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Abstract—As the scale and speed of modern networks continue
to increase, traffic sampling has become an indispensable tool in
network management. While there exist a plethora of sampling
solutions, they either provide limited flow visibility or have poor
scalability in large networks. This paper presents the design and
evaluation of FlowShark, a high-visibility per-flow sampling system
for Software-Defined Networks (SDNs). The key idea in FlowShark
is to separate sampling decisions on short and long flows, whereby
sampling short flows is managed locally on edge switches, while a
central controller optimizes sampling decisions on long flows. To
this end, we formulate flow sampling as an optimization problem
and design an online algorithm with a bounded competitive ratio
to solve the problem efficiently. To show the feasibility of our
design, we have implemented FlowShark in a small OpenFlow
network using Mininet. We present experimental results of our
Mininet implementation as well as performance benchmarks
obtained from packet-level simulations in larger networks. Our
experiments with a machine learning based Traffic Classifier
application show up to 27% and 19% higher classification recall
and precision, respectively, with FlowShark compared to existing
sampling approaches.

I. INTRODUCTION

Motivation. Network traffic monitoring is essential for net-
work management tasks such as traffic engineering and
anomaly detection [1], [2]. While high-level flow statistics are
sufficient for some tasks (e.g., traffic matrix estimation [3]),
others require more detailed packet-level information, includ-
ing packet payloads (e.g., traffic classification [4]). Deploying
passive monitoring equipment that captures every packet on
a link provides highly accurate traffic information but scales
poorly in large networks. As the scale and speed of modern
networks continue to increase, more scalable and efficient
solutions are needed for packet-level traffic monitoring. Many
networks adopt solutions that use packet sampling in which
network switches selectively capture a subset of packets that
pass through them [5], [6]. Sampling, however, is an expensive
operation for network switches to perform, given their limited
processing capabilities. In particular, a typical switch can
sample only a tiny fraction of the packets it sees, above which
its performance begins to degrade [5]. Thus, when deploying
sampling solutions, network operators use very low sampling
rates to minimize any potential impact on network switches.

Legacy sampling solutions such as NetFlow [7] and
sFlow [8] only support per-port sampling, in which a sampling
rate is specified for each input port of the switch. As the
packet arrival rate varies over time, the sampling rate varies
accordingly. As a result, flows with higher packet rates are
more likely to be sampled compared to flows with lower rates.
A consequence of this is that short flows consisting of only a
few packets may be entirely missed by the sampling system,

resulting in low visibility of flows in the network. Clearly, such
solutions are inadequate for network management tasks that
require a minimum per-flow sampling rate in the network [9]
such as anomaly detection tasks.

To address this limitation and enable per-flow sampling in
a network, a number of solutions has been proposed [10]–
[12]. In particular, the works [10] and [11] target legacy
switches and, as such, require significant modifications of the
packet processing pipeline of switches to identify and sample
individual flows. The work [12], on the other hand, targets
OpenFlow switches that natively support per-flow packet for-
warding operations in Software-Defined Networks (SDNs).
While the current OpenFlow specification (OpenFlow 1.5)
does not support packet sampling, there are several proposals
to add packet sampling extensions to OpenFlow [5], [13], [14].
As programmable switches such as those based on P4 [15]
become mainstream, it is only reasonable to expect that per-
flow sampling will be supported as a built-in feature on SDN
switches. Indeed, the Switch Abstraction Interface (SAI) [16]
developed by Open Compute Project and supported by all ma-
jor switch vendors, already includes advanced features such as
in-band telemetry, flow-based monitoring, and packet sampling
in its Telemetry and Monitoring (TAM) specification [17].

Nevertheless, existing per-flow sampling solutions such
as [10]–[12] scale poorly in large networks, as they rely on
a network controller to determine a sampling rate for every
flow on each switch along its path. In large networks such
as datacenters, thousands of flows traverse each switch every
second, with the majority of them being short flows that send
only a few packets [18], [19]. For example, in Fig. 1, we have
plotted the probability distribution of flow sizes in a datacenter
using the publicly available web search workload [20]. As can
be seen from the figure, close to 60% of flows send less than
100 KB of data. In a datacenter with 100 Gbps links, such
flows finish in just 8 µs, which is less than the round-trip-
time of the flows in the network [18]. By the time the network
controller receives information about a short flow, determines
switch sampling rates and instructs switches to sample the
flow based on those rates, the flow may have already finished.
Not only does such a design puts high control load on the
controller, but also it may entirely miss some short flows,
resulting in the same visibility problem as per-port solutions.

Our approach. Our approach is to take the best of both
worlds: static pre-specified sampling for short flows but dy-
namic per-flow sampling for long flows. To this end, we
present the design and evaluation of FlowShark, a scalable
sampling system with high flow visibility for SDNs. The key
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Fig. 1: Distribution of flow sizes in web search workload [20].

idea in FlowShark is the separation of sampling decisions on
short and long flows. Specifically, sampling decisions on short
flows are made locally on edge switches, while sampling
decisions on long flows are made centrally by a controller
application referred to as the sampling orchestrator. Whenever
a new flow arrives to the network, it is assumed to be a short
flow and will be sampled at a default rate on its corresponding
edge switch. Once a flow is determined to be a long flow, it
is handed off to the orchestrator which in turn determines on
which switches and at what rates the flow should be sampled
to satisfy a target sampling rate.

Recall that short flows constitute the majority of flows,
while contributing only a small portion of the total traffic
volume. In particular, in FlowShark, we use a threshold on the
size of each flow to determine if the flow is short or long. Con-
sequently, each short flow contributes only a negligible amount
to the overall sampling load of the network. This means
that the exact sampling locations and rates of short flows
have a negligible impact on the efficiency of FlowShark. More
importantly, sampling short flows locally allows FlowShark to
fulfill two objectives: 1) improved scalability due to reduced
load on the controller (i.e., orchestrator), and 2) improved
flow visibility by ensuring that every flow is sampled in
the network regardless of its size. To optimally distribute
sampling load among switches and, consequently, maximize
the number of flows that are sampled at their target rate,
FlowShark allows each flow to be partially sampled on multiple
switches. The sampling decisions on long flows are made
by the orchestrator. A major technical challenge in designing
FlowShark is optimizing sampling decisions of the orchestrator
without knowing the set of flows that will arrive in the network
in the future. One of the main contributions of this work is the
design and analysis of an online algorithm to make sampling
decisions on long flows as they arrive in the network over
time. This is in contrast to existing works [10], [11], [21],
where sampling decisions are made in an offline manner, with
an assumption that the set of flows in the network is fully
known in advance.

Contributions. Our main contributions in this paper are:
• We present the design and evaluation of FlowShark, a scalable

per-flow sampling system for SDNs. FlowShark includes
simple and practical mechanisms for short and long flow
detection as well as flow rate estimation.

• We formulate the problem of flow sampling as a linear
program. Utilizing the primal-dual framework, we then
design an online algorithm and analyze its competitive ratio
and runtime complexity. We also design a simple greedy
algorithm that has better runtime compared to the primal-

dual-based algorithm but does not have a guaranteed worst
case performance.

• We present a proof-of-concept Mininet implementation of
FlowShark that includes lightweight mechanisms for long
flow detection and traffic rate estimation. We also present
packet-level simulation benchmarks in large networks to
show the performance and scalability of FlowShark in both
ISP and datacenter networks.

• We have implemented a realistic use case application for
traffic classification based on machine learning on top of our
Mininet prototype to demonstrate the utility of FlowShark in
real-world applications.

Organization. The high-level design of FlowShark is presented
in Section II. In Section III, we present our algorithms and
their analysis. Evaluation results are presented in Section IV.
Our concluding remarks are presented in Section VI.

II. SYSTEM DESIGN

The high-level architecture of FlowShark is depicted in Fig. 2.
The main component of the design is the Orchestrator, which
is implemented on top of the SDN controller. In the following,
we first describe the workflow of the system and then provide
more details about components of the architecture.

Workflow. There are two phases in FlowShark operation,
namely the start-up phase and the sampling phase. In the
startup phase, the orchestrator uses the controller’s northbound
interface to install default sampling rules for short flows. These
rules are specified as wildcard rules with a default sampling
rate and are installed only on edge switches. The destination
of all sampling rules is the Collector server (i.e., a load-
balancer in front of storage servers), which is connected to
an Analyzer application that implements the desired inference
and management task. The orchestrator periodically polls edge
switches for flow statistics (e.g., OpenFlow counters). These
statistics are forwarded to the Flow Classifier module, which
determines if a flow is long, and if so, informs the orchestrator
accordingly. Upon detection of a long flow, the orchestrator
invokes the Rate Estimator module, which returns an estimate
of the newly identified long flow traffic rate. The orchestrator
also queries the controller to obtain the flow’s path. It then
invokes the optimizer module to compute a sampling schedule
for the flow based on its path and the sampling schedules
of existing flows. A sampling schedule for a flow determines
the set of switches and their corresponding sampling rates for
that flow. At this point, the orchestrator communicates with
the SDN controller to install the newly computed sampling
schedule on the relevant switches.

Orchestrator. The orchestrator is the brain of FlowShark. It
is implemented as an application on the SDN controller and
includes three modules, namely Flow Classifier, Rate Estima-
tor and Optimizer. All communications between FlowShark and
network switches go through the orchestrator. The orchestrator
receives information about flows and their paths from the
controller, communicates with its modules to build a sampling
schedule for each long flow, and then, installs the schedule
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Fig. 2: High-level architecture of FlowShark.

with the help of the controller. The sampling schedules can be
installed on OpenFlow switches via small OpenFlow protocol
extensions [12], [13].
Flow Classifier. The flow classifier module of the orchestrator
utilizes flow counters, polled periodically from edge switches
by the orchestrator, to decide if a flow that has been continuing
for a period of time is a long flow. Note that FlowShark does
not need to know the total size of the flow in advance. Instead,
it only checks if a flow is long or short. While a variety of
techniques can be employed to distinguish between short and
long flows, in FlowShark we adopt a simple technique based
on a threshold on the amount of data transmitted so far by
each flow (as in [22]–[24]). The threshold value can be tuned
based on the sampling requirements of the analyzer application
and network flow characteristics. If switch modifications are
allowed, the flow classifier could be implemented on edge
switches to avoid the overhead of polling flow counters.
Rate Estimator. To provide per-flow sampling at a pre-
specified rate and compute an optimal sampling schedule for
the flow, FlowShark estimates the sending rate of each long
flow. Estimating traffic flow rates is a well-studied problem.
For example, to estimate flow rates, the work [25] makes
use of autoregressive models, while the works [26] and [27]
apply machine learning techniques. In FlowShark, we use a
feed forward neural network to estimate the traffic rate of
each long flow based on the flow counters and traffic samples
that have been collected while the flow was treated as a short
flow. Details about the flow rate estimator implementation are
presented in Section IV-A. As with the flow classifier module,
the rate estimator could also be implemented on edge switches
for improved efficiency, albeit with switch modification.
Optimizer. The optimizer module is in charge of computing
sampling schedules for long flows, identified by the flow
classifier module. When computing sampling schedules, the
objective of the optimizer is to minimize the maximum
sampling load among all switches. This objective enables
FlowShark to optimally use switch sampling resources, which
leads to higher flow visibility by allowing more flows to be
sampled at the pre-specified target rate. Designing efficient
algorithms for the optimizer is the main focus of the next
section. Specifically, we focus on designing online algorithms
that do not require knowledge about future flow arrivals in
advance.
Discussion. OpenFlow switches have limited Ternary Content-
Addressable Memory (TCAM) capacity for installing flow
rules. One of the added benefits of using FlowShark compared

to existing per-flow solutions, e.g., [12], is that it only needs
to install sampling rules for long flows that constitute a small
portion of all flows in the network. As such, FlowShark reduces
TCAM usage, compared to existing per-flow approaches.

III. SAMPLING OPTIMIZATION

The optimizer module in FlowShark computes the sampling
schedules by solving an optimization problem. Recall that
a sampling schedule specifies the sampling locations (i.e.,
switches) and associated sampling rates for a flow. In this
section, we first formulate an offline optimization problem
called Flow Sampling Rate Allocation (FSRA) for computing
sampling schedules for a given set of flows. The objective of
the FSRA problem is to minimize the maximum sampling load
among all switches in the network.

The FSRA problem is a linear program (LP) that can
be solved in polynomial time. In real-world applications,
however, information about network flows is not known in
advance, i.e., the set of flows is unknown. Rather the opti-
mizer module has to compute sampling schedules at runtime
whenever a new (long) flow arrives. A naive solution is to
recompute sampling schedules for all active flows every time
a new long flow arrives and then re-install the new sampling
schedules on network switches. Such a solution, however,
is highly disruptive as it takes time for the orchestrator to
work through the network controller and change the sampling
rules on all switches on the path of active flows. Repeating
this process every time a (long) flow arrives, which could be
every few milli-seconds, is highly undesirable and may not be
feasible in a large network.

To solve the FSRA problem in an online manner, we design
two algorithms for computing sampling schedules as flows
arrive sequentially over time. The first algorithm has a system-
atic design and is shown to have a bounded performance gap
compared to the optimal offline algorithm with full knowledge
about future flows. On the other hand, the second algorithm
is a greedy strategy that is simple but does not provide
guaranteed worst case performance.

Notation. Symbols denoting sets are typeset in calligraphic
font, e.g., set F . The cardinality of set F is denoted by F
(i.e., typeset in regular font). Given variable Hz , for z ∈ Z ,
we define Hz = maxz∈Z Hz . The important notations used
in this section are summarized in Table I.

A. Problem Formulation

Let F denote the set of (long) flows in the network to
be sampled. The set of switches in the network is denoted
by S. The set of switches on the path of flow f and the
set of flows that pass through switch s are denoted by Sf
and Fs, respectively. The traffic rate of flow f is denoted
by rf . Each flow can be sampled on multiple switches along
its path. The goal is to sample every flow at a pre-specified
aggregate rate ε, for 0 < ε < 1. Let variable λf,s denote the
sampling rate of flow f on switch s. In order to satisfy the



TABLE I: Summary of Important Notations.

Notation Description

F set of (long) flows to be sampled
S set of switches in the network
Fs set of flows that pass through switch s
Sf set of switches on the path of flow f
F s max number of flows that pass through any switch
Sf max number of switches on the path of any flow
rf traffic rate of flow f
λf,s sampling rate of flow f on switch s
λ vector of all flow sampling rates λf,s
Γs sampling load of switch s
Γ maximum switch sampling load
ε pre-specified target sampling rate

sampling requirement of flow f , the following inequality must
be satisfied:

1−
∏
s∈Sf (1− λf,s) ≥ ε . (1)

Recall that to avoid degrading network switches forwarding
performance, the target flow sampling rate is set to a very small
value, i.e., ε � 1, meaning that the sampling rate of a flow
on each switch is also a very small value. As switches sample
packets independently, applying the union bound to (1) yields
the inequality

∑
s∈Sf λf,s ≥ ε, which is a linear constraint

and is quite accurate in the regime of small sampling rates.
The LP formulation of the FSRA problem is presented

in Problem 1. In this formulation, constraint (5b) enforces
an upper bound on the sampling load of any switch in the
network (denoted by Γ), which is then minimized across all
switches in the objective of the problem. The product term
rfλf,s in (5b) gives the sampling load of flow f on switch s.
Notice that Γ is an optimization variable and is interpreted
as the maximum sampling load among all switches in the
network. By introducing Γ, we are able to transform the non-
linear objective function min maxs∈S Γs to a linear objective
function, where Γs =

∑
f∈Sf rf · λf,s gives the sampling load

of switch s.

B. Online Flow Sampling Algorithm

The primal-dual technique has been successfully applied to
design online algorithms for many offline problems formulated
as LPs [28]. In this sub-section, we design an online algorithm
for the FSRA problem, called Online Flow Sampling (OFS)
algorithm, using the primal-dual framework developed in [29].
Moreover, using this framework, we show that OFS attains
a polylogarithmic competitive ratio compared to the optimal
offline algorithm with full knowledge of future flow arrivals.

Algorithm. The OFS algorithm relies on the dual of the FSRA
problem. Thus, we first construct the dual of FSRA as:

Dual: max ε
∑
f∈F βf (2a)

s.t. βf − rf · αs ≤ 0, ∀f ∈ F ,∀s ∈ Sf (2b)∑
s∈S αs ≤ 1, (2c)

βf , αs ≥ 0 . (2d)
where αs and βf are the dual variables associated with
constraints (5b) and (5c), respectively. The OFS algorithm is

Problem 1: Flow Sampling Rate Allocation (FSRA)

min Γ (5a)
s.t.

∑
f∈Fs

rf · λf,s ≤ Γ, ∀s ∈ S (5b)∑
s∈Sf

λf,s ≥ ε, ∀f ∈ F (5c)

0 ≤ λf,s ≤ 1, ∀f ∈ F , s ∈ S (5d)
Γ ≥ 0. (5e)

outlined in Alg. 1. The algorithm takes as input a flow f
and outputs a sampling schedule for the flow. At the start,
the algorithm initializes the sampling rates of all switches
along the flow’s path (see line 4). The initial sampling rate
of flow f on switch s is given by λ0

f,s = ε
ρF sSf

, where F s,

Sf and ρ denote the maximum number of flows that traverse
any switch, the maximum number of switches on the path
of any flow and the ratio of the maximum and minimum flow
rate in the network, respectively. It is sufficient for the purpose
of initialization to use upper bounds for these values. These
initial values, however, may not satisfy constraint (5c). In that
case, the algorithm multiplicatively updates the sampling rates
of flow f on all switches along its path until constraint (5c)
is satisfied, i.e., the aggregate sampling rate of the flow on all
switches along its path is greater than ε (see line 5). As the
sampling rates are updated, the algorithm incurs an increase
in the objective value, i.e., increase in the maximum switch
sampling load. To account for this increase, we define the
following (differentiable) penalty function:

Φ(λ) = log
(∑

s∈S exp(Γs)
)
, (3)

where, λ is the sampling rate vector of all active flows in the
network and Γs is the sampling load on switch s. Given this
definition, it is straightforward to show that,

Γ ≤ Φ(λ) ≤ Γ + log(S), (4)
where, Γ = maxs Γs is the value of the objective of the
online problem. The sampling rates of flow f on switches
in Sf are increased multiplicatively proportional to the in-
verse of their penalty rate in order to force the algorithm
to distribute the sampling load among different switches.
Specifically, increasing the sampling rates on the switches
that are already over-loaded will incur a significant penalty
due to the exponential nature of the penalty function Φ(λ).
After increasing the sampling rates, the algorithm updates the
corresponding dual variable βf . The specific expression used
for updating the dual variable is designed to allow the analysis
of the competitive ratio (see Theorem 1). The algorithm stops
when constraint (5c) is satisfied.
Analysis. In the following, we will analyze the competitive
ratio and runtime complexity of the OFS algorithm. The
analysis considers changes in the values of the optimization
variables in two consecutive iterations of the while loop. To
distinguish between values of variables in different iterations,
we use the notation X l to refer to the value of variable X in
iteration l of the loop, with X0 denoting its initial value.
Definitions. To simplify mathematical expressions, define σ
and µ as σ = exp(1+ε)Sf log(ρSfF s) and µ = 1+ 1

3 log(eSf )
.



Alg. 1: Online Flow Sampling (OFS)
1 procedure OFS (f )
2 βf ← 0
3 for s ∈ Sf do
4 λf,s ← ε

ρFsSf

5 while Constraint (5c) is not satisfied do
6 Calculate the penalty rate for every switch s ∈ Sf :

∇f,s(λ)← ∂Φ(λ)

∂λf,s
=

rf · exp(Γs)∑
s′∈S exp(Γs′)

(6a)

7 Calculate the normalized minimum penalty rate Πf (λ):

Πf (λ)← 1

3 log(eSf )
min
s∈Sf

∇f,s(λ) (6b)

8 Increase λf,s for every switch s ∈ Sf :

λf,s ← λf,s
(

1 +
Πf (λ)

∇f,s(λ)

)
(6c)

9 Increase the corresponding dual variable βf :
βf ← βf + exp(ε) ·Πf (λ) (6d)

10 return λf,s

Notice that σ = O(S log(SF )), while µ = O(1).

Lemma 1 (Convergence). Algorithm OFS converges to a
feasible solution in O

(
Sf log(eSf ) log(ρF sSf )

)
iterations.

Proof: There are Sf switches on the path of flow f
and, thus, Sf sampling variables. The loop terminates when∑
s∈Sf λ

l
f,s ≥ ε in some iteration l. From (6c), it is obtained

that, for every switch s, λlf,s < λl+1
f,s ≤ µ · λlf,s. This implies

that the values of the sampling variables for each switch form a
strictly increasing sequence. As such, the loop will eventually
terminate after a finite number of iterations. Consider the
switch that minimizes (6b) in some iteration of the loop. For
this switch, its sampling rate increases exactly by a factor of
µ In the worst case, it takes Sf iterations to increase each
sampling variable by at least µ. After L iterations of the
loop, we have λLf,s ≥ λ0µ(L/Sf ). Solving for λ0µ(L/Sf ) ≤ ε,
yields the expression L ≤ Sf log(ε/λ0)/ log(µ). Applying
the inequality 1 + a ≥ exp(ae ), for 0 ≤ a ≤ 1, it is
obtained that log(µ) ≥ 1

3e log(eSf )
. Using this, we have that

L ≤ 3eSf log(eSf ) log(ρF sSf ). Taking the maximum of this
bound over all flows establishes the lemma.
Lemma 2 (Dual Feasibility). Define ν = log(eS) + Γ. Then,
βf

σν and αs

ν are feasible solutions for the dual problem.

Proof: From (6d), we know that βf =
∑
l exp(ε)Πf (λl).

As per (6b), we can drive the following relations,∑
l Πf (λl) = 1

3 log(eSf )

∑
l mins∈Sf ∇f,s(λ

l),

≤ 1
3 log(eSf )

maxl
(

mins∈Sf ∇f,s(λ
l)
)
· L, (7)

where, L is the number of iterations of the loop. Applying
Lemma 1 to the number of loop iterations, it is obtained that,

βf ≤ σmaxl mins∈Sf ∇f,s(λ
l) . (8)

Using the above inequality, if we set the dual variable αs so
that rf · αs is at least maxl mins∈Sf ∇f,s(λ

l) then the dual
constraint (2b) is violated by a factor of at most σ. As such,

βf

σ is a feasible dual solution. We also set the value of dual

variable αs as αs = maxl mins∈Sf
∇f,s(λl)

rf
. Since the dual

problem is a maximization problem and βf

σ is a feasible dual
solution, we have that βf

σν and αs

ν are feasible as well.

Theorem 1. Algorithm OFS is 8σ log(eS)-competitive.

Proof: Consider the set of flows F . Let OPT denote the
objective value of the optimal offline solution for this set of
flows. We assume that the flow rates are scaled, otherwise
the doubling procedure can be employed [30], so that the
inequality 1

4σ ≤ OPT ≤ 1
2σ holds. To establish the theorem,

we have to prove that Γ ≤ 8σ log(eS)OPT, where Γ is the
value of the objective achieved by the OFS algorithm for the
flow set F .

First, we establish a lower bound on OPT. For any flow f ,
its sampling rate on at least one of the switches along its path
should be greater than or equal to ε

Sf
. Considering the flow

with the longest path in the network, this provides a lower
bound on OPT as OPT ≥ ε

Sf
minf∈F rf . From this, the

following is established,
OPT ≥ ε

Sf
minf∈F rf = ε

Sf
minf∈F rf · maxf∈F rf

maxf∈F rf
,

= ε
Sf

maxf∈F rf
ρ = ε

ρSf
maxf∈F rf . (9)

Next, consider the behavior of the online algorithm. The
online algorithm assigns initial values to sampling variables
of a flow at the arrival time of the flow. Then, it goes through
the loop described in Alg. 1 to gradually increase the initial
rates to their final values. Let Γ0 denote the value of the online
objective assuming that all flows are sampled using the initial
sampling rates. At this step, the following relation holds:

Γ0 = maxs∈S
∑
f∈Fs

rf · λ0
f,s ≤ F s · λ0

f,s maxf∈F rf ,

= ε
ρSf

maxf∈F rf ≤ OPT . (10)

Recall that Γ ≤ Φ(λ) ≤ log(S) + Γ, for any arbitrary
vector of sampling rates. Therefore, using the initial sampling
rates vector λ0, we have Φ(λ0) ≤ log(S) + Γ0. Putting these
together, it is obtained that,

Φ(λ0) ≤ OPT + log(S) . (11)
For each flow, in each iteration of the algorithm, the increase
in penalty Φ(λ) is bounded by the increase in the dual’s
objective. When the while loop terminates, the total increase in
the dual’s objective due to flow f is given by εβf . Thus, when
the last flow arrives and is processed by the algorithm, the total
increase in Φ(λ) over all flows after their initialization step is
bounded by

∑
f∈F εβf . Combining this with the upper bound

for the initialization step results in the following inequality:
Γ ≤ Φ(λ) ≤

∑
f∈F εβf + Φ(λ0),

≤
∑
f∈F εβf + log(S) + OPT . (12)

From Lemma 2, we know that βf

σν and αs

ν are feasible dual
solutions. Using the weak duality, any feasible dual solution
is a lower bound on the primal’s objective. As a result, the
following relation must hold,∑

f∈F ε
(βf

σν

)
≤ OPT . (13)



By substituting in (12), the following relation is established:
Γ ≤ (σν + 1)OPT + log(S) . (14)

Noting the upper bound OPT ≤ 1
2σ and substituting the value

of ν, we obtain that,

Γ ≤ Γ + log(eS)

2
+

1

2σ
+ log(S), (15)

which, in turn yields the following inequality,

Γ ≤ log(eS) +
1

σ
+ 2 log(S) ≤ 3 log(eS) . (16)

Using the above inequality and the definition of ν, we obtain
that ν ≤ 4 log(eS). The following relation is obtained by
substituting for ν in (14),

Γ ≤ 4σ log(eS)OPT + OPT + log(S) . (17)
The inequality log(S) ≤ log(S) ·4σOPT is always true given
the lower bound OPT ≥ 1

4σ . By substituting in the above
inequality the theorem is established as,

Γ ≤ 4σ log(eS)OPT + OPT(1 + 4σ log(S)),

≤ 8σ log(eS)OPT .
(18)

Runtime Analysis. The runtime of the algorithm is dominated
by the while loop. As shown in Lemma 1, the number of
iterations in the while loop is O

(
Sf log(eSf ) log(ρF sSf )

)
.

Additionally, in each iteration, the algorithm iterates over all
switches to compute their sampling load (using (6a)), which
in the worst case, takes O(F s ·Sf ). Therefore, the runtime of
the algorithm is O(log(eSf ) · log(ρF s · Sf ) · F s · S

2

f ).

C. Greedy Flow Sampling Algorithm

The OFS algorithm follows the primal-dual framework,
which allows us to analytically derive its competitive ratio.
The advantage of this approach is that the gap between the
performance of OFS and the offline optimal is guaranteed
in the worst case. In this sub-section, we design a greedy
online algorithm for the the FSRA problem called Greedy
Flow Sampling (GFS) algorithm, which does not provide a
guaranteed worst case performance, but is much simpler to
implement and runs faster than OFS. Our experimental results
in Seciton IV show that it also performs remarkably close to
OFS in the range of scenarios we evaluated.
Algorithm. The GFS algorithm is presented in Alg. 2. Upon
the arrival of a flow, if there exists a switch on the flow’s
path with no sampling load, the flow is fully sampled on that
switch (see lines 3-4). If such a switch does not exist, then the
algorithm decides on the sampling rates of the flow on different
switches along the flow’s path. Specifically, it starts by finding
the switch that has the maximum sampling load along the
flow’s path. The algorithm then uses the sampling load of this
switch to calculate a share for every switch, accounting for
their current sampling loads (see lines 7-9). The calculated
shares are used to distribute the target sampling rate of the
flow among all the switches (see line 11).
Runtime Analysis. The runtime of the algorithm is dominated
by the first for loop. Each iteration of this loop takes O(F s)
time. Therefore, the algorithm runs in O(Sf · F s) time.

Alg. 2: Greedy Flow Sampling (GFS)

1 procedure GFS (f )
2 weight ← 0
3 if s ∈ Sf and Γs == 0 then
4 λf,s ← ε
5 else
6 foreach s ∈ Sf do
7 ws ← maxs′ Γs′

Γs

8 weight← weight+ ws
9 share← ε

weight

10 foreach s ∈ Sf do
11 λf,s ← share · ws
12 return λf,s

IV. EVALUATIONS

In this section, we study the performance and behavior of
FlowShark using Mininet experiments and simulations.
Methodology. Mininet experiments consider a small network
and show the feasibility of implementing FlowShark in Open-
Flow networks. Simulation experiments, on the other hand,
consider larger networks to show the scalability of FlowShark.
We present the following evaluation results:
A. System Performance: These experiments are conducted
in Mininet to study system-level performance of FlowShark
including flow visibility and sampling load.
B. Simulation Benchmarks: Simulations are used to understand
the low-level behaviour of FlowShark, namely the impact of
flow rate estimation errors and the empirical competitive ratio
of OFS.
C. Application Performance: These experiments are conducted
in Mininet to show the performance of FlowShark when used in
conjunction with a network management application, namely
a Traffic Classifier.
Implementation. We used Mininet to implement FlowShark in
an OpenFlow network. We deploy ONOS [31] as the SDN
controller. Routing flow rules are installed using proactive
forwarding to avoid varying routes for the same flow among
different experiment runs. We utilize optional flow tables
in OpenFlow switches to install per-flow sampling rules.
Specifically, in OpenFlow, a pipeline of multiple flow tables
is used to decouple different network functions [32]. Pipeline
processing starts with the forwarding table, in which the
matching field specifies a set of instructions, directing the flow
to the sampling table. When pipeline processing stops, the
packet is processed with its associated action set, i.e., forward
and sample. Finally, the rate estimator is implemented as a feed
forward neural network (NN) using the MLPRegressor module
of the scikit Python library. The NN is trained on features that
can be easily obtained from the OpenFlow switches, namely
IP protocol, source and destination ports, along with some
additional flow-based features like packet sizes. These features
are easily obtainable from OpenFlow switches early in the
flow’s life-cycle. The NN has one hidden layer with 100
neurons. ReLU is used as the activation function. The model is



trained using Adam optimizer on the datacenter packet traces
available in [33] (studied in [34]).

A. System Performance

Setup. These experiments consider a 2-pod FatTree topology
consisting of 8 hosts and 10 OpenFlow switches. Following the
switch specification [35], the sampling capacity of each switch
is set to 50 packets per second (pps). The bandwidth of each
link in the network is set to 20 Mbps. The target sampling rate
for each flow is set to ε = 0.1. Note that we set the sampling
capacity of switches to a low number to amplify the effect
of sampling on flow visibility. In practice, sampling capacity,
number of flows and link capacities are orders of magnitude
higher than what we have considered here. However, to allow
Mininet experiments to finish in a reasonable time, it is
necessary to scale such network features. To generate a flow,
we choose a random source and destination. The traffic rate
between each source and destination is chosen based on the
widely used datacenter web server workload [36]. The packet
size is set to 1500 Bytes. The reported results are averaged
over 5 experiment runs.
Metrics. We report the following performance metrics:
• Missed Flows: The percentage of flows for which no packet

is sampled. A higher percentage of missed flows indicates
lower flow visibility.

• Sampled Flow Rate: The actual measured sampling rate of a
flow. Ideally, the measured sampled flow rate should closely
match the target rate ε = 0.1.

• Network Sampling Load: The total sampled traffic on all
switches in the network normalized by the switch sampling
capacity. We present this metric using the spread and centers
of the total measured sampled traffic.

• Maximum Switch Sampling Load: The sampling load of the
switch with the highest sampling load in the network nor-
malized by the switch sampling capacity. For the purposes
of measuring this metric, we assume that there is no limit
on the sampling capacity of switches.

Algorithms. In addition to OFS and GFS, we also imple-
mented the following algorithms for comparison:
• Uniform Packet Sampling (UPS): Each switch samples every

arriving packet with probability ε. UPS is a representative
of per-port sampling solutions.

• Uniform Flow Sampling (UFS): Each switch samples every
flow with rate ε. Once a switch has captured ε fraction of
a flow, it stops sampling that flow. To achieve this, UPS
assumes a priori knowledge about flow rates. UFS represents
uniform per-flow sampling solutions.

Visibility Analysis. Fig. 3 presents the results of visibility
analysis. As can be seen in Fig. 3(a), OFS achieves the
lowest percentage of missed flows. A back-of-the-envelope
calculation shows that the total sampling capacity of the
network is sufficient to fully sample only 38 flows. With
routing restrictions, even fewer flows can be fully sampled
in the network, particularly when there is a small number of
flows to choose from. To understand the poor performance

of UPS and UFS, in Fig. 3(b), we have plotted the CDF of
measured sampled flow rates. One can observe that when using
UPS and UFS, 25% of the flows are sampled at a rate higher
than 2x of the target sampling rate of ε = 0.1. This shows a
bias towards some of the flows, which consequently results in
nearly 40% of the flows being entirely missed.

Load Analysis. Fig. 4 presents the results of sampling load
analysis. From Fig. 4(a), we observe that OFS and GFS
achieve the lowest maximum switch sampling load. This
is indeed one reason for higher flow visibility under these
algorithms. Not only OFS and GFS avoid over-sampling flows,
but also distribute sampling load more evenly among switches,
avoiding sampling bottlenecks. These two characteristics result
in higher flow visibility, as observed in Fig. 3. In Fig. 4(b),
we show the network sampling load distribution. Besides
the expected higher load of UPS and UFS, an interesting
observation is with respect to the sampling load of GFS
compared to OFS. We can see that in OFS, the first quartile and
the minimum sampling load are closer to each other compared
to GFS. Specifically, OFS incurs 25% lower sampling load. In
summary, not only OFS provides higher flow visibility, it also
imposes a lower sampling load on the network.

B. Simulation Benchmarks

Setup. We implemented the following network topologies
in our simulations: 1) USA ISP topology, chosen from the
topology Zoo dataset [37]. It contains 24 switches and 24
hosts. 2) 12-pod FatTree topology with 180 switches and
72 hosts. Note that a FatTree topology of this size is larger
or equal to the ones commonly used in the literature [38].
We generate traffic flows between randomly chosen source-
destination pairs, with the flow rates randomly selected from a
uniform distribution in the interval [2, 6] Mbps. Additionally,
the target sampling rate for each flow is set to ε = 0.002.
The reported results are averaged over 5 simulation runs.
Simulations are conducted using a custom-built packet-level
simulator implemented in Python programming language.

Experiments. We report two sets of experiments:
• Empirical Competitive Ratio: We compare the maximum

switch sampling load achieved using OFS and the optimal
offline solution (OPT). OPT is obtained by solving Prob-
lem 1 using Gurobi optimizer [39], assuming full knowledge
of future flow arrivals and their exact traffic rates.

• Rate Estimation Errors: We first evaluate the sensitivity of
OFS to flow rate estimation errors. Then, we measure the
effect of estimation errors on the maximum switch load.

Empirical Competitive Ratio. Fig. 5(a) and Fig. 5(b) show
the maximum switch load under OFS and OPT on the USA
and FatTree topology, respectively. The maximum switch load
of OFS is on average 1.7 and 2.8 times of that under OPT
on the USA and FatTree topology, which are substantially
lower than the corresponding theoretical competitive ratios.
It is worth emphasizing that OPT is an unrealistic algorithm:
it is an oracle with 20/20 vision into the future. Thus, it is no
surprise that it outperforms OFS, which exists in real world.
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Fig. 3: Flow visibility based on sampled flow rates.
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Fig. 4: Switch and network sampling load.

1000 2000 3000 4000 5000
Number of Flows

0

1

2

3

4

5

M
a
x
im

u
m

S
w

it
ch

S
a
m

p
li
n

g
L

o
a
d

OPT OFS

(a) USA topology.

1000 2000 3000 4000 5000
Number of Flows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
a
x
im

u
m

S
w

it
ch

S
a
m

p
li
n

g
L

o
a
d

OPT OFS

(b) FatTree topology.

Fig. 5: Comparison with the optimal offline algorithm.
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Fig. 6: Effect of flow rate estimation errors.

Rate Estimation Errors. First, we consider a range of esti-
mation errors, denoted by δ, from 10% to 30% of the actual
flow rates. We generate a random estimation error within the
given range for each flow and add it to the actual flow rate to
estimate its rate. This estimated rate (which includes an error)
is then fed to OFS for sampling optimization. The results are
presented in Fig. 6(a). Each bar on the plot represents the
percentage of change in maximum switch sampling load with
rate estimation errors with respect to the case when actual
flow rates are used in OFS. From the figure, we observe
that as much as 30% estimation error has negligible effect.
Next, we study OFS performance when using FlowShark NN-
based rate estimator versus using the actual rates. The results
are presented in Fig. 6(b) for the FatTree topology (results
for the USA topology were similar). We observe that the
difference between the maximum switch load with the actual
and estimated rates is negligible (e.g., only 4% difference in
the worst case).

C. Application Performance

Setup. We implemented a Traffic Classifier application on top
of FlowShark implementation in Mininet. The network setup
is similar to the one used in sub-Section IV-A. To generate
traffic, we use the dataset available on [37], and studied
in [40]. In particular, we target traffic from the following
categories: Google, Amazon, Youtube, SSL and HTTP. To
generate traffic, we randomly select source and destination
hosts and use the information provided in the dataset, e.g.,
source and destination ports and packet lengths. Additionally,
FlowShark uses the threshold of 10 KB to distinguish short
flows. The sampled traffic is passed to the Traffic Classifier

application. The classifier application functions similar to
existing works, e.g., [4]. In our implementation, we use the C-
Support Vector Classifier (SVC) from the scikit-learn Python
library [41]. The classifier is initialized with regularization
parameter C = 5 and uses “rbf” kernel. The features used
for classification are the packet header fields (i.e., source and
destination port numbers, packet length, protocol) and first
10 Bytes of the packet payload. The results presented are
averaged over 5 experiment runs.

Metrics. In addition to the Network Sampling Load, we report
the following performance metrics:
• Recall: Number of correctly classified flows divided by the

total number of generated flows.
• Precision: The number of correctly classified flows divided

by the total number of sampled flows (excluding the missed
flows).

Results. Figs. 7(a) and 7(b) present the recall and precision
metrics, respectively. From Fig. 7(a), it can be observed that
by increasing the number of flows, the classification recall
follows a downward trend under both FlowShark and UPS.
This is expected due to limited sampling capacity of switches.
However, what is important is that the recall performance
under FlowShark does not degrade as much as under UPS. In
particular, under FlowShark, the classifier achieves up to 27%
higher recall than UPS. From Fig. 7(b), we can see that as the
number of flows increases, which is when the mechanics of
the sampling algorithm come to play, the classifier’s precision
substantially drops under UPS compared to FlowShark. For
example, it drops by 24% when increasing the number of flows
from 40 to 55. The higher recall and precision imply that, when
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Fig. 7: Mininet experiment results for Traffic Classifier application performance.

used with the same classification model, FlowShark achieves
higher flow visibility compared to UPS. The network sampling
load is depicted in Fig. 7(c). The important observation in this
figure is the plateauing behavior of UPS when the number of
flows reaches 40. This behavior suggests that due to sampling
more packets of the same flows, UPS exhausts the network
sampling capacity, reaching the maximum sampling load with
fewer flows. Furthermore, by comparing the recall (Fig. 7(a))
with the sampling load, one can conclude that the increased
sampling load does not necessarily result in higher flow
visibility. A per-flow sampling solution such as FlowShark not
only improves application performance, but also lowers the
network sampling load.

V. RELATED WORKS

Per-Port Sampling. Traditionally, NetFlow [7], IPFIX [42]
and sFlow [8] have been used for traffic sampling. To minimize
sampling load on switches, the authors in [43] consider
distributing sampling load among different switches. Their
approach, unlike FlowShark, requires advanced knowledge of
all flows and is not a per-flow sampling framework. The
works [44] and [9] focus on determining flow sampling
locations. In particular, [9] chooses switches with the goal
of maximizing a utility function, while [44] makes use of the
centrality measure in graph theory. The works in this category
consider fixed predefined sampling rates per switch interface,
which as discussed earlier, can result in low flow visibility.
Per-Flow Sampling. Several works propose to use sam-
pling for per-flow statistics collection. Examples of such
works are [45] and [46], both of which employ sketches to
probabilistically collect per-flow statistics. Implementing per-
flow sampling to collect packet-level information is studied
in [47] and [13]. Specifically, [47] proposes a per-flow sam-
pling framework for legacy switches, while [13] extends the
OpenFlow specification to support packet sampling in SDNs.
These works, however, do not consider sampling coordination
among switches. The works [10], [11], [21], on the other
hand, distribute the sampling load of a flow among different
switches, but they assume full knowledge about the set of flows
in advance. Per-flow sampling in SDNs is considered in [12],
where a controller determines the sampling rate of each flow.

The works in this category suffer from poor scalability in large
networks as they rely on central decision making for all flows
(i.e., short and long flows) in the network.
Time-Driven Sampling. In time-derive sampling, switches
sample consecutive packets at specific time intervals, rather
than randomly sampling packets. Examples of such solutions
are presented in [48] and [49]. In particular, [48] proposes
a time-driven sampling framework for SDNs, in which each
switch forwards consecutive packets of a flow to the controller
in specific intervals. To minimize the sampling load, the
authors in [49] choose the k most influential switches based
on the spatial-temporal factors in the network, and assign
sampling intervals only to those switches. Their approach,
however requires a priori knowledge of the set of flows and
time synchronization between different switches.
Application-Specific Sampling. Several works study design-
ing sampling solutions to increase the accuracy of specific
applications, e.g., security analysis and traffic classification.
Sampling for botnet detection and intrusion detection are
considered in [50] and [51], respectively. Per-port sampling
for traffic classification is studied in [52] and [53]. These
works only consider per-port or time-driven sampling. On the
other hand, FlowShark is a per-flow sampling system and is not
limited to a specific application.

VI. CONCLUSION

This work presented a traffic sampling system called
FlowShark to address the low flow visibility in existing sam-
pling solutions for large-scale networks. By delegating short
flow sampling decisions to edge switches, FlowShark optimizes
sampling for long flows that can afford the latency of a
centralized control loop. To show the feasibility of FlowShark in
real-world networks, we provided a detailed description of our
implementation in Mininet. We then used the implementation
in conjunction with simulations to evaluate the performance
of FlowShark and demonstrate its advantages over existing
solutions. A worthwhile extension of FlowShark is to consider
different sampling rates for different flows. Furthermore, it
would be interesting to consider implementing FlowShark on
P4 switches to allow partial packet sampling.
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