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Abstract—This paper considers energy management on LTE-
enabled Internet of Things (IoT) devices. A characteristic feature
of IoT applications is the periodic generation of small messages,
whose transmission over LTE is highly energy inefficient. In this
paper, we consider application message bundling to alleviate the
effect of short message transmissions on energy consumption.
Specifically, we model the interplay between energy consumption
and the extended DRX mechanism introduced in LTE to deal
with IoT traffic. We formulate bundling as a cost minimization
problem and develop an online algorithm to solve the problem.
Detailed analysis shows that, depending on DRX and application
parameters, our algorithm is 1, 2, or 4-competitive with respect
to the optimal offline algorithm that knows the entire sequence
of application messages a priori. We evaluate the performance
of the proposed algorithm and the accuracy of our analysis in a
range of realistic scenarios using both model-driven simulations
and real experiments on an IoT testbed. Our results show
that, i) depending on application requirements, energy savings
ranging from zero to about 100% can be achieved using our
algorithm, and ii) ignoring DRX could significantly overestimate
or underestimate energy consumption.

I. INTRODUCTION

A. Background and Motivation

In recent years, an ever increasing number of smart devices
with sensing and communication capabilities has given rise
to the Internet of Things (IoT). IoT envisions a world where
a variety of smart objects are connected to the Internet and
communicate with each other. Currently, 4G cellular networks
based on LTE are widely deployed around the world, which
makes LTE a natural candidate for IoT connectivity [1]. LTE,
however, was designed for high data rate applications to
respond to the growing traffic demand of smartphones. It is
not optimized for low data rate and low power applications
that are envisioned for IoT. A major drawback of LTE is that
it consumes a lot of power. Many IoT devices run on battery,
and often the cost of replacing batteries is a major operational
expenditure.

A characteristic feature of IoT applications is the periodic
generation of small messages [2]. It is well-known that peri-
odic transmission of small messages over LTE is highly energy
inefficient [3]. Specifically, to transmit a message, the LTE
radio has to switch to a high power active mode from the idle
mode. To avoid frequent switching, and consequently reduce
the network signalling load, once the LTE radio switches to
the active mode, it lingers in that mode for some tail time
even after the transmission of the message is completed. As a
result, every time a small message is transmitted, an additional
tail energy is consumed by the LTE radio. In contrast to large
messages on smartphones, when transmitting small messages

on IoT devices, the tail energy is significant compared to the
energy consumed for transmitting the message itself.

Recently, 3GPP has proposed a number of LTE enhance-
ments for low-power wide area communications including
Machine Type Communication in LTE-M specifications [4].
To reduce power consumption, LTE-M includes several power
saving mechanisms such as the extended Discontinuous Re-
ception (DRX) [3]. Specifically, in the radio resource con-
trol (RRC) protocol for LTE networks [5], RRC_IDLE (or
idle state) represents the lowest energy state and sending
or receiving a message in this state will cause a promo-
tion to the RRC_CONNECTED state. Once promoted, the
user equipment (UE) enters the Continuous Reception mode
(hereafter called active state) and consumes high power as it
continuously monitors the physical downlink control channel
(PDCCH) for scheduling information. The UE also starts an
inactivity timer, Ti, in this mode which gets restarted every
time a message transfer request is scheduled before the timer
is expired. Otherwise, the expiry of the timer moves the UE
to DRX mode. In DRX mode, the UE periodically wakes up
to monitor PDCCH only for short intervals (referred to as ON
durations) and then goes to sleep at other times. As a result,
power consumption in DRX mode is higher than the idle state
but is lower than the active state. Along with Ti, the UE also
starts a timer called RRC tail timer, Tt, every time it enters the
RRC_CONNECTED state. When there is no network activity
for the duration of tail timer, the UE moves to the idle state.

Although the proposed power saving mechanisms are ef-
fective in reducing LTE radio energy consumption, they are
oblivious to the specific requirements of different IoT ap-
plications in terms of delay and energy. In particular, while
different IoT applications have different delay requirements,
most are generally delay-tolerant [2]. As such, it makes sense
to bundle multiple message transfer requests together and
grant them later at once instead of granting individual requests
immediately upon their arrivals [6]–[10], specially in scenarios
when an IoT device aggregates sensor readings from multiple
sensors.

Clearly, bundling reduces radio energy consumption as it
consolidates multiple tail energies into one tail energy. The
side effect of bundling is the increased delay experienced by
applications. The challenge is to design a flexible bundling
algorithm to allow applications to trade increased delay for
reduced energy consumption. Recently, there have been several
works on bundling for smartphones [6], [8], [10]. However,
these works focus on traditional 3G networks and consider an
On/Off radio model to characterize the radio energy consump-
tion of a smartphone. While such an On/Off model is suitable



in 3G cellular networks, it does not accurately represent the
radio behavior in LTE networks. In particular, the On/Off
model does not capture the effect of DRX, which would lead
to significant overestimation or underestimation of the radio
energy consumption (this will be shown in Section V), and
hence, the inefficient management of the IoT device energy.

B. Our Work

To mitigate the energy inefficiency resulting from small
IoT messages, we design a message bundling algorithm with
provable performance that is tailored to the specific operation
of LTE radios and the DRX mechanism. The difficulty in
designing a bundling algorithm is that the bundling decisions
have to be made online without knowing the timing of future
message transfer requests. For instance, many IoT applications
generate messages in an event-based manner with no pre-
dictable schedule [11]. To this end, we consider the problem
of balancing energy and delay and formulate it as an online
optimization problem. The objective of the problem is to
minimize the bundling cost defined as a weighted summation
of energy and delay costs. Energy cost is modeled based on
the behavior of the LTE radio as described earlier. Preference
over delay versus energy is controlled by including a weight
factor in the objective function. Such a weight factor can be
used to balance the energy-delay tradeoff based on the IoT
traffic type (delay tolerant or delay sensitive) and also power
constraints of the IoT device.

To solve the optimization problem, we develop an online
deterministic bundling algorithm called Energy Optimizer
(EO). EO’s design is motivated by the classic Ski-rental
problem [12]. Specifically, EO does not automatically grant
each message transfer request upon its arrival. Rather, it
bundles them together and makes a single grant when the
energy cost and weighted delay cost associated with that grant
become equal. As a benchmark for evaluation of EO, we
also design an offline algorithm that relies on the unrealistic
assumption of knowing the entire arrival times of message
transfer requests in advance. We present a detailed analysis
of the EO’s performance using the well-known notion of
competitive ratio (CR). We prove that, depending on DRX and
application parameters, EO achieves a competitive ratio of 1,
2, or 4 compared to the optimal offline algorithm. It is worth
noting that while energy management in IoT applications
was the main motivation for our work, the presented online
algorithm and its analysis are applicable to any LTE device.

To assess the performance of EO, we conducted an ex-
tensive set of model-driven simulations under a wide variety
of realistic conditions. We also collected real traces from an
experimental IoT testbed and used them on an Android-based
LTE smartphone to empirically evaluate our online algorithm.
Our results show that in most realistic scenarios, EO achieves
an empirical competitive ratio less than 2. Also, depending on
application requirements, energy savings ranging from zero to
about 100% can be achieved using our algorithm. We also ob-
serve that DRX has a significant effect on energy consumption,
which is neglected by the existing On/Off models.

C. Related Work

There is a large body of work on DRX-aware radio energy
management schemes. The most relevant categories related to
our work include:

1) DRX optimization: There have been several studies on
improving the energy efficiency of IoT devices by optimal
configuration of DRX parameters (e.g., see [13], [14], and
references therein). The common approach in these works is to
model the effect of DRX parameters on energy and delay at the
UE side, and then determine the optimal DRX parameters that
achieve a desired tradeoff between energy and delay. To model
energy and delay, typically modeling assumptions are made
about the traffic arrival process and other aspects of the system.
For example, [13] developed a Markov model to characterize
DRX effect on energy and delay assuming a Poisson traffic
arrival. In contrast, our analysis is independent of any specific
assumption about the incoming traffic. Also, the problem
considered in this paper is orthogonal (and complementary)
to the existing work on DRX. In particular, we design our
algorithm assuming that the DRX parameters are already
configured and set using one of the above optimization models.

2) DRX enhancement: There have also been proposals for
modified versions of the DRX. The authors of [15] proposed
to enhance the DRX mechanism with a quick sleep indication,
where the base station (called eNB) can inform the device to
go to sleep when there is no incoming traffic. [16] proposed a
packet coalescing mechanism, where the eNB delays transmit-
ting packets to the UEs in DRX mode until their downstream
queues reach a tunable threshold. However, these schemes
require changes to the operation of current eNBs which could
hinder their deployment and adoption.

3) DRX-aware scheduling: Several recent works have pro-
posed scheduling strategies that take DRX operations into
account. For example, Liang et al. [17] suggested using a
DRX selection algorithm along with a cooperating DRX-
aware scheduling algorithm at eNB in order to satisfy QoS
requirements of IoT applications. However, most IoT traffic is
uplink, and hence their algorithm is not sufficient for most IoT
applications. Wang et al. [11] proposed an IoT device-based
uplink scheduler that balances device power consumption and
the network signaling load. Their design choice requires end
devices cooperating in signal load reduction of the network.

4) Smartphone request bundling: The seminal work ad-
dressing energy-delay tradeoff for bundling was TailEnder [6],
which is a threshold-based bundling algorithm to reduce
the mobile device energy consumption, while satisfying pre-
specified request deadlines. To avoid relying on a priori
knowledge of request deadlines, [8] and [10] proposed online
bundling algorithms to jointly minimize energy and delay
costs. As mentioned earlier, all these works consider an On/Off
radio model which does not capture the operation of the DRX
mechanism in LTE networks.

D. Paper Organization

The rest of the paper is organized as follows. In Section II
we present a formal specification of the problem. We intro-
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Fig. 1: Relation between arrivals, grants and intervals.

duce our online algorithm in Section III. Then we perform
competitive analysis of the online algorithm in Section IV.
Performance evaluation results are discussed in Section V.
Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT

Consider a sequence of message transfer request arrivals
A = 〈a1, . . . , an〉, where ai denotes the arrival time of request
i. The sequence A is not known in advance. Without loss of
generality, we assume that the radio is in idle state when the
first request arrives. The goal is to design an online algorithm
to bundle multiple requests together and grant them at once
as opposed to individually granting each request. A message
transfer request may involve uploading environmental readings
received at an LTE-enabled IoT device from multiple IoT
sensors. The LTE-enabled IoT device may communicate with
its sensors using short-range low-power wireless technolo-
gies such as Bluetooth Low Energy (BLE) [11]. Let GA =
〈g1, . . . , gk〉 denote the sequence of grants made by some
algorithm A, for the arrival sequence A, where gi denotes
the time of grant i. Let XA = {X1, . . . , Xk} denote the set
of all grant intervals of algorithm A, where X1 = [a1, g1] and
Xi = (gi−1, gi], for i ≥ 2. All requests that arrive during
the interval Xi are bundled together and granted at time gi.
Throughout the paper, we use the notation Xi to refer to the
i-th grant interval as well as the length of that interval, when
there is no ambiguity.

Fig. 1 shows the relation between arrivals and grants. The
objective of the bundling algorithm is to determine the grant
times gi that minimize the cost CA = EA +αDA, where EA
and DA denote the energy cost and delay cost of algorithm A,
respectively. The coefficient α is a control parameter that can
be used to specify the relative importance of delay cost over
energy cost depending on the IoT application requirements.

A. Energy Cost

The energy cost EA is the tail energy consumed because
of inactivity periods between grants of algorithm A. Let PC
and PD denote the base powers consumed by the radio during
the active and DRX substates of the RRC_Connected state,
respectively, where PC > PD. Also, let Ti denote the length
of the inactivity timer in active state and Tt denote the overall
RRC tail time, where Tt > Ti. Similar to [18], [19], we use
the following function to characterize the tail energy:

ε(τ) =

PCτ 0 ≤ τ ≤ Ti,
PCTi + PD(τ − Ti) Ti < τ ≤ Tt,
PCTi + PD(Tt − Ti) Tt < τ,

(1)

where, τ is the time passed since the last grant of the
algorithm. Then, the energy cost of grant interval Xi is given
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Fig. 2: Intersection of energy and delay functions.

by EA(Xi) = ε(Xi). Consequently, the energy cost of the
algorithm A is given by,

EA =
∑

Xi∈XA

EA(Xi) + ε(Tt), (2)

where the additional term ε(Tt) is added to account for a
tail time after the last grant of the algorithm. To simplify the
analysis, similar to [8], [20], we ignore the transfer time of
bundles as this time is the same for every bundling algorithm.

B. Delay Cost

The delay cost of the algorithm is defined as the sum of
delay costs of all the bundles. We use the notation DA(Xi) to
denote the delay cost of bundle i, which includes all requests
that arrive during interval Xi. Consider a request aj ∈ Xi. The
delay cost of request aj is given by (gi−aj). The delay cost of
bundle i is then expressed as DA(Xi) = maxaj∈Xi

(gi − aj).
In other words, the delay cost of a bundle is the maximum of
all the delays of the requests in the bundle [20]. Equivalently,
the delay cost of bundle i is given by gi − afirst,i, where
afirst,i is the arrival time of the first request in bundle i. It
then follows that,

DA =
∑

Xi∈XA

DA(Xi) =
∑

Xi∈XA

max
aj∈Xi

(gi − aj) . (3)

C. Optimal Offline Algorithm

As a point of comparison for our online algorithm, we
design an optimal offline algorithm, called OPT. OPT is
not a realistic algorithm, since it knows the entire request
arrival sequence in advance. An important observation used in
designing OPT is the fact that the optimal algorithm always
makes grants right at the time of some request arrivals and
never makes a grant in-between two arrivals. Based on this
observation, we design OPT using a dynamic programming
algorithm similar to the one in [20]. OPT has the runtime
of O(n2), where n is the length of the arrival sequence. A
detailed discussion of the optimal offline algorithm and its
analysis can be found in our technical report [21].

Theorem 1. When α ≥ PC , OPT makes a grant for every
request arrival.

Proof. See our technical report [21].

III. ONLINE ENERGY MANAGEMENT ALGORITHM

With Theorem 1 characterizing the behavior of the optimal
algorithm for α ≥ PC , our online algorithm called Energy
Optimizer (EO) will imitate OPT in that regime. In other



regimes, EO works as follows. Assume that the most recent
grant was at time gi and the algorithm has to decide when to
make its next grant gi+1. Let τ denote the time duration since
the last grant gi. Also, let EEO(τ) and DEO(τ) denote the en-
ergy and delay cost incurred by EO during τ . Then, EO makes
a grant at time gi+1 = gi + τ , when EEO(τ) = αDEO(τ)
holds. Fig. 2 portrays a plot illustrating the behavior of EO.
In this figure, τ1 is the time between the last grant of the
algorithm (i.e., gi) and the first arrival after that. This way, the
weighted delay cost associated with the grant at gi + τ will
be α(τ − τ1), which is presented by the dashed line (called
D-line). The solid polyline (called E-line) is the graphical
presentation of the energy cost function defined in (1). The
intersection of these two lines determines the desired τ value.

In the following sections, we will focus on the value of
τ − τ1 to analyse the performance of EO. If α ≤ PD, D-line
will intersect horizontal part of the E-line, and hence,

τ−τ1 =
PCTi + PD(Tt − Ti)

α
=
ε(Tt)

α
, if α ≤ PD . (4)

If PD < α < PC , D-line can intersect the middle part or
the horizontal part of the E-line. Specifically, we have,

τ −τ1 =

{
f(τ1), if (PC − PD)Ti + ατ1 ≤ (α− PD)Tt,
ε(Tt)
α , otherwise,

(5)

where, f(τ1) = (PC−PD)Ti+PDτ1
α−PD

. Notice that the first grant
is treated differently, i.e., when there is no gi. The algorithm
makes its first grant at some time τ that satisfies the equation
ε(Tt) = αDEO(τ).

The algorithm EO can be implemented using timers. Specif-
ically, for the first arrival after each grant gi, EO sets a timer
to time out after w time units, where the value of w can be
computed from (4) or (5) depending on the values of α, τ1, and
their relations to the power model parameters. Upon expiry of
the timer, a grant will be made and all the pending requests
will be granted.

IV. ANALYSIS OF THE ENERGY OPTIMIZER ALGORITHM

As mentioned earlier, we will study the behaviour of EO
in three different regimes. In the regime of α ≥ PC , EO
imitates the behavior of OPT as determined by Theorem 1.
As such, EO is 1-competitive when α ≥ PC . Therefore, it
suffices to analyze EO for the remaining two regimes, namely
when α ≤ PD and PD < α < PC . In the sequel, we focus on
proving the following theorems.

Theorem 2. When α ≤ PD, the Energy Optimizer algorithm
is 2-competitive.

Theorem 3. When PD < α < PC , the Energy Optimizer
algorithm is 4-competitive.

A. Preliminaries
The following observations will be used in our analysis.

Observation 1. At least one request arrives during an interval
Xi = (gi−1, gi]. If there is no arrival, then the algorithm does
not make any grant at gi as there is no request to grant.

gi+1goptgi

ℓ

τ − τ1afirst,i+1τ1

Fig. 3: (gi, gi+1] is a sample interval created by EO.

Observation 2. Energy function ε(τ) is a concave piecewise-
linear function, where the following relations always hold,

ε(τ) ≤ PCτ, (6)
ε(τ) ≤ PCTi + PD(τ − Ti), (7)
ε(τ) ≤ PCTi + PD(Tt − Ti) = ε(Tt) . (8)

B. Analysis of a Single Interval

We focus on individual grant intervals created by EO in
isolation. Fig. 3 shows one such interval, which we refer to
as X . Considering the distance of (τ − τ1) between the first
arrival in X and its associated grant, the weighted delay cost
incurred by EO will be α(τ − τ1). Since EO makes a grant
when EEO(X) = αDEO(X), the cost of interval X is,

CEO(X) = 2αDEO(X) = 2α(τ − τ1) = 2EEO(X) . (9)

If OPT does not make any grant in X , it will incur at
least a delay cost equal to DEO(X), and hence COPT(X) ≥
αDEO(Y ), which establishes CEO(X) ≤ 2COPT(X). In case
OPT has at least one grant in X , we will use gOPT to
refer to its first grant in this interval. Let ` denote the time
duration from gOPT up to the end of interval X (Fig. 3). We
will charge gOPT with ε(`) for its contribution to the energy
cost and α(τ − τ1 − `) for its contribution to the weighted
delay cost. If ` > Tt, then ε(`) = ε(Tt) ≥ EEO(X), indicating
2COPT(X) ≥ CEO(X). Otherwise (i.e., if ` ≤ Tt), we have,

COPT(X) ≥ α(τ − τ1 − `) + ε(`)

=


α(τ − τ1) + (PC − α)` if 0 ≤ ` ≤ Ti,

α(τ − τ1) + (PC − PD)Ti
+ (PD − α)` if Ti < ` ≤ τ − τ1 .

(10)

COPT(X) is lower bounded in (10) because it is possible for
OPT to have more than one grant in interval X .
Proof of Theorem 2:
When α ≤ PD in (10), `’s coefficient in both cases be-
comes positive (also PC − PD > 0). As a result, it al-
ways holds that α(τ − τ1) ≤ COPT(X), which implies that
CEO(X) ≤ 2COPT(X).

Notice that when PD < α < PC , the coefficient of `
in (10) is positive only in the first case. As a result, we
have α(τ − τ1) ≤ COPT(X) only in the first case, and hence
CEO(X) ≤ 2COPT(X). On the other hand, `’s coefficient is
negative in the second case of (10). Therefore, the minimum
value of the lower bound in (10) is obtained by the maximum
possible value for `, which is given by min {τ − τ1, Tt}. If
Tt < τ − τ1, we obtain that

COPT(X) ≥ α(τ − τ1 − Tt) + ε(Tt) ≥ EEO(X), (11)
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which results in CEO(X) ≤ 2COPT(X). However, if
Tt ≥ τ − τ1, we obtain that,

COPT(X) ≥ PD(τ − τ1) + (PC − PD)Ti . (12)

C. Cost of Grant Intervals

In the previous subsection, we studied EO intervals in
isolation. Specifically, in each EO interval we charged EO
with the energy cost of the entire interval. In contrast, we
charged potential OPT grants only with the energy cost
of a portion of the interval (i.e., τ − τ1), ignoring energy
consumption during τ1 period. This can result in a pessimistic
bound for the competitive ratio. Thus, in this section, we study
the entire set of intervals altogether.

We consider GOPT = 〈g1, . . . , gl〉 to be the grants made
by OPT. Because of these grants, the radio will transition
between different states (idle, DRX and active state) several
times. Fig. 4 depicts an example consisting of a few OPT
grants and radio state transitions resulting from them. In
general, the radio is initially in the idle state, then goes through
several transitions and finally goes to the idle state after Tt
time from the last grant. The main technique used in this
section is to overlay grant intervals of EO over the radio states
under OPT (see Fig. 5). This way, we can identify two classes
of intervals:

1) Intervals with no radio state transition,
2) Intervals with one or more radio state transitions.

The next subsections, analyze these two classes of intervals.

D. Intervals with No Radio Transition

Let X represent one such interval. Considering the radio
state during X , the following cases can be identified.
1) Radio is in active state during interval X: In this case, we

only focus on the energy cost incurred by OPT as its delay
cost could be as low as zero. Since the OPT radio is in the
active state during interval X , we have EOPT(X) = PCX .
Based on Observation 2, it is obtained that,

COPT(X) ≥ PCX ≥ EEO(X) . (13)

Recall that CEO(X) = 2EEO(X), which yields
2COPT(X) ≥ CEO(X).

2) Radio is in DRX or idle states during interval X: Based on
Observation 1, the fact that EO makes a grant at the end of
interval X implies the arrival of at least one request during

X

Ti

g

(a) First grant of OPT hap-
pens when the radio is in
active state.

g

X

(b) First grant of OPT hap-
pens when the radio is in
DRX state.

g

X

(c) First grant of OPT hap-
pens when the radio is in
idle state.

Fig. 6: Intervals with one or more radio transitions.

X . When the radio for OPT spends the entire interval
X in the DRX or idle states, it means that OPT did not
make a grant during X , because otherwise it would have
transitioned to the active state. Therefore, OPT incurs at
least a delay cost equal to DEO(X). Thus, we have,

COPT(X) ≥ αDEO(X) . (14)

Combining (14) with CEO(X) = 2αDEO(X) results in
2COPT(X) ≥ CEO(X).

E. Intervals with One or More Radio Transitions

Let X refer to one such interval. If OPT does not have a
grant in X then CEO(X) ≤ 2COPT(X) will hold because
OPT will suffer from at least the delay cost DEO(X).
Therefore, in the following, we assume OPT makes at least
one grant during interval X .

When the first grant of OPT in X happens, the OPT radio
can be in any of the following three possible power states.
1) The first grant happens when the radio is in active state:

Fig. 6(a) depicts this case. Since OPT makes grants only at
request arrival times (and not in-between them), we know
that OPT can not have a grant during the period τ1. Also
notice that only a grant can cause the radio to transition to
the active state (in contrast to the expiry of an RRC timer
and state demotion). As such, the radio of OPT should be
in the active state from the beginning of X until the first
OPT grant in X (and this time period covers τ1).
As shown in subsection IV-B, COPT(X) and CEO(X)
always satisfy the relation 2COPT(X) ≥ CEO(X), except
in one case. The only case where this relation does not
hold leads to the lower bound in (12). Given that this lower
bound is obtained without accounting for the radio energy
consumption during τ1, we can adjust the lower bound by
considering the fact that the OPT radio will be in the active
state during the period τ1. Therefore, given that PC > PD,
we have,

COPT(X) ≥ PD(τ − τ1) + (PC − PD)Ti + PDτ1,

= PCTi + PD(τ − Ti),

≥ EEO(X) .

(15)

The last inequality comes form (7) in Observation 2
by considering that τ represents the length of inter-
val X . Finally, the relation CEO(X) = 2EEO(X) yields
2COPT(X) ≥ CEO(X).

2) The first grant happens when the radio is in the DRX
state: Fig. 6(b) depicts this case. This case is similar to
the previous case. Notice that the only way the radio



can transition to the DRX state is through the expiry of
the RRC inactivity timer and demotion from the active
state. In other words, making a grant will always bring
the radio to the active state and not the DRX state. Thus,
the only difference compared to the previous case is that
the OPT radio can be in the active and DRX states during
τ1 but not in the idle state. As a result, the lower bound
in (12) can be adjusted by adding PDτ1, which means
that the relation in (15) still holds. Therefore, we have
2COPT(X) ≥ CEO(X).

3) The first grant happens when the radio is in the idle state:
Fig. 6(c) depicts this case. In this case, OPT’s first grant
(called gOPT) could be right at the arrival time of the first
request in the interval, which implies zero delay cost. On
the other hand, if gOPT is close to the end of interval X ,
the energy cost incurred by OPT during interval X could
also be zero. As a result, the cost of COPT(X) could be as
low as zero. Based on Observation 2, the following upper
bound is obtained for CEO(X),

CEO(X) = 2EEO(X) ≤ 2ε(Tt) . (16)

Let X 0
EO ⊆ XEO denote the set of all such intervals of

EO. Instead of establishing a lower bound for COPT over
individual intervals, we will bound the cost of OPT over
the entire set of such intervals (i.e., over X 0

EO). This will
be discussed in the proof of Theorem 3 presented next.

Proof of Theorem 3:
For computing COPT and CEO, we will use the following:

COPT =
∑

Xi∈XEO

COPT(Xi) + ε(Tt), (17)

CEO =
∑

Xi∈XEO

CEO(Xi) + ε(Tt) . (18)

Based on the analysis in previous subsections, every in-
terval Xi in XEO/X 0

EO satisfies CEO(Xi) ≤ 2COPT(Xi).
Also based on (16), every interval Xi in X 0

EO satisfies
CEO(Xi) ≤ 2ε(Tt). Therefore, we have,

CEO =
∑

Xi∈XEO

CEO(Xi) + ε(Tt)

=
∑

Xi∈XEO\X0
EO

CEO(Xi) +
∑

Xi∈X0
EO

CEO(Xi) + ε(Tt)

≤ 2
∑

Xi∈XEO\X0
EO

COPT(Xi) +
∑

Xi∈X0
EO

2ε(Tt) + ε(Tt)

≤ 2COPT + 2ε(Tt) |X 0
EO|,

(19)

where, |X 0
EO| denotes the cardinality of set X 0

EO. Thus, our
analysis is reduced to establishing an upper bound on |X 0

EO|.
To this end, we focus on the behavior of OPT and observe
that for the entire arrival sequence, the OPT radio will
transition between different states several times. Assume that
for K times, there is a transition from idle to active state.
Accordingly, we have COPT ≥ Kε(Tt), because every time
the radio goes to the active state, it incurs at least the energy
cost of ε(Tt) before going back to the idle state. Also notice
that after overlaying EO intervals over the radio states under

OPT, we cannot have more than K intervals belonging to
X 0

EO. Thus, it is obtained that,

|X 0
EO| ≤ K ≤

COPT

ε(Tt)
. (20)

By replacing |X 0
EO| in (19) with its upper bound from (20),

the following relation is obtained,

CEO ≤ 2COPT + 2ε(Tt)|X 0
EO|,

≤ 2COPT + 2COPT = 4COPT .
(21)

F. Remarks on the competitive ratio of Theorem 3

We note that the competitive ratio of 4 proved in Theorem 3
is not tight. This can be observed by the discussions in
subsection IV-B, where grant intervals were considered in
isolation. Specifically, using (9) and (12), the following upper
bound for CEO

COPT
can be established,

CEO

COPT
≤ 2α(τ − τ1)
PD(τ − τ1) + (PC − PD)Ti

≤ 2α(τ − τ1)
PD(τ − τ1)

=
2α

PD
.

(22)

This implies that, for example, when α/PD is 1.5, the com-
petitive ratio of EO is bounded by 3.

V. PERFORMANCE EVALUATION

In this section, we evaluate EO using both model-driven
simulations and real experiments on an IoT testbed. We
compare EO with two algorithms: 1) OPT, and 2) Default,
which grants requests as soon as they arrive. Notice that the
delay cost of the Default is always zero.

A. Model-Driven Evaluation

In this part, we study the performance of different algo-
rithms using a custom-developed discrete-event simulator. The
simulator takes as input the weight factor α, parameters of
the power model (Ti, Tt, PC , PD) and the transfer request
arrival sequence. Unless otherwise stated, parameters of the
power model are set to the values reported in Table I. These
values are reported in [22] based on measurements in an
LTE network. The DRX base power (PD) is computed by
taking the weighted average of LTE tail base power and power
consumption of ON durations in each DRX cycle.

TABLE I: Power model parameters.
State Power (mW) Duration (ms)

Active PC = 788 Ti = 200
DRX PD = 163 Tt = 11000

1) Exploring Energy-Delay Tradeoff: We used a sequence
of size 100 requests with normal inter-arrival times (µ =
7000 ms, σ = 6000 ms) to perform this experiment. About
2% and 68% of the inter-arrival times in the sequence are less
than Ti and Tt, respectively.

Figs. 7(a) and 7(b) show the energy and delay costs for dif-
ferent values of α, respectively. These two plots are combined
in Fig. 7(c) which shows the pairwise energy and delay values
next to their corresponding weight factors. It is observed that
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Fig. 7: Performance of EO: By controlling α, different energy-delay tradeoffs can be achieved.

the energy consumed by EO decreases with lower values of
the weight α. For example, α = 1 results in 98.5% energy
saving compared to α = 800. Fig. 7(d) which shows the
average size of the bundles, illustrates EO’s ability to adapt
its behavior depending on the weight assigned to the delay
cost. Fig. 7(e) presents the cumulative distribution function
(CDF) of the delay experienced by the individual requests in
the sequence. Notice that in our considered cost function, the
delay cost (DEO) is defined as the summation of the maximum
delays experienced in each bundle. However, as we can see
in Fig. 7(e), DEO is directly related to the delays experienced
by individual requests.

The empirical competitive ratios for different values of α are
listed in Table II. These results conform the properties claimed
in Theorems 1, 2, and 3. Also in the settings characterized by
PD < α < PC , EO exhibits a performance significantly better
than the one predicted by the competitive ratio of 4.

TABLE II: Empirical competitive ratio of EO.
α CEO/COPT α CEO/COPT

1 1.41 400 1.78
10 1.93 600 1.87
100 1.59 800 1
200 1.52 1000 1

2) Performance under Different Arrival Patterns: Similar
to [23], here we change the fluctuation level of the inter-arrival
times to generate different patterns of request arrivals. In
particular, based on the coefficient of variation (CV) of inter-
arrival times, we consider arrival sequences of low (CV = 0.5),
medium (CV = 1.5) and high (CV = 5) fluctuations. The inter-
arrival times are normally distributed with mean 7000 ms.

Fig. 8 shows the total cost achieved with the three algo-
rithms under varying fluctuation levels. We consider three
weight values corresponding to three regimes identified by
Theorems 1, 2, and 3. In Fig. 8(b), the cost of EO is 1.53
and 1.81 times the cost of OPT for sequences with low and
high fluctuation, respectively. This implies that for a specific
delay weight, the performance of EO changes depending on
the characteristics of the arrival sequence. The total costs
presented in Fig. 8 also verify our analysis, since the maximum
value of CEO/COPT is 1.84 among all the considered scenar-
ios. In scenarios where energy is more important (α ≤ PD),
EO outperforms the Default algorithm. For example, in a
setting with α = 10 and high fluctuation, EO results in 64.6%
reduction in the total cost compared to Default.

Across all α values, EO’s worst performance is achieved
when PD < α < PC . While in this regime EO results in

lower energy consumption compared to the Default algorithm,
the higher weight assigned to the delay causes the total cost
of EO to be higher. In this regime, Default performs better in
sequences with long inter-arrival times, where most of the gaps
are longer than EO’s timer value. In that case, not only EO
misses chances of bundling, but also incurs higher cost due
to unnecessary waiting. In contrast, EO outperforms Default
in sequences with shorter inter-arrival times. For example, in
an experiment characterized by α = 200 and normal inter-
arrival times of mean 400 ms and standard deviation 200 ms,
the Default’s total cost is 14% higher than EO’s cost. As
Fig. 8(c) illustrates, in scenarios with high delay importance
(α ≥ PC), all three algorithms have an identical performance
as they grant requests as soon as they arrive.

3) Comparison with On/Off Radio Models: To study the
difference between the LTE radio model and an On/Off model,
we compare the performance of EO under 3 different power
profiles. Specifically, Profile-1 and Profile-2 are On/Off radio
models, where the radio consumes PD and PC for the entire
tail period (Tt), respectively. Profile-3 represents the LTE
radio model characterized by parameters PC , PD, Ti, Tt.

We performed experiments using a sequence of size 100
with normal inter-arrival times (µ = 7000 ms, σ = 6000 ms).
For PC , PD and Ti we used values reported in Table I, but we
changed Tt between 200 and 1200 ms. For α = 200, Fig. 9(a)
shows the energy cost of EO under the three power profiles
as a function of tail time ratio Tt/Ti (called TTR). As seen,
for all the TTR values, Profile-2 and Profile-1 result in the
highest and the lowest energy consumption, respectively.

We also observed a behavior similar to the one in Fig. 9(a)
when using input sequences with short inter-arrival times.
However, depending on the characteristics of the input se-
quence, OPT can exhibit a different behaviour. For example,
Fig. 9(b) compares the performance of OPT under the three
power profiles using an input sequence with short inter-arrival
times (normal with µ = 700 ms and σ = 600 ms). We can see
a different ordering between power profiles as Profile-2 results
in the lowest energy consumption. This stems from the fact
that OPT can make bundling decisions based on its knowledge
about the entire sequence. In particular, when arrival times
are close to each other, the delay cost of bundling would
be low compared to the reduction in its energy cost. Thus,
with an increase in power dissipation rate (Profile-2), OPT
more aggressively reduces the number of grants resulting in
low inter-grant time gaps. In contrast, when inter-arrival times
are longer, OPT cannot adopt such an aggressive policy as it
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Fig. 8: Comparing the performance of EO with OPT and Default under different fluctuation levels of request inter-arrival times.
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Fig. 9: Energy cost under different power models.

would result in high delay costs. That is why OPT’s energy
cost follows a similar trend to the one in Fig. 9(a) under
sequences with longer inter-arrival times.

4) Effect of Power Model Parameters: In this experiment,
we study the effect of power model parameters (PC and
PD) on the performance of EO. Specifically, we examine the
performance of EO under different ratios of PC/PD (called
power ratio) by using a fixed value for PD and changing values
of PC . To better capture the effect of power ratio on EO’s
energy cost, we use the power model parameters characterized
by PD = 500 mW, Ti = 200 ms, and Tt = 1000 ms,
which are different than the ones in Table I. We performed
experiments using a sequence of 100 requests with normal
inter-arrival times (µ = 7000 ms, σ = 6000 ms). Given the
high importance of energy in IoT scenarios, we consider the
regime of α ≤ PD, where energy is more important than delay.

Fig. 10(a) plots the energy cost of EO under different power
ratios as a function of the weight factor α. We can see that
increasing the power ratio leads to higher energy consumption.
Also notice that the increase in the energy cost becomes more
pronounced in settings with higher values of α. This is because
with an increase in delay importance, EO tends to avoid
bundling and grants requests as soon as they arrive. This will
create more inter-grant idle gaps which in turn will highlight
the role played by a higher power dissipation rate.

5) Effect of Tail Times: Here we study the effect of timers
Ti and Tt on the performance of EO. Specifically, we perform
experiments under three different ratios of TTR by using a
fixed value for Ti and changing values of Tt. As in the pre-
vious subsection, we use parameter values of (PD, PC , Ti) =
(500 mW, 2000 mW, 200 ms) to better represent the impact
of timers on the performance of EO. Also, we perform these
experiments in the regime of α ≤ PD using the same sequence

1 80 160 240 320 400
0

2

4

6

8

10

12
x 10

7

Weight (α)

E
n
e
rg

y
 C

o
s
t

 

 

P
C

/P
D

 = 1

P
C

/P
D

 = 4

P
C

/P
D

 = 8

(a) Energy cost for different ratios of PC
PD

.
(PD, Ti, Tt) = (500, 200, 1000).

1 80 160 240 320 400
0

1

2

3

4

5

6

7

8

9

10
x 10

7

Weight (α)

E
n
e
rg

y
 C

o
s
t

 

 

T
t
/T

i
 = 1

T
t
/T

i
 = 4

T
t
/T

i
 = 8

(b) Energy cost for different ratios of Tt
Ti

.
(PD, PC , Ti) = (500, 2000, 200).

Fig. 10: Energy cost under different ratios of parameters.

described in the previous subsection.
Fig. 10(b) depicts the energy cost for different values of

TTR as a function of the delay weight (α). As observed,
EO’s energy cost is influenced by the values of the timers.
Specifically, increasing TTR contributes to a higher energy
consumption in all cases (α values). For example, in the case
of α = 80, raising TTR from 1 to 8 leads to 59.8% increase
in the energy cost. This is due to the fact that with larger
values of Tt, the radio stays longer in the DRX state instead
of switching to the idle state. Similar to the previous section,
in Fig. 10(b), an increase in the delay weight intensifies the
impact of long tail time, which is the result of higher number
of grants and longer inter-grant idle gaps.

B. Experiments on IoT Testbed

To assess the performance of EO in real-life conditions, we
also performed experiments on Grenoble platform of the FIT
IoT-LAB testbed [24]. IoT-LAB is a large scale open testbed
for IoT research which provides access to IoT devices with
IEEE 802.15.4-based radio transmitters. We created a topology
consisting of 30 M3 Open nodes configured with Contiki
operating system. Fig. 11 shows the topology used for this
experiment. One of the nodes (node 231 in Grenoble platform)
was configured to act as a gateway and the rest of the nodes
were configured with a program that periodically (every 60
seconds) reads the value of atmospheric pressure from node’s
sensor and sends it to the gateway over a UDP connection.
As mentioned in [25], upon experiment initialization, each
node goes through a slightly different setup phase required for
establishing the routing-tree structures in the network. This
creates a random delay before each node starts generating
traffic which is one of the reasons for desynchronization
among nodes. For a duration of 20 minutes, we captured radio
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Fig. 12: LTE experiments using IoT trace.

communications at the gateway and created a trace from packet
arrival times at the gateway.

Then for different values of α, we run EO and Default
algorithms with the collected trace as their input sequence.
For each value of α, we recorded the resulting grant times
in a separate file. We then fed those grant files to our
Android app installed on a Nexus smartphone. This app, which
is developed for the purpose of radio energy measurement,
performs message transfers at user-specified times. Each run
of the app uses a grant sequence file as input. It then repeatedly
sends message transfer requests at the times specified in the
grant file. We also blocked all background traffic from OS
services and other apps. To measure the energy consumption
of the radio interface, we used the AT&T ARO tool [26],
configured with AT&T LTE network parameters [5].

Fig. 12(a) presents the pairwise energy-delay values of EO
next to their corresponding α values. Notice that in this figure,
the energy cost is expressed in Joules. Here EO exhibits a
behavior similar to the one in simulations as it is able to
cover the broad spectrum of the energy-delay tradeoff. In this
experiment, because of the specific power model parameters of
AT&T’s LTE network, the maximum energy saving and max-
imum delay reduction are achieved at α = 9 and α = 1800,
respectively. Also, our experiment with the Default algorithm
resulted in zero delay and an energy expenditure of 1356.63
Joules. Fig. 12(b) plots the energy savings of EO compared
to the Default algorithm for different values of α. As the
relative importance of delay decreases, higher energy savings
are achieved. Across all the values of α, EO can achieve
energy savings ranging from 0% to 100%.

VI. CONCLUSION

In this work, we studied the problem of IoT energy manage-
ment in LTE networks. Based on the specific characteristics
of the LTE radio, we proposed an online bundling algorithm
that has the flexibility of achieving different energy-delay

tradeoffs. We performed competitive analysis of the algorithm
and evaluated it using an extensive set of simulations and real
experiments. Our results indicate that in realistic scenarios,
our algorithm exhibits a performance better than the one
implied by the competitive ratio. Design and analysis of a
randomized version of our algorithm are possible avenues for
future research.
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