
Bulk Transfer Scheduling with Deadline in
Best-Effort SD-WANs

Arshia Hosseini
University of Calgary

seyedarshia.hosseini@ucalgary.ca

Mahdi Dolati
University of Tehran
mahdidolati@ut.ac.ir

Majid Ghaderi
University of Calgary
mghaderi@ucalgary.ca

Abstract—Many cloud providers have multiple geo-distributed
inter-connected datacenters around the globe. These datacenters
are increasingly being inter-connected using software-defined
WANs (SD-WANs), which extend the capabilities of SDN architec-
ture to wide-area networks. While conventional MPLS tunneling
has proven to be a practical approach for inter-connecting
datacenters, such tunnels have a static nature and incur sub-
stantial maintenance costs. Given the centralized control and
programmability of SDN, it is possible to utilize multiple Internet
tunnels to provide a low-cost alternative to MPLS tunnels in
SD-WANs. However, the best-effort nature of Internet tunnels
means that they undergo capacity fluctuations throughout the
day, making it difficult to provide any service guarantees such as
completion time for inter-datacenter transmissions. In this paper,
we consider the problem of scheduling bulk transfer requests with
deadline in a best-effort SD-WAN. We propose an approximate
scheduling algorithm called xBESD which utilizes tunnel capacity
estimations to design a robust transfer schedule that maximizes
a cloud provider’s profit by transmitting bulk transfers before
their deadlines. We analyze xBESD and show that it attains
an approximation ratio that only depends on the number of
overlapping requests that have the same profit to bandwidth
ratio. Furthermore, we provide extensive simulation as well as
realistic Mininet experimental results to assess the performance
of xBESD in a variety of network scenarios. Our results show
that xBESD improves the provider’s profit by approximately 60%
on average compared to other baseline scheduling methods, in
addition to cutting down the Internet service provider costs.

I. INTRODUCTION

Cloud service providers rely on multiple geo-distributed
datacenters (DCs) to provide online services more efficiently
to users across the globe [1]–[4]. These service providers,
however, have to spend a substantial amount of money on
the inter-DC wide area network (WAN) that connects their
DCs [2]. Multi-Protocol Label Switching (MPLS) has been
the dominant transport technology over WANs. However,
Software-Defined Wide Area Networks (SD-WANs) have been
recently utilized by companies such as Google, Microsoft, and
Facebook, as an alternative to MPLS to overcome some of its
shortcomings [1], [2] such as poor efficiency and lack of a
global view. SD-WAN extends Software Defined Networking
(SDN) concepts to WANs. In SDN, the control plane is
decoupled from the data plane and moved to a logically
centralized controller, enabling a global view of the network
and consequently efficient centralized control and management
using unified and open programming APIs.

A common approach to connect geo-distributed DCs
through multiple paths (for the purpose of reliability and traffic
engineering), is leasing dedicated WAN lines that provide
reliable transmission of data between the DCs. However,
the cost of establishing and maintaining leased lines can be
quite significant [2]. A cheaper alternative is tunnel-based
forwarding over the Internet best-effort tunnels. We argue that,
by utilizing SDN and best-effort Internet tunnels, SD-WAN
can provide network performance similar to that of MPLS.
In this approach, several IP tunnels are established between
the DCs, where each might correspond to a different Internet
Service Provider (ISP). This is also referred to as multi homing

in the literature [5]. This approach, however, faces a challenge.
The capacities of Internet best-effort tunnels fluctuate over
time, making the instantaneous measurements valid only for
a limited time. Thus, when scheduling bulk transfers that
take a long time to finish, we have to take this uncertainty
into consideration, which complicates the problem. However,
with proper scheduling, it is possible to account for capacity
fluctuations in order to avoid overloading these tunnels or
losing traffic data as much as possible. In order to address
uncertainty and fluctuations, stochastic programming and ro-
bust optimization have been used in the literature [6], [7].
The former approach requires knowledge of the distribution
of pertinent random variables - link capacities here - which is
hardly practical. Robust optimization, on the other hand, relies
on the characterization of the range of fluctuations, which
can be estimated for short periods using prediction techniques
based on statistical analysis and machine learning [8], [9].

Considering different characteristics, requirements, and as-
sociated utility of traffic that goes over inter-DC WANs helps
service providers better manage limited WAN resources and
therefore maximize their revenue. Inter-DC traffic can be
classified as interactive, elastic, or background traffic [2]. In-
teractive traffic has the highest priority and must be transmitted
upon arrival. Elastic traffic is composed of bulk transfers that
usually have long deadlines. Finally, background traffic has
no deadline and can be sent in a best-effort fashion without
any service guarantees. While interactive traffic involves only
5 � 15% of WAN traffic, bulk transfers constitute a con-
siderable portion of it [2]. A cloud service provider’s profit
comes from completing user data transfer requests according
to agreed-upon SLAs. For example, in the case of bulk elastic
transfers, the SLA may require that the entire data transfer978-3-903176-32-4 c� 2021 IFIP

Internet

SDN
Control ler

IP Tunnel
.
.
.

IP Tunnel NDC A DC B

Fig. 1: Inter-Datacenter SD-WAN architecture.
be completed before a deadline. Given the limited WAN
resources, it is then crucial for service providers to efficiently
schedule bulk transfers so as to guarantee their deadlines.

Even though previous works [3], [4], [6], [10], [11] consider
demand fluctuations for high-priority traffic (i.e., interactive
traffic), none of them consider using unreliable resources
- such as the best-effort Internet tunnels - with fluctuating
capacities to reduce operational costs associated with MPLS.
In such an environment, scheduling of transfers without con-
sidering the fluctuations results in overloading of the tunnels,
congestion, and missed deadlines. Our objective is to design a
scheduling algorithm that considers estimated capacity fluctu-
ations of the tunnels and proactively schedules bulk transfers
to minimize missed deadlines and thus maximize the profit of
the cloud service provider.

In this paper, we present BESD, a Bulk Transfer Scheduling
with DEadline over Best-Effort SD-WANs , which maximizes
gained profit for bulk transfer requests over best-effort tunnels
with uncertain bandwidth. To this end, bulk transfer requests
are managed by a centralized controller that has information
about the current state of the network, as well as estimates
of its future states. Using this information, the controller
schedules bulk transfers over space (i.e., tunnels) and time,
and enforces the decisions on the network. Fig. 1 shows the
architecture of the proposed inter-DC SD-WAN.

Our main contributions can be summarized as follows:
• We formulate the scheduling of bulk transfers with deadlines

in SD-WAN over Internet tunnels with time-varying capacity
using robust optimization as a mixed-integer linear program
(MILP), which can be solved for small problem instances.

• In order to reduce the computational complexity of the prob-
lem, we design an approximate algorithm called xBESD,
which attains an approximation ratio that only depends on
the number of overlapping requests that have the same
utility-to-volume ratio.

• We present extensive comparative simulation results to study
the behavior of our algorithms in numerous scenarios and
demonstrate their gained profit and acceptance ratio.

• We also present Mininet experiments to demonstrate the
performances of xBESD in a realistic network environment.
Our results show that our robust formulation achieves up to
twice as much profit as the other baseline algorithms from
successfully transmitting bulk transfers, and reduces the cost
paid to ISPs for the networking resources.

Paper Organization. The paper is organized as follows. In
Section II, we review the related works. The system model
and formal problem definition, respectively, are presented in

Sections III and IV. In Section V, we propose our algorithm
and its theoretical analysis. The experimental results are pre-
sented in Section VI. Section VII concludes the paper.

II. RELATED WORK

In this section we review relevant works that have focused
on SD-WANs that connect geo-distributed sites.

Fixed Provisioning. This category includes works that con-
sider paths with a guaranteed fixed capacity and provision-
ing. In the majority of works, interactive traffic demand
is predictable in short durations for which a proportion of
the available bandwidth is reserved to guarantee transfers.
Microsoft and Google have proposed SWAN and B4 solutions
for their Inter-DC networks [1], [2] in order to maximize their
network’s utilization, however, they only consider deadline-
agnostic flows. Other works have been proposed that are
deadline-aware [3], [4], [6], [10], [12]–[14]. Tempus [3] brings
fairness to the flows by maximizing the minimum transfer rate
between them. However, since there is no admission control
in this approach, some admitted flows may lose their deadline.
PGA [10], on the other hand, admits flows only if it can
guarantee meeting their deadlines. All these works assume a
stable network capacity with no fluctuations. Authors in [12]
assume that there is a fixed prediction error for realtime traffic.
If the realtime traffic volume exceeds the predicted value, they
delay the bulk transfers that have farther deadlines. Amoeba
[4] handles capacity uncertainty by reserving a headroom,
which is scaled with time to handle extra uncertainty in the
distant future. None of these works can flexibly characterize
capacity uncertainty to achieve a desired trade-off between
resource utilization and deadline guarantee. Works [13]–[16]
either lack an admission control mechanism and assume that
all capacities are known in advance, or fail to account for
capacity fluctuations. Work [6] uses the Robust Optimization
technique to design a proactive method that accounts for
uncertain demand of realtime transfers, however, they assume
that path capacities are fixed and known in advance.

Dynamic Provisioning. In this group of works, although there
is a fixed maximum capacity, the provisioning is usage-based
in which the cost of transmission depends on the scheduling of
transmitted data. The majority of works focus on minimizing
transmission cost [7], [11], [17]–[20]. Postcard [17] uses the
store-and-forward mechanism in the intermediate nodes to
save traffic in peak hours to be sent in non-peak hours.
TrafficShaper [7] utilizes the q-percentile pricing scheme in a
decentralized fashion to send as much traffic as possible in the
free burstable timeslots. The Pretium framework [11] provides
a dynamic pricing scheme and focuses on social welfare as its
objective. Jetway [18] proposes a solution for video flows in
inter-DC networks based on historical information and does
not consider information about the future. It admits as many
flows as possible using current resources, then acquires more
resources to admit the remaining flows. Work [19] uses the
same approach, however, it is proposed for deadline-aware
bulk transfers. Yang et al. in [21] attempt to minimize the

bandwidth cost while guaranteeing transfer deadlines. In this
work, the available bandwidth is dynamically allocated to
the transfers and there are no limitations to the bandwidth
capacity. Work [22] proposes a dynamic traffic management
solution for inter-cloud SD-WANs in order to reduce inter-
domain transit traffic costs. Even though some of these works
consider predictable fluctuations of interactive traffic, they fail
to address capacity uncertainty in the network. The recent
survey in [23] acknowledges this gap as an open problem and
presents further discussion regarding its importance.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section, we explain our proposed model for the
investigation of deadline-aware bulk data transfer between two
DCs over a non-dedicated network (i.e., Internet). Similar to
the state-of-the-art [3], [6], [10], we divide the time into times-
lots, where resource allocation and scheduling decisions are
made at the beginning of each timeslot and remain unchanged
until the end of the timeslot. In the following, we explain the
demand and network models considered in our work.

A. Demand Model

We focus on bulk transfers that exchange large data volumes
and are subject to delivery deadlines (e.g., database backups).
Previous studies found out that these transfers constitute the
burdensome part of communication between geo-separated
DCs. We consider the batch model which is widely adopted
in the literature [3], [6], [10]. In this model, a batch of
bulk transfer requests, denoted by R, becomes available in
the origin DC. Each transfer request should be explicitly
accepted or rejected. Transfer r 2 R, upon acceptance, must
be able to transmit Br bytes of data between timeslots ⌧

1
r

and ⌧
2
r to the destination DC. Specifically, ⌧1r is the earliest

timeslot that transfer r can start its transmission and ⌧
2
r is its

delivery deadline. If the entirety of data is transferred before
the deadline, the WAN provider receives Ur units of profit,
otherwise, the profit is assumed to be zero. Furthermore, we
let Pr denote the set of tunnels that request r is allowed to
use (for security or accounting reasons, a request may not use
some of the available tunnels). Each DC, upon receiving a
batch request, should only accept a subset of requests that can
be fully served and explicitly reject the others.

B. Network Model

We assume that there is a set of distinct tunnels, denoted by
P , between two DCs. For instance, when the interconnection
network is the Internet, the tunnels work in a best-effort
fashion, meaning that the exact amount of tunnel capacities
are not known a priori. With no information about capacities,
it is impossible to guarantee the deadline of accepted requests.
Thus, we assume that the capacity of tunnel p 2 P in timeslot
t fluctuates in an interval given by,

[Cp(t) � eCp(t), Cp(t) + eCp(t)], (1)

where, Cp(t) is the expected capacity and eCp(t) = �Cp(t),
for 0 � 1, is the maximum capacity fluctuation. Previous

TABLE I: Important Mathematical Notations

Inputs Definition
R Set of all requests
P Set of all paths
Br Demand (volume) of request r
Ur Profit gained by successfully transmitting request r
Cp Average capacity of path p at timeslot t
eCp(t) Deviation of path p’s capacity from its average
� Maximum number of paths that deviate from

their maximum capacity
� Ratio of maximum capacity to average capacity
⌧1r Arrival time of request r
⌧2r Deadline of request r

Variable Definition
xr
p(t) Transmission volume of request r at timeslot t over path p

ar Admission status of request r

studies show that it is feasible to obtain these intervals from
historical records with prediction methods [9]. Since the
probability of all the tunnels hitting their lowest capacity (i.e.,
Cp(t) � eCp(t)) in the same timeslot is low, we assume that
in each timeslot at most � P = |P| tunnels will exhibit
the worst-case fluctuation. Observe that higher values of �
model an unreliable environment that requires a considerable
accommodation in term of headroom reservation and accepting
less requests to guarantee the deadlines. On the other hand,
lower values of � show a stable environment that allows us
to accept more requests and utilize the bandwidth without
missing deadlines.

IV. PROBLEM FORMULATION

In this section, we formally define the problem of admission
control and bandwidth allocation of bulk transfer requests.
Specifically, we aim at admitting a set of requests and specify
their transmission rates on the available tunnels such that their
deadlines are guaranteed, and their sum of profits is maxi-
mized. To control the complexity of the constructed model,
we use linear functions throughout the problem formulation,
which facilitates obtaining efficient solutions. Table I provides
a list of employed notations and their definitions.

A. LP Formulation

In the following, we elaborate on different parts of the for-
mulation, which consists of deriving the objective, scheduling
of bulk transfers, and enforcing capacity constraints.

System Profit. The objective is to maximize the profit that is
gained from the accepted requests:

Max.
X

r2R
ar ⇥ Ur, (2)

where, ar is a decision variable to indicate whether request r
is accepted or not.

Scheduling Bulk Transfers. We define decision variable xr
p(t)

to compute the transmission rate of request r over tunnel p in
timeslot t. The following constraints ensure that each request
only uses permitted tunnels:

xr
p(t) � 0, 8p 2 Pr, t, r (3)
xr
p(t) = 0. 8p /2 Pr, t, r (4)

Tunnel Capacity Constraints. In each timeslot t, the total
transmission rate on each tunnel p should be less than or equal
to its expected capacity,

X

r2R
xr
p(t) Cp(t). 8t, p (5)

Furthermore, the total transmission on all tunnels should be
less than or equal to the available bandwidth in each timeslot,
regardless of which tunnels experience a capacity deficit
compared to the estimated values. To this end, we use the
following constraint,

X

r2R

X

p2Pr

xr
p(t)

X

p2P
Cp(t)� max

⇡(t)✓P,
|⇡(t)|�

X

p2⇡(t)

eCp(t) 8t. (6)

In this equation, ⇡(t) is the set of tunnels that hit their lowest
capacity in timeslot t. In this notation, � = 0 is a scenario
with perfectly accurate estimations and � = P is the worst-
case scenario where all capacities deviate maximally from their
average at every time-slot. Note that we do not know the value
of ⇡(t) at the moment of admission control and bandwidth
allocation. Rather, we use the optimization process (i.e., the
max operator) to fill it with tunnels that lead to the worst
situation. Therefore, constraint (6) allows us to be prepared for
the worst case scenario that might prevail within the boundary
of our assumptions about the accuracy of estimated values.
The max operator, however, is non-linear and complicates
the optimization process. To linearize constraint (6), similar
to [24], we extract the non-linear term and write it as a separate
program. As a result, we have:

Max.
X

p2P
zp(t)⇥ eCp(t), (7)

s.t.
X

p2P
zp(t) �, (7a)

0 zp(t) 1, (7b)

where, zp(t) is a decision variable which indicates whether
tunnel p deviates maximally in timeslot t and � restricts the
number of fluctuating tunnels. Then, we calculate the dual
of linear program (7), by defining two dual variables �t and
⌫
p
t , respectively, associated with constraints (7a) and (7b). The

dual linear program is as follows:

Min. �p ⇥ �+
X

p2P
⌫tp, (8)

s.t. eCp(t) �p + ⌫tp, (8a)

0 �p, 0 ⌫tp. (8b)

Next, we can replace the non-linear term of constraint (6) with
the objective of (8) and include constraints (8a) and (8b) in
the original problem formulation. Specifically, constraint (6)
is replaced with the following constraints:

X

r2R

X

p2Pr

xr
p(t)

X

p2P
Cp(t)� �p ⇥ ��

X

p

⌫tp (9)

eCp(t) �p + ⌫tp, (10)

0 �p, 0 ⌫tp. (11)

Deadline Guarantee. For each accepted request r, the accu-
mulated data transmission between its arrival time ⌧

1
r and its

deadline ⌧
2
r should be equal to Br, the demand of request r.

This constraint is formulated as,

ar ⇥Br
X

t2[⌧1
r ,⌧2

r]

X

p2Pr

xr
p(t)⇥⇥, 8r (12)

where, ⇥ is the duration of a timeslot in seconds. We use ⇥
to compute the volume of transmitted data (e.g., in bits) from
the allocated transmission rates (e.g., in bits/second).

Objective (2) along with constraints (3)-(5) and (9)-(12)
formally define the problem of Bulk Transfer Scheduling with
DEadline over Best-Effort SD-WANs (BESD).

V. SCHEDULING ALGORITHM

Integer variables in BESD make its exact solution com-
putationally hard and time-consuming, which affects its ap-
plicability in practice. To alleviate this problem, we develop a
polynomial-time approximation solution based on the iterative

rounding technique. We call our proposed algorithm xBESD
that stands for approximate BESD. In xBESD, we relax
the problem by removing the integrality constraint of ar

variables. This transformation allows us to obtain an optimal
fractional solution in polynomial time. Then, we iteratively
select a variable and round it to either 0 or 1 until all inte-
grality constraints are satisfied. Specifically, in each iteration,
among the requests with the highest value of profit-per-volume
(defined as ⇢r = Ur

Br
), xBESD selects request r with the

highest value of Br and if the network capacity allows, rounds
ar to 1. Theorem 2 proves that this method of selecting
requests guarantees an approximation ratio that depends on the
number of overlapping requests with an equal value of profit-
per-volume. In the following, we explain xBESD in detail
with reference to its pseudo-code in Algorithm 1. xBESD
starts by constructing the BESD problem and relaxing its
integrality constraints in line 2. Then, two empty lists, A and
J , are created to store the accepted and rejected requests,
respectively. In line 5, the relaxed model fM is solved to obtain
the optimal fractional values for decision variables ear (we use
tilde to denote relaxed variables). The while loop in lines 6 to
24, then, iteratively computes a feasible 0-1 value assignment
for ear. Each iteration of the while loop starts by accepting all
requests whose ear variables are equal to one. This happens
by setting a lower-bound of 1 for their corresponding decision
variables to fix their values in the optimization model and
storing them in the list A (see lines 7 to 9). Similarly, in
lines 10 to 12, all requests with ear = 0 are rejected. Then, in
line 14, the request with the highest value of ⇢r and then
Br that is not accepted or rejected in current or previous
iterations is selected and stored in r

?. The algorithm attempts
to accept r? by setting the lower-bound of 1 for ear? and tests
the feasibility of this decision by solving the model in line 17.
If the model becomes infeasible, the lower and upper-bounds
of ear? are set to 0 and r

? is added to J . Moreover, the model
is solved one more time to release the partial resources that are
allocated to r

? and assign them to other requests. However, if

Algorithm 1: xBESD – Approximate BESD
procedure xBESD()

1 M MIP() /* create integer model */
2 fM relax(M)
3 A {} /* accepted requests */
4 J {} /* rejected requests */
5 status, {ear}, {xr

p(t)} solve(fM)
6 while True do
7 foreach r 2 R�A [J and ear = 1 do
8 ear .lower_bound 1 /* fix the decision variable to 1 */
9 A.append(r)

10 foreach r 2 R�A [J and ear = 0 do
11 ear .upper_bound 0 /* fix the decision variable to 0 */
12 J .append(r)
13 if A [J 6= R then
14 r? argmaxr2R�A[J {⇢r, Br}
15 ear? .lower_bound 1
16 status, {ear}, {xr

p(t)} solve(fM)
17 if status = INFEASIBLE then
18 ear? .lower_bound ear? .upper_bound 0
19 J .append(r?)
20 status, {ear}, {xr

p(t)} solve(fM)
21 else
22 A.append(r?)
23 else
24 return {ear}, {xr

p(t)}

the model becomes feasible, it is sufficient to only add r
? to A.

Finally, when all the requests are either accepted or rejected,
the acceptance decision variables ear and bandwidth allocation
variables x

r
p(t) are returned in line 24.

Theorem 1. xBESD runs in O(|R| ⇥ (|R||P|T)3.5).

Proof. In each iteration of the while loop at least one request
is added either to the rejected requests (in line 19) or to the
accepted requests (in line 22). Thus, the while loop terminates
after at most |R| iterations. Furthermore, in each iteration at
most 2 linear programs with O(|R| ⇥ |P| ⇥ T) decision vari-
ables are solved, where T is the length of the data transmission
period in time-slot that starts from the smallest ⌧1r and ends
with the largest ⌧2r . In the worst case, an interior point method
solves a general linear program, such as our formulation, in
O(n3.5) [25], where n is the number of decision variables,
which completes the proof.

Theorem 2. Let be the maximum number of requests that

overlap a timeslot and their ⇢r is equal. The approximation

ratio of the algorithm is at most � 1.

Proof. During the rounding procedure, all the requests with
ear = 1 are admitted and all the requests with ear = 0
are rejected. Thus, in the rest of the proof we assume that
ear 2 (0, 1). In this situation, we have to accept a subset of
requests (i.e., round respective ear to 1) by rejecting others
(i.e., round respective ear to 0). Specifically, to accept r1 with
ear1 2 (0, 1), it is necessary to reject a set of requests Rr1 , such
that their total network consumption in the [⌧1r1 , ⌧

2
r1] interval

is at least (1 � ar1)Br1 (see shaded area in Fig. 2). Note
that request rejection only affects the profit gained by the
provider (e.g., results in profit loss). If Rr1 is empty, there
is no way to accept request r1. Thus, we set ar1 = 0 and
solve the fractional solution again, which does not change the
gap between the rounded solution and the optimal. Note that
the size of Rr1 is at most �1. Notice that since we know that

Time

Br

⌧ 1
r1

⌧ 2
r1

⌧ 1
r2

⌧ 2
r2

⌧ 1
r3

⌧ 2
r3

⌧ 1
r4

⌧ 2
r4

⌧ 1
r5

⌧ 2
r5

⌧ 1
r6

⌧ 2
r6

1 2 3 4 5 6 7 8 9 10 11

A Fractional Knapsack At Time 5

Fig. 2: Effect of requests on bandwidth allocation of each other
none of the requests are complete, it is particularly possible to
take bandwidth from one request and give it to another one.
Observe from Fig. 2 that in each timeslot the relaxed problem
is similar to a fractional knapsack, where each request that
has a higher profit per volume (i.e., ⇢r = Ur/Br) gets more
bandwidth. Furthermore, for all requests that have received
bandwidth in a time-slot, but none of them are complete,
⇢r is equal. Otherwise, it is possible to take bandwidth
from requests with lower values of ⇢r and allocate it to the
requests with higher values of ⇢r and increase the objective
of the relaxed optimization program, which is impossible
because it is solved optimally. It is worth mentioning that the
optimum amount of allocated bandwidth to each request is
not known a priori and is computed by the linear program
solver based on the values of � and �, and constraint (6).
Thus, we cannot directly use fractional knapsack algorithms to
solve our problem. Nevertheless, by accepting r1, the rounded
solution gains Ur1 , while the optimal solution can gain, at
most,

P
r02Rr1

Ur0 . Thus, to characterize the performance we

have to bound the ratio
P

r02Rr1
Ur0

Ur1
. Let r

00 be the request
in Rr1 with the maximum Br00 . An upper bound for the
approximation ratio is

P
r02Rr1

⇢r0Br0

⇢rBr1

P
r02Rr1

Br00

Br1

= (� 1)
Br00

Br1

(13)

Thus, performing the rounding in the descending order of
transfer volume sizes (i.e., Br00 Br1) guarantees the in-
equality Br00

Br1
 1, which completes the proof.

VI. PERFORMANCE EVALUATION

Methodology. We present two sets of evaluation results,
namely simulations and Mininet experiments. We used the
acceptance rate of transfers and the total profit as our perfor-
mance metrics. The simulation studies focus on benchmarking
the performance of both exact and approximate algorithms
(i.e., BESD and xBESD), while Mininet experiments focus on
characterizing the performance of our approximate algorithm
(i.e., xBESD) in a realistic network environment.

Algorithms. State-of-the-art methods are reactive with respect
to capacity fluctuations, and they are orthogonal to our proac-
tive algorithm. Thus, we used two flexible baselines to show
the advantages of uncertainty-aware scheduling.
1) Average Algorithm: This algorithm, denoted by AVG,

schedules requests based on predicted average capacities
and does not consider capacity fluctuations.

2) Effective Bandwidth Algorithm: The Effective
Bandwidth algorithm, denoted by EB, calculates

(a) Profit. (b) Run-time.

Fig. 3: Benchmark of different algorithms.
an effective bandwidth for each tunnel based on
predicted average capacities as well as maximum capacity
fluctuations. This algorithm is implemented using the
algorithm in [26], with three percentiles of 90, 95, and 99
using the Gaussian approximation algorithm.

A. Simulation Experiments

Setup. We use a source/destination topology in our evalu-
ations. In different experiments, we evaluate the effect of
different values for various parameters whose default values
are as follows. Each experiment is repeated 33 times and a
95% confidence interval is used to present the results. There
are 10 tunnels that are end-to-end IP tunnels with time-varying
capacities, all of which are available to every bulk transfer
request. The average capacities are chosen uniformly in the
range [50, 200]Mbps. The start times of bulk transfer requests
are modeled as a Poisson process with an arrival rate of
� request per second. We set � to be 4. Transfer volume
Br is an exponentially distributed random variable with the
mean 10GBytes. Furthermore, the deadline ⌧

2
r is also an

exponentially distributed random variable whose mean is 10
timeslots from the starting time ⌧

1
r . We also generate a utility

for each request uniformly chosen in range [1, 10]. The overall
data transmission period is fixed to be 50 timeslots, each of
which lasts for 3 minutes. We set � to be 40%, and we let the
7 tunnels with the lowest capacities fluctuate (i.e., � = 7) at
every timeslot in order to account for the worst-case scenario.
The results of our measurements indicate that a range of 15%
to 20% variation is typical. However, capacity variations can
be as high as 50% due to many underlying factors such as
traffic shaping by ISPs, congestion control, and link outages.
This is consistent with the state-of-the-art [9], [27], [28]. All
simulations were implemented in Python 3 and conducted on a
machine with an Intel R� CoreTM i7-8700 processor at 3.20GHz
and 8GBs of RAM.

Metrics. We consider the following performance metrics:
• Acceptance Rate: The fraction of bulk transfers that are

admitted for transmission.
• Profit: The total profit from successfully transmitting trans-

fer requests before their deadlines.
• Run-time: The total time it takes to schedule all bulk

transfers in a transmission period.

Results. We first evaluate the performance of our proposed
algorithms under the general setup described at the begin-
ning of this subsection. Then, we present a series of micro-
benchmarks where each one focuses on a specific aspect of

(a) Effect on acceptance rate. (b) Effect on profit.

Fig. 4: Effect of number of tunnels.

(a) Effect on acceptance rate. (b) Effect on profit.

Fig. 5: Effect of request deadline.
the algorithms or environment to provide a broader insight
into the performance of the algorithms. Consider Fig. 3 for
a high-level comparison of all algorithms. Fig. 3(a) shows
the total profits, which is the objective of the algorithms.
Evidently, both our exact algorithm, BESD and our approx-
imate algorithm, xBESD outperform all other algorithms in
terms of profit. Furthermore, Fig. 3(b) demonstrates that while
all algorithms have a run-time between 7 to 13 seconds,
xBESD slightly outperforms other algorithms. Considering the
frequency of running our algorithm (once every 50 timeslot),
an approximate run-time of 8 seconds is reasonable and does
not impose a burden on the performance of the system. Since
the exact algorithm takes a long time to run, in the rest of the
experiments we focus on the approximate algorithm.

Effect of Number of Tunnels. Figs. 4(a) and 4(b) demonstrate
the benefits of our robust formulation for different number of
tunnels with a fixed total network capacity. We set � to be 1,
2, 3, 7, and 10 for 1, 3, 5, 10, 15 number of tunnels. For one
tunnel, our algorithm performs close to optimal since there is
only one tunnel and our algorithm is aware of its fluctuations,
while the other algorithms fail to successfully transmit any
transfers before their deadline, therefore, do not gain any
profit. By increasing the number of available tunnels, we notice
a slight increase in the acceptance rate, however, the achieved
profit of our algorithm drops. This is due to the reason that as
the number of tunnels increase, the chance of mispredicting
the fluctuating tunnels increases as well. Nonetheless, having
fewer tunnels is not always possible in practice, as high-
capacity tunnels are generally more expensive to purchase.
Note that our algorithm only has partial information about the
fluctuations and cannot fully predict them. For the baseline
algorithms, we notice an increase in the profit when the
number of tunnels goes from 1 to 2. This is anticipated because
other algorithms no longer suffer from fluctuations all the time
and can successfully transmit a number of requests. Afterward,

(a) Effect on acceptance rate. (b) Effect on profit.

Fig. 6: Effect of maximum capacity deviation from average.

(a) Effect on acceptance rate. (b) Effect on profit.

Fig. 7: Effect of number of fluctuations per time window.
they follow a trend similar to our algorithm. In summary, our
algorithm maintains a superior performance compared to other
ones, which indicates its ability to handle fluctuations better.

Effect of Request Deadline. In Fig. 5(a) we can observe
that the acceptance rate of all algorithms increases as the
duration of requests increases. For the baseline algorithms
that do not take fluctuations into consideration, this leads to
an increase in the profit. This is due to less tight deadlines
which allow more requests to complete successfully on the
tunnels that do not fluctuate. For our algorithm, however, as
the duration of requests increases, the probability of expe-
riencing a misprediction increases, which leads to a higher
risk of deadline violation and loss of profit. In other words,
our algorithm is more likely to over-allocate the fluctuating
tunnels and under-allocate the non-fluctuating ones when the
deadlines are extended. Hence, profit has a downward trend
for xBESD as shown in Fig. 5(b). Compared to AVG, which
is the superior performing baseline algorithm in this scenario,
xBESD provides a 62% improvement on average.

Effect of Capacity Fluctuations. In this scenario, we study
the effect of maximum capacity deviation from the estimated
values. We let � be 10%, 20%, 30%, 40%, and 50% to
demonstrate the effect of small and large fluctuations. In
Fig. 6(a), we observe that while the baseline algorithms do
not react to the severity of the fluctuations in the network,
our algorithm admits fewer requests in such a situation.
Furthermore, Fig. 6(b) shows that our algorithm outperforms
other algorithms in terms of profit under different fluctuations.

Effect of Number of Fluctuations Per Timeslot. In this sce-
nario, we study the effect of � (i.e., number of tunnels whose
capacities fluctuates in a timeslot) on the performance of our
algorithm. We set the number of available tunnels to 10, and
increase � from 7 to 10. The tunnels with capacity fluctuations
are chosen randomly. Fig. 7(a) shows that our algorithm admits

fewer requests when this number increases. In terms of profit,
our algorithm outperforms the other algorithms significantly,
which is shown in Fig. 7(b).

B. Mininet Experiments

We used Mininet [29] to emulate a realistic network setup.
Then, we allow the available bandwidth change according to
two different fluctuation models:
• Tunnel Deviation Model: In this model, � number of ran-

domly chosen tunnels fluctuate maximally in each timeslot.
• Time Deviation Model: In this model, each tunnel fluctu-

ates in ⌥ number of randomly chosen timeslots maximally
over the course of the transmission period, T .

Setup. To carry out Mininet experiments, we set up an
environment as follows:
• Trials: We conducted 5 trials, one for each of the algorithms

discussed earlier. Each trial took 150 minutes (i.e., 50
timeslots of 180 seconds) during which we generated traffic
and monitored the network.

• Topology: We implemented a topology that consists of
12 switches and 2 hosts. Two of the switches that act as
ingress/egress switches are each connected to a host and
10 transit switches, each of which creates a distinct tunnel
between the two hosts. Fig. 8 demonstrates the topology.
OpenVSwitch2.13 is used to emulate OpenFlow1.3

switches. Furthermore, we used the same parameters as in
the simulations for the links. The capacity of each of the
links was set using the tc command. Capacity fluctuations
were introduced to the links by generating background
traffic with transmission rates that are equal to the amount
of capacity fluctuations, and sending them over the tunnels.
Moreover, each Mininet host is an interface in a distinct
network namespace. We set one of the hosts as the sender
and the other one as the receiver. The sender both generates
the background traffic and the bulk transfers.

• Controller: We used an instance of the ONOS SDN con-
troller developer edition, built from the source code. The
controller receives from the solver the set of available
tunnels for each request at every timeslot, and uses this
information to install the relevant flows on the switches.

• Multi-tunnel Routing: The multi-tunnel routing

module is a software that we developed on top of the
ONOS controller using the ONOS Java API 1.13.1 in
order to enable our algorithm to schedule each request over
multiple tunnels in a network of OVS switches in Mininet.
The module uses the TopologyService interface to
find all the tunnels (i.e., 10 tunnels here) between the
ingress/egress switches.

• Traffic Monitoring: We implemented another custom mod-
ule on the controller that utilizes PortStatistics inter-
face in order to collect port utilization statistics periodically
throughout the course of each experiment.

• Traffic Generator: We implemented a custom traffic gen-
erator that generates UDP traffic with a unique destination
port number for each transfer request. While the sender runs

the traffic generator, a traffic server runs on the receiver in
order to receive the transmitted traffic.

• Environment: All experiments were conducted on an
Ubuntu 20.0 LTS VM on Amazon AWS with four vCPUs
and 8GBs of RAM.

Tunnel Deviation Model. During this experiment, we let 7
tunnels with the lowest capacities fluctuate in each time-slot
and their capacities fall 40% below average, while the other
3 maintain a capacity close to the average estimations (i.e.,
� = 7). We used the same parameters as the simulations to
study the following metrics:
• Link Utilization: The ratio of the total amount of traffic

over a link to the total link capacity.
• Profit: The total profit from successfully transmitting trans-

fer requests before their deadlines.
The results are presented in Figs. 9(a) and 9(b). Compared
to other algorithms, xBESD consumes up to 12% less band-
width in most timeslots. Furthermore, the other algorithms
achieve very similar link utilization. This is anticipated since
the simulation results demonstrated that they have a similar
acceptance rate (i.e., they roughly admit the same requests).
Similarly, the results of this experiment are consistent with
those of the simulations with regards to the objective, i.e.,
profit. As we can see, our algorithm achieves a higher profit
compared to other algorithms. This is due to other algorithms
over-allocating or under-allocating the links by not taking
into account the fluctuations, thus, losing the majority of the
packets. Particularly, the EB algorithm calculates a bandwidth
that is somewhere between the average and the maximally
deviated bandwidth. Consequently, it over-allocates the tunnels
in the timeslots when they are fluctuating and under-allocates
them when they are not fluctuating. Therefore, the problem
is twofold as compared to the AVG algorithm, which only
over-allocates the tunnels when their capacities fluctuate.

Moreover, the consistent lower utilization of xBESD can
be even more beneficial, especially with a burstable or usage-
based billing scheme [30], [31], which is very common for
Internet tunnels. When using leased lines that have flat-rate
pricing, a desirable objective is to achieve high utilization in
order to efficiently use the resources for which we have already
paid. However, when using Internet best-effort tunnels with
usage-based pricing, low utilization can actually lead to saving
money. In other words, we have to pay less for the traffic
that does not gain any profit. In summary, our algorithm not
only achieves more profit by successfully transmitting more
bulk transfers but also cuts costs that have to be paid for the
network services to the ISP.

Time Deviation Model. During this experiment, we let each
tunnel fluctuate maximally 70% of the times (i.e., ⌥ = 35).
Similar to the previous experiment, we study the link utiliza-
tion and profit. Figs. 10(a) and 10(b) show that our algorithm’s
performance is superior to its counterparts under a different
scenario where the capacity estimations are provided in a
different fashion. Our algorithm consumes up to 15% less

Host

OVS
Sw itch

Fig. 8: Topology of the experimental network.

0.0 0.2 0.4 0.6 0.8 1.0
Link Utilization

0.0

0.2

0.4

0.6

0.8

1.0

P{
x

<
X

}

AVG

EB95

EB90

EB99

xBESD

(a) CDF of link utilization. (b) profit of different algorithms.

Fig. 9: tunnel deviation experimental results.

0.0 0.2 0.4 0.6 0.8 1.0
Link Utilization

0.0

0.2

0.4

0.6

0.8

1.0

P{
x

<
X

}

AVG

EB99

EB95

EB90

xBESD

(a) CDF of link utilization. (b) profit of different algorithms.

Fig. 10: Time deviation experimental results.
bandwidth in most timeslots while achieving up to twice as
much profit. Not taking the fluctuations into account has two
disadvantages for the baseline algorithms. First, they admit too
many requests and over-allocate the tunnels. Second, they can
only transmit a request successfully if the tunnels on which the
transfer is transmitted do not fluctuate during the whole time
of the transmission. Consequently, considering the number of
times that the tunnels fluctuate randomly in total, the chance of
successfully transmitting a request is very low for the baseline
algorithms, as is evident from the results.

VII. CONCLUSION

In this paper, we considered the problem of scheduling
bulk transfer requests over the Internet best-effort tunnels with
uncertain capacity. We formulated the problem as a robust op-
timization problem, where the exact capacity of every tunnel is
unknown and we only have an estimated average, an estimated
maximum fluctuation, and a maximum number of tunnels
whose capacities fluctuate at the same timeslot. We showed
that the problem can be well approximated, which can be
solved in polynomial time. Using a combination of simulations
and experimental trials, we studied the performance of our
algorithm in different scenarios. Our results show that by
properly scheduling bulk transfers over multiple best-effort
tunnels, not only can we guarantee transfer deadlines, but we
can also reduce resource consumption and gain more profit
than the baseline algorithms.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong et al., “B4: Experience with a
globally-deployed software defined WAN,” in Proc. ACM SIGCOMM,
2013, p. 3–14.

[2] C.-Y. Hong, S. Kandula, R. Mahajan et al., “Achieving high utiliza-
tion with software-driven WAN,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, p. 15–26, 2013.

[3] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula, “Calendaring
for wide area networks,” in Proc. ACM SIGCOMM, 2014, pp. 515–526.

[4] H. Zhang, K. Chen, W. Bai, D. Han et al., “Guaranteeing Deadlines
for Inter-Data Center Transfers,” IEEE/ACM Trans. Netw., vol. 25, pp.
579–595, 2017.

[5] D. K. Goldenberg, L. Qiuy, H. Xie et al., “Optimizing cost and
performance for multihoming,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 4, pp. 79–92, 2004.

[6] M. Dolati, M. Ghaderi, and A. Khonsari, “Proactive inter-datacenter
multicast with realtime and bulk transfers,” in Proc. IEEE/ACM IWQoS,
2019, pp. 1–10.

[7] W. Li, X. Zhou, K. Li, H. Qi, and D. Guo, “TrafficShaper: Shaping
Inter-Datacenter Traffic to Reduce the Transmission Cost,” IEEE/ACM

Trans. Netw., vol. 26, no. 3, pp. 1193–1206, 2018.
[8] N. Krishnaswamy, M. Kiran, K. Singh, and B. Mohammed, “Data-driven

learning to predict WAN network traffic,” in Proc. ACM SNTA, 2020,
p. 11–18.

[9] S. K. Khangura, M. Fidler, and B. Rosenhahn, “Neural Networks for
Measurement-based Bandwidth Estimation,” in Proc. IFIP Networking,
2018, pp. 1–9.

[10] L. Luo, H. Yu, Z. Ye, and X. Du, “Online Deadline-Aware Bulk Transfer
Over Inter-Datacenter WANs,” in Proc. IEEE INFOCOM, 2018, pp.
630–638.

[11] V. Jalaparti, I. Bliznets, S. Kandula, B. Lucier, and I. Menache,
“Dynamic Pricing and Traffic Engineering for Timely Inter-Datacenter
Transfers,” in Proc. ACM SIGCOMM, 2016, pp. 73–86.

[12] Z. Yang, Y. Cui, X. Wang et al., “Cost-efficient scheduling of bulk
transfers in inter-datacenter wans,” IEEE/ACM Trans. Netw., vol. 27,
no. 5, pp. 1973–1986, 2019.

[13] M. Noormohammadpour, C. S. Raghavendra, S. Rao, and S. Kandula,
“DCCast: Efficient Point to Multipoint Transfers Across Datacenters,”
Open Science Framework, preprint, Jul. 2017. [Online]. Available:
https://osf.io/fg2e5

[14] M. Noormohammadpour, C. S. Raghavendra, S. Kandula, and S. Rao,
“QuickCast: Fast and Efficient Inter-Datacenter Transfers Using For-
warding Tree Cohorts,” Proc. IEEE INFOCOM, p. 9, 2018.

[15] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-datacenter
bulk transfers with netstitcher,” SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, p. 74–85, 2011.

[16] Y. Wang, S. Su, A. X. Liu, and Z. Zhang, “Multiple bulk data transfers
scheduling among datacenters,” Computer Networks, vol. 68, pp. 123–
137, 2014.

[17] Y. Feng, B. Li, and B. Li, “Postcard: Minimizing Costs on Inter-
Datacenter Traffic with Store-and-Forward,” in Proc. IEEE ICDCSW,
2012, pp. 43–50.

[18] ——, “Jetway: Minimizing costs on inter-datacenter video traffic,” in
Proc. ACM Multimedia, 2012, pp. 259–268.

[19] T. Nandagopal and K. P. Puttaswamy, “Lowering inter-datacenter band-
width costs via bulk data scheduling,” in Proc. IEEE/ACM CCGrid,
2012, pp. 244–251.

[20] W. Li, K. Li, D. Guo, G. Min, H. Qi, and J. Zhang, “Cost-minimizing
bandwidth guarantee for inter-datacenter traffic,” IEEE Trans. Cloud

Comput., 2016.
[21] Z. Yang, Y. Cui, X. Wang et al., “Cost-Efficient Scheduling of Bulk

Transfers in Inter-Datacenter WANs,” IEEE/ACM Trans. Netw., vol. 27,
no. 5, pp. 1973–1986, 2019.

[22] Z. Duliński, R. Stankiewicz, G. Rzym, and P. Wydrych, “Dynamic traffic
management for sd-wan inter-cloud communication,” IEEE J. Sel. Areas

Commun., 2020.
[23] L. Luo, H. Yu, K. Foerster, M. Noormohammadpour, and S. Schmid,

“Inter-datacenter bulk transfers: Trends and challenges,” IEEE Network,
vol. 34, no. 5, pp. 1–7, 2020.

[24] D. Bertsimas and M. Sim, “The Price of Robustness,” Operations

Research, vol. 52, no. 1, pp. 35–53, 2004.
[25] N. Karmarkar, “A new polynomial-time algorithm for linear program-

ming,” in Proc. ACM STOC, 1984, p. 302–311.
[26] F. P. Kelly, “Effective bandwidths at multi-class queues,” Queueing

Systems, vol. 9, no. 1-2, pp. 5–15, 1991.
[27] Y. Sun, X. Yin, J. Jiang et al., “CS2P: Improving video bitrate selection

and adaptation with data-driven throughput prediction,” in Proc. ACM

SIGCOMM, 2016, pp. 272–285.
[28] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic

approach for dynamic adaptive video streaming over HTTP,” in Proc.

ACM SIGCOMM, 2015, pp. 325–338.
[29] Mininet. Accessed: October 3, 2020. [Online]. Available: http:

//mininet.org/
[30] S. Shenker, D. Clark, D. Estrin, and S. Herzog, “Pricing in computer net-

works: Reshaping the research agenda,” SIGCOMM Comput. Commun.

Rev., vol. 26, no. 2, pp. 19–43, 1996.
[31] X. Dimitropoulos, P. Hurley, A. Kind, and M. P. Stoecklin, “On the

95-percentile billing method,” in Proc. Passive and Active Network

Measurement. Springer, 2009, pp. 207–216.

