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Abstract—Virtual Network Embedding (VNE) is a crucial
problem in network virtualization. Prior work on VNE is
mainly focused on optimization-based solutions that are carefully
constructed and tuned under specific assumptions about resource
demands brought by virtual networks. Recently, a few works
have appeared on automating the design of VNE solutions that
work well under general virtual resource demands using Deep
Reinforcement Learning (DRL). These works, however, still rely
on manual selection of relevant problem features required in
the DRL approach. In this work, we develop a DRL-based
VNE solution called DeepViNE, which automates the selection of
problem features required in the DRL approach. The key idea
is to encode physical and virtual networks as two-dimensional
images, which are then perceivable by a convolutional deep neural
network. To speed up learning and algorithm convergence, we
also design a strategy to limit the number of actions required by
the learning agent, while still allowing suitable exploration of the
solution space. We evaluate the convergence and performance of
DeepViNE using simulations, and compare it with several existing
algorithms. The results show that DeepViNE learns an embedding
policy that improves upon the performance of other simulated
algorithms by at least 11%.

I. INTRODUCTION

A. Background and Motivation

Network virtualization has emerged as one of the key
technologies of future networks. In its general form, network
virtualization enables multiple virtual networks (VNs) to co-
exist on the same physical network (PN) through specific
abstraction and isolation mechanisms. A VN is represented by
a set of virtual nodes and virtual links. Virtual nodes and links
require specific amount of resources, i.e., processing power
and bandwidth, which depend on the services provided by the
corresponding VNs. The problem of mapping virtual resource
requirements to physical resources is known as the virtual
network embedding (VNE) problem.

The VNE problem is NP-hard and has been the subject
of extensive research (see [1] for a comprehensive survey
on the topic). The vast majority of works on VNE consider
an offline setting, in which a given set of VN requests with
pre-specified resource demands is embedded at once in the
physical network. In real-word, however, requests for VNs
arrive sequentially over time, where neither the exact timing of
the requests nor their resource demands are known a priori. As
such, VN embedding decisions have to be made at runtime as
VN requests arrive. Once a VN is embedded, the embedding
must not change in the future, as any change in the virtual to
physical resource mapping at runtime triggers virtual machine
migration and traffic rerouting causing significant disruptions

to the VN operation. Thus, any solution for VNE has to
operate in an online fashion. Most works on online VNE
algorithms propose heuristics (e.g., BestFit [2], FirstFit [3],
and node ranking [4]) that do not provide any performance
guarantee, which means that they may perform arbitrarily
bad for certain VN arrival patterns. There are only a few
works that propose algorithms with performance guarantees
(see [5], [6]). Nevertheless, the worst-case performance of
these algorithms, as characterized by their competitive ratios,
can be significantly far from optimal. A major problem with
such algorithms is their non-adaptive nature, where a pre-
determined policy is executed regardless of the outcomes of
previous embedding decisions.

Our objective in this work is to design an adaptive online
VNE algorithm that learns to make better embedding deci-
sions at runtime. Given the centralized structure of the VNE
problem, and the repetitive nature of virtual resource mapping
decisions, our hypothesis is that machine learning (ML) could
be applied to solve the problem. Recently, due to simultaneous
availability of large datasets and cheap processing, ML has
been successfully applied to many complex practical problems,
including a variety of problems in the networking area (see [7]
and references therein). There also exist a few recent works on
the application of ML to VNE (e.g., [8], [9]). However, these
works rely on a human expert to build a set of hand-crafted
features, on which the behavior of the learning algorithm
is heavily dependent. In contrast, our goal is to design an
algorithm that automatically selects problem features with no
manual intervention. We argue that automatic feature selection
not only facilitates the solution design process, but also leads
to better virtual network embedding decisions. Specifically,
we formulate adaptive online VNE as a deep reinforcement
learning (DRL) [10] problem, and design an algorithm to
learn the optimal VNE algorithm autonomously. By using a
convolutional deep neural network (DNN), our approach has
the ability to automatically extract suitable problem features
independent of the operating environment and without relying
on a human expert.

B. Related Work

The works presented in [11]–[13] use ML to predict fu-
ture resource demands and dynamically adjust the allocated
resources to improve the utilization of physical resources.
Specifically, in [11], the state of each allocated virtual node
and virtual link is represented by three features (e.g., percent-
age of unused physical resource), and then a look-up table is



used to design a learning algorithm. In a subsequent work [12],
the look-up table is replaced with a Feed Forward Neural
Network (FFNN). A Radial Basis Function (RBF) Neural
Network is used in [13] to learn future demand fluctuations
from historical records, but only the current demand of a VN
is considered.

The works presented in [8], [9], [14], [15] directly apply
ML to solve the VNE problem. In [14], Recurrent Neural
Networks (RNNs) are used to design an admission control
mechanism for the VNE problem that filters out the VN
requests with unsatisfiable demands, which reduces the time
it takes to compute an embedding for the feasible demands.
In this work, 21 graph features and 8 resource features are
used to represent the physical network, while 7 graph features
are used to represent a VN. Using 4 features (e.g., CPU
capacity) for each physical node, an FFNN is used in [9] as
the policy approximator, but no feature for VNs is considered
in the learning algorithm. In another work [15], the same set
of features as in [9] are used, but the spectrum method is
applied to combine those features with the adjacency matrix
of the network to obtain a state representation for use by the
learning algorithm. Using residual CPU capacities and shortest
paths between nodes to, respectively, compute a node and
edge ranking, a Hopfield Network is employed in [8] to pre-
process the problem and select a subset of physical nodes
to serve VN requests, thereby reducing the search space for
any optimization-based embedding algorithm (e.g., the one
proposed in [4]).

As mentioned earlier, these works rely on a human expert to
build a set of hand-crafted features, while our goal is to design
an algorithm that selects suitable features autonomously.

C. Our Work

We design an adaptive online VNE algorithm based on
DRL. Specifically, we address two challenging problems when
applying DRL to VNE. First, the convolutional layer of DNNs,
with its origin in image feature extraction tasks, assumes
that the inputs are organized as two-dimensional arrays [16],
i.e., they are images. With spatial locality being an important
property of image data, we address the problem of how the
VNE problem inputs, usually weighted graphs representing
the physical network and VNs, can be encoded in order to
be properly perceived by a DNN. Second, the DRL approach
relies on exploring all available actions sufficiently enough in
order to compute a policy close to the optimal. However, since
the number of ways a VN can be embedded in the physical net-
work is combinatorial, the DRL approach potentially requires
a huge number of actions to derive an appropriate solution,
which could lead to prohibitively long convergence time for
the learning process [17]. Thus, we address the problem of
how to shrink the action space of the VNE problem in order
to provide sufficient flexibility for exploring different VN
mappings, and yet retain the efficiency of the learning process.

Our main contributions can be summarized as follows:

• We develop an encoding method to present the state of the
VNE problem as an image to feed into the convolutional
layer of a DNN for automatic feature extraction.

• We design a DRL algorithm that uses only a constant
number of actions (independent of the size of PN and
VNs) to solve the VNE problem, which significantly
improves the efficiency of the learning process.

• We define a suitable reward signal so that the learning
algorithm achieves the long-term goal of minimizing the
probability that an arriving VN can not be embedded.

• We provide simulation results to show the convergence
and performance of our algorithm, and compare it with
well-known existing VNE algorithms.

D. Paper Organization

The paper is organized as follows. We formally define the
problem in Section II. We briefly explain the DRL frame-
work and present the design of our algorithm in Section III.
Performance evaluation results are presented in Section IV.
Section V concludes the paper.

II. PROBLEM DEFINITION

In this section, we describe our network and resource
models and formally define the VNE problem considered in
the rest of this paper.

A. Physical Network

The physical network is modelled as an undirected graph
Gp = (N p,Lp), where N p = {np

1, . . . , n
p
K} and Lp =

{(np
i , n

p
j )|i ̸= j} denote the set of physical nodes (i.e., servers)

and physical links, respectively, and K denotes the number
of physical nodes. Each physical node np

i has the computing
capacity CPU(np

i ) and each physical link ℓpi,j = (np
i , n

p
j ) has

the bandwidth capacity BW(ℓpi,j). We use real numbers to
represent physical CPU and BW capacities with respect to
a base unit.

B. Virtual Network

The virtual network v is represented by an undirected
graph Gv = (N v,Lv), where N v = {nv

1, . . . , n
v
M} and

Lv = {(nv
i , n

v
j )|i ̸= j} denote the set of virtual nodes

and virtual links, respectively, and M denotes the number of
virtual nodes. Each virtual node nv

i can be considered as a
virtual machine with computing demand CPU(nv

i ). Also, each
virtual link ℓvi,j = (nv

i , n
v
j ) has bandwidth demand BW(ℓvi,j).

Similarly, we use real numbers to represent virtual CPU and
BW demands with respect to the base unit.

C. VNE Problem

The VNE problem involves computing a mapping from
the virtual nodes and links to the physical nodes and paths
with sufficient resource capacities. Assume that the current
available capacity of physical node np

i and link ℓpi,j are,
respectively, CPU(np

i ) and BW(ℓpi,j). Let f(nv
i ) denote the

physical node that embeds the virtual node nv
i , and g(ℓvi,j)

denote the physical path between physical nodes f(nv
i ) and

f(nv
j ) that embeds the virtual link ℓvi,j . A VN is embedded if



there are mapping functions f and g that satisfy the following
constraints:

CPU(np
i ) ≥

∑
j:f(nv

j )=n
p
i

CPU(nv
j ), (1)

BW(ℓpi,j ) ≥
∑

(t,z):ℓ
p
i,j∈g(ℓvt,z)

BW(ℓvt,z), (2)

where, ℓpi,j ∈ g(ℓvt,z) indicates that the path g(ℓvt,z) includes
the physical link ℓpi,j . If any of these constraints is violated,
the embedding fails and the corresponding VN is blocked. In
this work, the objective of the VNE algorithm is to minimize
the VN blocking probability so that the physical network can
serve the most number of VNs with its limited resource. This is
achieved by learning to perform resource mappings efficiently
so as to avoid wasting physical resources due to sub-optimal
embedding decisions. Let V denote the set of all embedded
VNs. The corresponding Revenue and Cost of the algorithm
are then defined as follows:

Revenue =
∑
v∈V

∑
nv
i ∈Nv

CPU(nv
i ) + ξr

∑
ℓvi,j∈Lv

BW(ℓvi,j ), (3)

Cost =
∑

n
p
i ∈Np

(
CPU(np

i )− CPU(np
i )
)

+ ξc
∑

ℓ
p
i,j∈Lp

(
BW(ℓpi,j )− BW(ℓpi,j )

)
,

(4)

where, ξr ≥ 0 and ξc ≥ 0 can be used to adjust the revenue
and cost of BW relative to the revenue and cost of CPU.

III. ALGORITHM DESIGN

A. Overview

Reinforcement learning (RL) deals with autonomous agents
that learn to make better decisions by interacting with the
environment. In reinforcement learning, the agent is given
a choice of actions to take in each decision epoch, which
changes the state of the environment in an unknown fashion,
and receives feedback based on the consequence of the action.
The feedback is typically given in the form of a reward or
cost, and the objective of the agent is to choose a sequence of
actions based on observations of the current environment that
maximizes cumulative reward or minimizes cumulative cost.
Under this framework, a VNE algorithm simply corresponds
to a policy, which governs transitions between the states.
Learning an optimal VNE algorithm then reduces to finding an
optimal policy, which can be solved using any RL algorithm.

A popular RL algorithm is the Q-learning algorithm that
learns a value Q(s, a), called Q-value, for each state-action
pair (s, a), which is equal to the maximum accumulated future
reward when action a is performed in state s. The learning is
based on the Bellman equation that estimates better Q-values
when a new state transition and its corresponding reward are
observed. Specifically, assume that in the decision epoch t, the
action at is performed which takes the environment from state
st to another state st+1, and results in receiving the reward
rt. Then, Q(st, at) is updated as follows:

State Representation (Image)

DNN Q-Values

s

DRL Agent Reward

Action
Physical
Network
Represe-
ntation

VN
Represe-
ntation

Physical Network

Virtual Network

Q(s, a1)

Q(s, a2)

Fig. 1: A DNN approximates Q-values in DeepViNE.

Q(st, at)← Q(st, at) + α
(
rt + γmax

a
Q(st+1, a)−Q(st, at)

)
, (5)

where, α < 1 and γ < 1 are called learning rate
and discount factor, respectively. Observe that, the term
rt + γmaxa Q(st+1, a) is the new estimate for Q(st, at).
Thus, the difference (rt+γmaxa Q(st+1, a)−Q(st, at)) can
be interpreted as the error when updating the current Q-value.

A difficulty when applying Q-learning (and classic RL
algorithms in general) is the size of the table needed to
store the Q-values for every state-action pair. The size of
the table becomes prohibitively large in problems such as
VNE, where the number of state-action pairs is combinatorial.
In DRL, instead of a table, a deep neural network (DNN)
is used to efficiently approximate Q(st, at) with the DNN’s
output Qθ(st, at), where θ denotes the parameter vector of the
neural network. Then, we can define an error function Lθ for
updating the neural network’s parameter vector θ as follows:

Lθ = E
[
rt + γmax

a
Qθ(st+1, a)−Qθ(st, at)

]
, (6)

where, the expectation is taken over the set of observed
(st, at, rt, st+1)’s. Note that, Lθ is a differentiable function
of DNN parameters, thus its gradients can be used by the
stochastic gradient descent algorithm to minimize Lθ, and
consequently train the DNN.

B. DRL Approach

The architecture of our DRL algorithm called DeepViNE for
solving the VNE problem is presented in Fig. 1. When a new
VN arrives, an image is constructed that encodes information
about the physical resources and mapping of the current VN,
i.e., the image represents the state of the problem. The image
is then fed to a deep neural network that selects an action
which either i) marks a pair of virtual and physical nodes, or
ii) embeds a previously marked virtual node into a physical
node. As the result of selecting an action, the image is updated
and is fed back to the neural network. This process continues
until all virtual nodes of the VN are embedded or the number
of iterations exceeds a pre-defined threshold. In each iteration,
a reward value is revealed that shows the suitability of the
selected action, and is used to train the neural network such
that, in the future, it selects the actions that result in the most
efficient mapping of VNs.

DeepViNE is presented in Algorithm 1. To reduce the
number of actions, we define two pointers in lines 1 and
2 that mark a physical node and a virtual node at any
moment. We call the pointers physical and virtual pointers,
respectively. In Section III-C, we explain how to encode these



two pointers along with other information as an image, which
is used in line 4. The procedures of selecting the actions
from the DNN, exploring the solution space, and sequentially
embedding virtual nodes of the VN are outlined in lines 7
to 25. The architecture of the employed DNN is described
in Section III-F. Section III-D elaborates on how different
actions manipulate the image and pointers, while Algorithm 2
describes the exact steps of the manipulation process. The
rationale behind the reward values, in lines 19 to 24, and
the training method, in lines 26 and 32, are discussed in
Sections III-E and III-F, respectively.

C. Image Representation
Each image can be considered as a number of matrices, usu-

ally referred to as channels, where each channel represents the
image from a specific viewpoint, e.g., an RGB image has three
channels to represent Red, Green, and Blue. In our approach,
we use three channels to encode the image representing the
VNE problem. Each channel is the concatenation of the PN
and VN representations (see Fig. 1) with an emphasis on a
special aspect of the system. For example, we use one channel
to create a significant contrast between representations of those
resources that have sufficient capacity to embed a VN and
those that do not. This channel helps the DNN detect suitable
physical resources more efficiently. Without loss of generality,
we assume that the physical and virtual networks have grid
topologies. We note that any planar graph can be transformed
into a grid in linear time [18].

Algorithm 1 DeepViNE
Input: Gp = (Np,Lp), Gv = (Nv,Lv), DNN, mem
1: n̂p

0 ← random node in Np ▷ Physical pointer
2: n̂v

0 ← random node in Nv ▷ Virtual pointer
3: E ← {} ▷ Set of embedded virtual nodes
4: img ← create_representation(Gp, Gv , n̂p

0 , n̂v
0 )

5: for t ∈ {0, . . . , max_iteration} do
6: reward ← 0
7: a ← ϵ-greedy(DNN, img)
8: if a ∈ {a1, . . . , a4} then
9: n̂p

t+1 ← update_pointer(n̂p
t , a)

10: img′ ← update_representation(n̂p
t , n̂v

t , n̂p
t+1, n̂v

t+1, E)
11: else if a ∈ {a5, . . . , a8} then
12: n̂v

t+1 ← update_pointer(n̂v
t , a)

13: img′ ← update_representation(n̂p
t , n̂v

t , n̂p
t+1, n̂v

t+1, E)
14: else if no negative value in img then
15: E .add(n̂v

t )
16: f(n̂v

t )← n̂p
t ▷ f() is defined in Section II

17: img′ ← update_representation(n̂p
t , n̂v

t , n̂p
t+1, n̂v

t+1, E)
18: if All virtual nodes embedded then
19: reward = 1
20: else
21: reward = 0.01
22: end if
23: else
24: reward = -0.01
25: end if
26: mem.add(img, a, img′, reward)
27: img ← img′

28: if E = Nv or reward < 0 then
29: break
30: end if
31: end for
32: DNN ← train(DNN, mem) ▷ Train DNN using the experience memory

Next, we describe the encoding of the three image channels
used in DeepViNE to encode the VNR problem state.
Channel 1. First, we describe the encoding of a VN. To
this end, each virtual node is assigned a unique identifier,

which is encoded using a one-hot scheme, i.e., the encoding
of node nv

i is a binary sequence of length M with a single
1 at the ith place. See Fig. 2(a) for an example VN and its
encoding. Notice how the data is arranged in rows and columns
of a matrix that closely resembles the grid topology of the
virtual network. The blank entries of the matrix are filled with
appropriate number of 0’s such that the dimensions of the
matrix are correct. Each virtual node nv

i is represented by
four items: 1) its CPU demand (i.e., CPU(nv

i )), 2) its unique
identifier, 3) a status variable which is equal to 1 if nv

i is
marked by the virtual pointer, and is equal to 0 otherwise, and
4) an indicator variable which is equal to 1 if nv

i is embedded
in a physical node, and is equal to 0 otherwise. Each virtual
link is represented by its bandwidth demand (i.e., BW(ℓvi,j)).
Assuming that a float number is 64 bits long, the number of
bits required to store the matrix is O(64(2M2 + 8M)).

Similar to the VN representation, the physical network is
organized as a grid. Fig. 2(b) shows an example physical
network and its corresponding encoding. Each link is repre-
sented by its available bandwidth (i.e., BW(ℓpi,j)) as a single
entry in the corresponding matrix of Channel 1. However, each
physical node np

i is represented by three items: 1) available
CPU (i.e., CPU(np

i )), 2) an indicator variable that is set to 1 if
the node is marked by the physical pointer, and 0 otherwise,
and 3) a sequence of 0s and 1s that specifies the virtual nodes
embedded in that physical node. Specifically, this sequence
is the logical OR of the virtual node identifiers that are
embedded in np

i . Recall that the virtual node identifiers are in
one-hot scheme, and thus their logical OR uniquely specifies
the individual embedded virtual nodes. Similarly, the number
of bits required to store the matrix of the physical network
representation is O(64(2K2 + 6K)) bits.

Channel 1 is constructed by concatenating these two repre-
sentations horizontally. Note that, we need to add appropriate
number of 0s to the VN representations such that the number
of rows of both representations becomes equal.
Channel 2. This channel is designed to help the RL agent
identify the nodes and links that are not embedded yet, which
eventually increases the learning speed of the algorithm. The
construction of Channel 2 is identical to that of Channel 1,
except for when a virtual node or link is embedded. In
that case, we replace its corresponding encoding in the VN
representation with an array of appropriate number of 1’s.
Channel 3. This channel helps the RL agent to quickly find
the physical nodes and links with sufficient capacities. We
construct Channel 3 in the same way as Channel 1, except for
the physical nodes and links whose remaining capacities are
not enough to embed any virtual node and link, respectively.
These physical nodes and links are encoded by arrays of 0’s
with appropriate lengths. Otherwise, an array of 1’s encodes
a physical node or link.

D. Actions

Let n̂v
t and n̂p

t denote the virtual and physical nodes that
are marked by the physical and virtual pointers in iteration t,
respectively. Remember that in the grid topology each node
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Fig. 2: Encoding scheme in Channel 1.

has at most 4 neighbours. Thus we define 4 actions to change
n̂v
t to one of its immediate neighbours. Similarly, we define 4

actions to update n̂p
t , and 1 action to embed n̂v

t in n̂p
t .

Assume that a pointer is updated and the current values are
n̂p
t+1 and n̂v

t+1 (one of them is the same as in the previous
iteration), which leads to the following changes in the image
representation (See Algorithm 2 for more details):

1) The available CPU capacity of n̂p
t+1 is set to CPU(n̂p

t+1)−
CPU(n̂v

t+1). (line 1 in Algorithm 2)
2) The shortest paths from n̂p

t+1 to other physical nodes that
embed a neighbour of n̂v

t+1 are computed, and the avail-
able bandwidth on each of these paths is updated with the
bandwidth demand between n̂p

t+1 and the corresponding
neighbor. (lines 2–9 in Algorithm 2)

3) The allocated resources due to the previous positions of
the pointers are released. (lines 10–18 in Algorithm 2)

Algorithm 2 update_representation
Input: n̂p

t , n̂v
t , n̂p

t+1, n̂v
t+1, E ▷ E is the set of embedded virtual nodes

1: CPU(n̂p
t+1)← CPU(n̂p

t+1)− CPU(n̂v
t+1)

2: En ← neighbours of n̂v
t+1 that are in E

3: for nv
j ∈ E

n do
4: path ← shortest_path(f(n̂v

t+1), f(nv
j ))

5: for ℓp ∈ path do
6: ℓvi,j ← link between n̂v

t+1 and nv
j

7: BW(ℓp)← BW(ℓp)− BW(ℓvi,j )
8: end for
9: end for

10: CPU(n̂p
t )← CPU(n̂p

t ) + CPU(n̂v
t )

11: En ← neighbours of n̂v
t that are in E

12: for nv
j ∈ E

n do
13: path ← shortest_path(f(n̂v

t ), f(nv
j ))

14: for ℓp ∈ path do
15: ℓvi,j ← link between n̂v

t and nv
j

16: BW(ℓp)← BW(ℓp) + BW(ℓvi,j )
17: end for
18: end for
19: update embedding status and embedded virtual nodes of physical nodes based on
E and f(·)

Note that, we allow the agent to move the pointers arbi-
trarily. If it selects a physical node with insufficient capacity,
the available capacity on that node actually becomes negative.
In this case, if the agent tries to embed n̂v

t in n̂p
t , the

iteration is terminated, the algorithm fails and the VN is
blocked. However, upon successful selection of action a9, the
status of n̂v

t is changed to 1, and the binary sequence in the
representation of n̂p

t is updated by computing its logical OR
with the identifier of n̂v

t (See line 19). Also, whenever a virtual
link or node is embedded, its representation is replaced with a
series of 1’s in Channel 2, and whenever the available capacity

of a resource becomes negative a sequence of 0’s is used for
its representation in Channel 3.

We use ϵ-greedy strategy to choose an action: in each
iteration, the action with highest Q-value is selected with
probability 1 − ϵ, or an action is selected randomly with
probability ϵ. In the beginning, we set ϵ = 1, which allows
the agent to explore different state-action pairs, then, linearly
decrease its value to 0 after 50, 000 iterations.

E. Reward Signal

The reward signal is designed to encourage the RL agent to
embed as many VNs as possible. To achieve this, whenever
a VN is completely embedded, the agent receives 1 unit of
reward. In the intermediate steps, whenever the agent embeds
a virtual node in a physical node, if the processing and
bandwidth constraints are met, it receives 0.01 unit of reward.
This small reward signals to the agent that embedding a
virtual node is a desirable action. However, it is far less than
the reward for embedding a full VN, which is the ultimate
goal of the agent. If the agent’s choice violates the resource
constraints, a reward of −0.01 unit is given and the episode
is terminated. The reward of moving the virtual and physical
pointers is set to 0, which allows the agent to explore and select
the best embedding option possible. Clearly, the cumulative
reward is maximized when the maximum number of VNs are
embedded.

F. DNN Construction

We use a deep-neural network depicted in Fig. 3 to approx-
imate the Q-values. This neural network has four convolution
layers, where the number of neurons in the input layer depends
on the size of the physical and virtual networks. The number
of kernels and their sizes are selected such that the size of the
last convolutional layer becomes equal to 512. We apply the
dueling technique, which is observed to help learning better
policies [19], to divide the output of last convolutional layer
between two fully connected layers and then merge them in
the last output. We store the observed state-action-rewards in a

State
Representation

Four
Convolutional

Layers
Advantage
Function

Action
Function

Actions

a1. Move Physical Pointer UP
a2. Move Physical Pointer DOWN
a3. Move Physical Pointer LEFT
a4. Move Physical Pointer RIGHT
a5. Move Virtual Pointer UP
a6. Move Virtual Pointer DOWN
a7. Move Virtual Pointer LEFT
a8. Move Virtual Pointer RIGHT
a9. EMBED

Fig. 3: DNN architecture and actions.
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Fig. 4: Convergence behaviour of DeepViNE.

memory, called the experience memory, of size 50, 000 entries
and then train the DNN with randomly selected batches of size
32, by applying the method described in [10].

IV. PERFORMANCE EVALUATION

In this section, we present simulation results to study the
convergence and performance of DeepViNE.

A. Simulation Setup

System Parameters. The simulated physical network is a grid
with 25 nodes. Each virtual network is also represented as a
grid with 9 nodes. The capacity of physical resources (i.e.,
CPU and link bandwidth) is chosen randomly from the interval
[50, 100], while the virtual resource demands are generated
randomly over the interval [1, 10]. We set ξr = ξc = 1. The
system operates in an episodic manner, where each episode is a
sequence of 800 iterations of action selection. In each episode,
VNs arrive at the system sequentially and no information
about the future VNs is available to the algorithms. Once
a VN is fully processed (i.e., embedded or blocked), after a
number of iterations, the next VN arrives at the system. In our
simulations, on average, 40 VNs arrive at the system in each
episode. At the end of each episode, all VNs leave the system.
Each simulation experiment is run for 4000 episodes.
Implemented Algorithms. In addition to DeepViNE, we have
implemented three other agents:
• Random agent that selects actions randomly,
• FirstFit agent that embeds virtual nodes in the first

physical node with sufficient capacity,
• BestFit agent that chooses the physical node with the

maximum CPU capacity and packs it with virtual nodes.
Furthermore, we present the comparison of DeepViNE with
two existing VNE algorithms:
• GRC [4]: a node-ranking-based greedy algorithm.
• NeuroViNE [8]: an RL algorithm that uses a Hopfield

network to pre-select candidate physical nodes, and then
uses GRC to embed VNs in the candidate physical nodes.

All the algorithms are implemented such that they allow multi-
ple virtual nodes to be embedded on the same physical node.
We used Python 2.7 and Tensorflow 1.9.0 [20] on Ubuntu
16.04 to implement the algorithms and DNN, respectively.

B. Learning Convergence

Fig. 4(a) plots the evolution of the “average” as well as
“maximum” reward received by DeepViNE over a window of
size 100 episodes. We observe that, at the beginning, until
episode 500, the agent is in the exploration phase and its
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Fig. 5: Blocking probability of different algorithms.

performance is poor. However, the agent gradually learns how
to efficiently embed VNs. After 1200 episodes, its performance
becomes stable. Specifically, after convergence, the agent
consistently collects about 30 units of reward in each episode.

Fig. 4(b) shows the “average” as well as “minimum” VN
blocking probability. The blocking probability refers to the
probability of failing to embed a VN, and is computed over
a window of size 100 episodes. We observe that the block-
ing probability closely follows the behaviour of the reward
signal, which confirms that the designed reward signal is
suitable for achieving the objective of minimizing the VN
blocking probability. We also observe that in some episodes,
the blocking probability is as low as 0.08%, which means the
algorithm successfully embeds 37 VNs, which is close to the
total number of VNs that arrive in a single episode (i.e., 40).

C. Performance Comparison

Blocking Probability. Fig. 5 compares DeepViNE with the
other algorithms in terms of the blocking probability. We see
that in the beginning (i.e., exploration phase) the performance
of DeepViNE is similar to Random, which is worse than
all other algorithms. However, after about 1200 episodes,
where the learning completes, DeepViNE outperforms all other
algorithms. Specifically, we see that DeepViNE is always
better than BestFit and can reduce the blocking probability
by up to 22%, while on average its performance is 11%
better. This means that DeepViNE not only learns to better
embed virtual nodes but also considers higher level metrics,
such as the distance between the nodes with highest remaining
capacity, to achieve better performance compared to BestFit.
Interestingly, FirstFit performs only marginally better than
Random, which indicates that it is crucial to select physical
resources strategically in order to achieve a long-term goal
such as minimizing the blocking probability.

GRC considers the remaining capacity of physical nodes
and links, and thus spreads the load with the objective of
embedding more VNs in the future. However, it is evident
that, at least in the simulated scenarios, this strategy is not
efficient. NeuroViNE achieves a higher performance compared
to GRC by employing a Hopfield network to intelligently
choose a good set of candidate physical nodes for embedding.
Nevertheless, NeuroViNE uses GRC to complete embedding.
Thus, its performance is influenced by the limitations of GRC.
Both algorithms perform worse than BestFit and DeepViNE.
Revenue and Cost. Figs. 6(a) and 6(b), respectively, compare
DeepViNE with other algorithms in terms of their achieved
average Revenue and Cost, as given by (3) and (4). Since
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Fig. 6: Average revenue and cost.
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Fig. 7: Utilization of physical resources.

DeepViNE is more successful in embedding VNs in each
episode, its revenue is also significantly higher compared to
other algorithms. The closest competitor is BestFit, whose
revenue nevertheless is significantly lower than that of Deep-
ViNE, i.e., by about 16%. BestFit achieves the least cost
among the algorithms, because it tightly packs virtual nodes
on physical nodes and thus avoids paying for connecting
virtual nodes that are embedded in a single physical node.
The cost incurred by DeepViNE is higher, which is justified
as it also embeds more VNs. We see that the costs of GRC
and NeuroViNE are significantly higher, which implies that
they incur a higher cost for embedding virtual links (i.e.,
they construct node embeddings that use longer paths to
interconnect virtual nodes).
Resource Utilization. Average CPU and physical link uti-
lization are depicted in Fig. 7. Specifically, Fig. 7(a) shows
that DeepViNE achieves the highest CPU utilization, which
confirms that it is the best algorithm for packing VNs,
even better than BestFit. The achieved CPU utilization of
NeuroViNE is below that of DeepViNE and BestFit. In
particular, NeuroViNE’s CPU utilization is almost half of
that of DeepViNE. Fig. 7(b) depicts the average physical
link utilization, which depends on the number of VNs that
are successfully embedded in the physical network, and the
mapping of virtual links to physical paths. We observe that,
although NeuroViNE and GRC have higher VN block prob-
abilities compared to DeepViNE, their link utilizations are
significantly higher (almost 2x). This indicates that the virtual
link mapping operations in NeuroViNE and GRC are not
efficient. BestFit and FirstFit achieve very low link utilizations
because they focus on packing virtual nodes in physical nodes
and ignore the importance of node interconnections. However,
DeepViNE considers the physical link and node resources
simultaneously, which eventually leads to higher CPU and link
utilization, but also lower blocking probability.

V. CONCLUSION

In this work, we presented the design and evaluation of an
adaptive online virtual network embedding algorithm based on
deep reinforcement learning. A key feature of our design is
that it does not rely on hand-crafted features, rather automates
feature extraction via a suitable encoding of the problem. We
evaluated the convergence and performance of our algorithm
using simulations, and compared it with several existing
algorithms. The results showed that our algorithm learns an

embedding policy that improves upon the performance of
other algorithms by at least 11%. An interesting extension
of this work is to modify the reward signal to model other
system objectives such as minimizing energy consumption of
the physical network.
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