analyze the result of changing the

value of two different training parameters on our model

behavior. First, we investigate the effect of the λ value in

Exp. 3 on the training performance. The results show that best

performance is when the importance of the two loss functions

in the training phase are equal, which can be achieved by

setting the λ value to 1. Second, we searched for the best latent

vector size. Our experiment shows that we can, on average,

get the best result from compressing the input value by 60%.

VII. CONCLUSION

In this paper, we presented DeepFlow for detecting abnormal

traffic flows. We showed that DeepFlow performs well even

when it is trained with a dataset that is collected in a different

environment. This feature indicates that DeepFlow can be

employed for roads with different shapes, number of lanes

and speed limits, with no retraining required. Even though

that DeepFlow can work with any number of inputs (e.g.

speed, acceleration and steering angle), we used trajectory

data to detect anomalies as this type of data can be collected

easily using existing surveillance camera infrastructure at no

additional cost. Despite the excellent performance and easy

implementation, our model suffers from two disadvantages.

First, this model only works for a group of vehicles and cannot

detect abnormal behavior of an individual car. The second

problem is, we assume abnormal vehicles form the minority

of target traffic flow, so our model only works as long as this

assumption holds.

Future works include determining the effect of using more

variables (such as speed, acceleration, and vehicle angle) and

considering a wider range of anomalies.

REFERENCES

[1] Canadian Council of Motor Transportation Administrators, “Towards
Zero: The safest roads in the world,” 2016. [Online].
Available: https://roadsafetystrategy.ca/web/road-safety-strategy/files/
public/docs/RSS-2025-Report-January-2016-with%20cover.pdf

[2] “Intelligent Transport Systems (ITS); vehicular communications; basic
set of applications; definitions,” European Telecommunications Stan-
dards Institute, Tech. Rep., 2009.

[3] M. Zhang, C. Chen, T. Wo et al., “SafeDrive: Online driving anomaly
detection from large-scale vehicle data,” IEEE Trans. on Ind. Inform.,
vol. 13, no. 4, 2017.

[4] H. Wu, W. Sun, and B. Zheng, “A fast trajectory outlier detection
approach via driving behavior modeling,” in Proc. ACM Conf. on Inf.

and Knowl. Manage., 2017.
[5] H. Oikawa, T. Nishida, R. Sakamoto et al., “Fast semi-supervised

anomaly detection of drivers behavior using online sequential extreme
learning machine,” in IEEE ITSC, 2020.

[6] S. Ucar, C. Patnayak, P. Oza et al., “Management of anomalous driving
behavior,” in IEEE VNC, 2019.

[7] M. Matousek, M. EL-Zohairy, A. Al-Momani et al., “Detecting anoma-
lous driving behavior using neural networks,” in IEEE IV Symp, 2019.

[8] M. Matousek, M. Yassin, A. Al-Momani et al., “Robust detection of
anomalous driving behavior,” in IEEE 87th VTC, 2018.

[9] L. Zhang, L. Yan, Y. Fang et al., “A machine learning-based defensive
alerting system against reckless driving in vehicular networks,” IEEE

Trans. on Veh. Technol., vol. 68, no. 12, 2019.
[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016.
[11] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget:

Continual prediction with LSTM,” Neural Computation, vol. 2, 2000.
[12] Z. Tang, G. Wang, H. Xiao et al., “Single-camera and inter-camera

vehicle tracking and 3D speed estimation based on fusion of visual and
semantic features,” in Proc. CVPR Workshops, 2018.

[13] M. Naphade, M.-C. Chang, A. Sharma et al., “The 2018 NVIDIA AI
city challenge,” in Proc. CVPR Workshops, 2018.

[14] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks
for one-shot image recognition,” 2015.

[15] A. Paszke, S. Gross, F. Massa et al., “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Inf. Process.

Syst., 2019.
[16] W. Falcon et al., “PyTorch Lightning,” 2019. [Online]. Available:

https://github.com/PyTorchLightning/pytorch-lightning
[17] L. Biewald, “Experiment tracking with Weights and Biases,” 2020.

[Online]. Available: https://www.wandb.com/
[18] P. A. Lopez, M. Behrisch, L. Bieker-Walz et al., “Microscopic traffic

simulation using SUMO,” in IEEE ITSC, 2018.
[19] OpenStreetMap contributors, “Planet dump retrieved from

https://planet.osm.org,” 2017. [Online]. Available: https://www.
openstreetmap.org

[20] A. Wegener, M. Piórkowski, M. Raya et al., “TraCI: An interface for
coupling road traffic and network simulators,” in Proc. Commun. and

Netw. Simul. Symp., 2008.
[21] M. Mller, Dynamic Time Warping. Springer Berlin Heidelberg, 2007,

pp. 69–84.
[22] M. Cuturi, “Fast global alignment kernels,” in Proc. Int. Conf. on

Machine Learning, 2011.
[23] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in IEEE Int.

Conf. on Data mining, 2008.
[24] R. Tavenard, J. Faouzi, G. Vandewiele et al., “Tslearn, A machine

learning toolkit for time series data,” Journal of Machine Learning

Research, vol. 21, no. 118, 2020.
[25] F. Pedregosa, G. Varoquaux, A. Gramfort, Michel et al., “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, 2011.

