
CHANGE: Delay-Aware Service Function Chain
Orchestration at the Edge

Lei Wang
University of Calgary
lei.wang2@ucalgary.ca

Mahdi Dolati
University of Tehran
mahdidolati@ut.ac.ir

Majid Ghaderi
University of Calgary
mghaderi@ucalgary.ca

Abstract—In Mobile Edge Computing (MEC), the network’s
edge is equipped with computing and storage resources in order
to reduce latency by minimizing communication with remote
clouds. However, the available computing capacity at the edge is
limited compared to that of remote clouds. A promising solution
for efficient utilization of the limited capacity at the edge is
fine-grained processing of user demands via Virtual Network
Functions (VNFs). In this approach, user service demands are ex-
pressed as Service Function Chains (SFCs), which are composed
of virtual network functions. Such service composition allows
constituent VNFs to be flexibly deployed at the edge or in the
cloud such that the service latency is minimized. The increasing
number of users, however, challenges the scalability of system-
managed SFC orchestration. To address this problem, we propose
a user-managed online SFC orchestration framework at the edge
of the network, called CHANGE, that minimizes service latency by
jointly considering the effect of user mobility, edge capacity and
service migration. We first present the theoretical foundations
of CHANGE and then evaluate its performance via model-driven
simulations and realistic Mininet-WiFi emulations. Our results
show that CHANGE can improve latency performance by nearly
20% compared to other approaches.

I. INTRODUCTION

The next generation of mobile applications such as virtual
and augmented reality [1] require extremely low latency to
operate effectively. Such low latency requirements are chal-
lenging even for modern communication technologies such
as 5G cellular communications [2]. A promising architecture
that has the potential to enable cellular networks to offer
low latency to mobile applications is Mobile Edge Computing
(MEC) [3]. MEC equips cellular base stations (i.e., the edge)
with computing and storage resources. Such an architecture
allows mobile users to work with services deployed in their
vicinity and avoid frequent communication with remote cloud
services. However, the amount of available resources at the
edge is scarce and thus it is necessary to manage them
efficiently to handle the ever-increasing user demands.

Network function virtualization (NFV) [4] has emerged
as a networking-computing paradigm that enables efficient
utilization of computing and networking resources by apply-
ing virtualization technologies to offer network services. In
this paradigm, network services are implemented as software
modules called virtual network functions (VNFs) that can be
dynamically deployed, scaled and chained together to offer a
variety of services to users. In particular, the NFV paradigm
is well suited to mobile environments where users freely roam

at the edge of the network and dynamically change their
point of attachment to the network. A critical challenge of
using NFV at the edge is the orchestration of service function
chains (SFCs). Each SFC is an ordered sequence of VNFs
that are chained together to process the user traffic in order
to implement a specific network service. SFC orchestration is
the problem of placement, routing, and migration of VNFs to
minimize the user-perceived service latency with acceptable
operational cost.

The majority of previous research on SFC orchestration has
focused on data center settings and does not consider edge
resources and user mobility (e.g., [5]). Thus, the existing works
are not directly applicable to SFC orchestration in MEC. Those
works that consider service orchestration in edge-enabled en-
vironments belong to one of the two classes: system-managed
and user-managed methods. The system-managed methods
orchestrate services from a centralized location (e.g., [6]).
These works have an inherent uncertainty about the users’
mobility and face scalability issues as the number of users
increases. In contrast, the user-managed methods enable end-
users to manage their services in a distributed fashion based
on the system feedback (e.g., end-to-end delay). Several works
use game theory to design user-managed mechanisms [7],
[8]. However, these works do not consider the migration cost
and can not adapt to system changes. Recently, a few works
have applied reinforcement learning and bandit formulation to
provide a higher level of adaptability. In the face of problem
complexity, these works have focused on the single VNF
orchestration to limit the number of so-called arms employed
in the bandit formulation (e.g., [9]). We address this challenge
by designing a user-managed SFC orchestration algorithm at
the edge that applies reinforcement learning to minimize the
user-perceived end-to-end delay while limiting the number of
arms required for modeling SFCs by utilizing the theory of
combinatorial bandits.

To this end, we consider the problem of online SFC orches-
tration by mobile users with no prior knowledge of system
side information (i.e., server capacities and link delays) in
an edge-enabled environment. We consider available resources
on the local device (i.e., hand-held equipment), at the edge,
and in a remote cloud. Moreover, we present a Mixed-Integer
Program (MIP) formulation to minimize the end-to-end service
delay composed of processing, propagation, transmission, and
service migration delays. To solve the problem, we employ



the contextual combinatorial bandit framework to design an
algorithm called CHANGE. Our proposed algorithm uses con-
textual information to incorporate available information about
the user’s demand and location into the resource allocation
mechanism. CHANGE uses the combinatorial formulation to
focus on the basic options (i.e., servers and links). Thus, the
action space (i.e., number of arms) remains polynomial in the
input size. A naive formulation would force users to consider
all possible solutions, whose number grows exponentially in
terms of the number of servers and links (e.g., all different
paths in the network). Therefore, CHANGE can efficiently
learn about the environment, i.e., fast convergence, without
incurring a high processing penalty. For orchestrating services
efficiently, CHANGE uses a fast dynamic programming-based
subroutine to make allocation and migration decisions based
on the learned information. Finally, while the majority of
existing works in this area use numerical computations and
simulations to evaluate their proposed algorithms, we use
Mininet-WiFi to implement our proposed scheme and examine
its performance and behavior in an emulated environment with
a realistic setting and various mobility models.

Our key contributions are summarized as follows:

• We formulate the problem of user-managed SFC orchestra-
tion at the edge as an integer program by considering user
demands, mobility, and end-to-end service delay.

• We present a contextual combinatorial bandit learning algo-
rithm to efficiently learn about the available resources on
local equipment, at the edge, and in a remote cloud.

• We develop a dynamic programming-based algorithm to
compute delay-optimized SFC placements.

• We evaluate the performance of our algorithm using simu-
lations and Mininet-WiFi emulations, which show that our
algorithm is able to achieve near-optimal performance.

II. RELATED WORK

In this section, we review the most relevant studies to
our work. We first investigate the works that orchestrate
SFC in edge-enabled environments. Then, we discuss the
reinforcement learning (RL) based approaches.
SFC orchestration in MEC. Previous studies on SFC or-
chestration consider different aspects such as end-to-end de-
lay [10], [11], deployment cost [11]–[14], and utility [15].
Authors in [10] provide a clustered NFV service chaining
scheme that computes the optimal number of clusters to
minimize the end-to-end delay for MEC services. Authors
in [12] formulate the SFC orchestration problem as an ILP
to minimize the resource and bandwidth consumption when
deploying VNFs, and propose a heuristic to solve it. In [11], a
parallel algorithm is designed to minimize deployment cost
and end-to-end delay. Authors in [15] consider the utility
goal and provide an approximation algorithm to maximize the
number of satisfied clients. These studies focus on system-
wide SFC orchestration, which is one shot offline optimization.
Our work, however, focuses on user-managed online SFC
orchestration that conducts optimization at run time to adapt to

Fig. 1: An example of SFC placement in MEC.

network dynamics and unknown future demands and available
resources.
RL-based approaches. Reinforcement learning is a powerful
tool that is used in previous studies to handle uncertainty
and design efficient online decision making strategies. Authors
in [16] applied the contextual combinatorial bandit theory
to design an online algorithm that allows application service
providers to learn the demand patterns and rent edge resources
to their end users. A system-managed learning mechanism
based on proximal policy optimization to control the instan-
tiation and deletion of VNFs across distributed data centers
located close to the cellular base stations is presented in [17].
Authors in [18] used Q-learning to design a system-managed
service orchestration algorithm in software-defined networks.
Authors in [19] propose an accelerated RL method that divides
the learning process into two steps to increase the scalability
in real networks. ScaRL [20] leverages reinforcement learning
to solve SFC allocation in MEC by using its trial-and-error
mechanism. To handle the state space size, deep reinforcement
learning (DRL) is employed in [21]–[24]. NFVdeep [21]
models the system as a Markov Decision Process (MDP) and
applies DRL to deploy SFCs. In [25], a quantum learning ap-
proach is proposed to handle the dynamic SFC orchestration in
edge clouds. However, several of these works do not consider
edge-enabled application scenarios and focus on traditional
core cloud data centers (e.g., [18], [19], [21]). Most of the
works that are designed for the MEC environment do not
consider VNF migration (e.g., [17]–[25]). Other works like
[24], [26] do not consider user-specific requests and mobility.

III. SYSTEM MODEL

In this section, we describe the system model. Our model
is able to represent existing edge-enabled architectures with
necessary elements for bandwidth and processing resource
allocation. We assume that each user is responsible for man-
aging and resource allocation of her service, with the help of
light-weight feedback about the system operation. We adopt
a time-slotted model and use T = {0, . . . , T} to denote the
considered time horizon. Each timeslot t ∈ T represents a
resource allocation phase with the duration of Θ seconds.



TABLE I: Related work overview

Works Models Heuristic
approaches Online Objective

[27] ILP 7 7
Minimize end-to-end latency

from all users to their respective VNFs

[28] MILP Ant Colony Optimization 7
Minimize total VNF relocation

and total response time

[11] MILP Tabu Search 7
Minimize the end-to-end communication

and the overall deployment cost

[29] WGMP Hungarian-based placement 7
Minimize the total resource consumption

and algorithm execution time

[12] ILP Priority based Greedy 7 Minimize the total resource consumption

[10] MIQCP cluster based 7 Minimize the average service time

[30] ILP 7 7 Minimize the total resource consumption

[31] 7 EdgeUser 7 Maximize tolerated latency for SFC

[32] MIQCP 7 7 Minimize resource consumption

[33] MCCF metapath composite variable 7
Minimize a sum of SFC demands and

corresponding physical resource capacity ratios

[26] 7 best-fit decreasing 3 Minimize energy consumption

[18] 7 Reinforcement Learning 3
Minimize the average service cost

for end users

[9] ILP contextual multi-armed bandit 3 Minimize the total service cost

[20] ILP Reinforcement Learning 3
minimize the transmission latency

and processing latency

[15] ILP (1− 1/e) deterministic 7 Maximize the number of satisfied clients

[34] MIQCP 7 3 Maximize the remaining data

[19] 7 Reinforcement Learning 3 throughput latency ratio

[21] MDP Deep Reinforcement Learning 3
minimize the operation cost

and maximize the total throughput

[25] ILP Quantum machine learning 3 Minimize the end-to-end delay

[22] 7 Deep Reinforcement Learning 3 Minimize the resource cost

[17] 7 Reinforcement Learning 3
Minimizing energy consumption

of allocating new VNFs

[16] 7 COERR 3 Maximize the utility of ASP

[27] 7 Deep Reinforcement Learning 3 Minimize the total end-to-end delay

[35] ILP Machine Learning 3
minimize the overall user-to-sfc

end-to-end latency

Our work ILP CHANGE 3 Minimize the average response time

Network Model. As illustrated in Fig. 1, we consider a remote
cloud C and a mobile access network consisting of a set of
base stations. Each base station is equipped with an edge
server, where the set of all edge servers is denoted by E . The
cumulative processing capacity of the cloud and each edge
server e ∈ E (in terms of the number of CPU cores) in timeslot
t is denoted, respectively, by cC(t) and ce(t).1 Edge servers
are connected to each other and the remote cloud through a
capacitated backbone network G(R,L), where R is the set of
backbone routers and L is the set of backbone links. At time t,
each link ` ∈ L is associated with the bandwidth capacity b`(t)
and propagation delay d`(t). We also refer to a link by its two
endpoints, e.g., da,b is the delay of the link between a and
b. Generally, the delay between edge servers and the cloud
is significantly higher than the delay between edge servers,
while, delays inside the cloud are negligible.
Service Model. Each user in the vicinity of the mobile access
network has a mobile device u (with the processing capacity
of cu(t)) which is always connected to the nearest base station
(denoted by β(t)). Each user in timeslot t generates traffic at
rate λ(t) Mbps and requires it to be processed by a set of pre-
determined services in strict order (a.k.a., a service chain).
Each service is a software program (e.g., a video transcoder)
that can be deployed in the cloud or on an edge server with
the means of state-of-the-art virtualization methods such as
containers [36]. We use S = (s1, . . . , sk) to denote the list

1If the cores are heterogeneous, we must normalize the numbers concerning
the weakest CPU core in the system.

TABLE II: List of main notations in the formulation

Notation Description

C Cloud
T Time frame
L Set of backbone links
R Set of backbone routers
E Set of all edge servers
N Set of all selectable nodes
S Set of all available services
αs Traffic scale factor of service s
πs Processing delay factor of service s
λ(t) Current user traffic rate
cn(t) Current CPU cores of node n
β(t) Current connected base station
d`(t) Current propagation delay on link `
b`(t) Current bandwidth capacity on link `
ρsa,b(t) Migration delay of service s from node a to node b
δ+(r), δ−(r) Incoming and outgoing links of router r
xsn(t) Current placement of service s on node n
y
si
` (t) Usage of link ` to route traffic from service si to si+1

of required services and assume that service si incurs πsi
seconds of delay to process 1 Mbps of incoming data by
using 1 CPU core. Moreover, each service can scale the user
input traffic by a factor of αsi ∈ [0,∞) before sending it
to the next service due to operations such as encoding or
decoding. Consequently, the traffic rate to the service si can
be computed by λsi(t) = λ(t)×

∏i−1
j=1 αsj . Note that service

migration is inevitable as the user moves in the environment.
Let N = E ∪ {C, u} denote the set of nodes that can host a
particular service and provide the required processing capacity.
The migration delay ρsia,b(t) (seconds) is defined as the time
that the user has to wait for if her service si is migrated from
the source node a to the destination node b (a, b ∈ N ) in
timeslot t (clearly, ρsia,a(t) = 0). To serve a user request, each
service in S should be deployed on a node with sufficient
processing capacity, and the network routing layout should be
adjusted such that user traffic goes through the services in the
specified order. To ensure that the user receives the service
result, we assume that there is a special service at the end of
the chain which is constrained to be placed on the user device.

IV. PROBLEM FORMULATION

In this section, we formally define the problem of minimum
delay SFC orchestration at the edge.
Placement. To specify the placement of a service chain, we
define binary decision variables xsn(t), where xsn(t) = 1 means
that service s is placed on node n in timeslot t. We use the
following constraint to ensure that every service in the chain
is placed on a node,∑

n∈N
xsn(t) = 1. ∀s ∈ S, t ∈ T (1)

Recent studies show that co-locating a user’s services com-
promises the system reliability [37]. Thus, we include the



following constraint to prevent co-located services,∑
s∈S

xsn(t) ≤ 1. ∀n ∈ N , t ∈ T (2)

Routing. A single path consisting of intermediate links and
routers with enough bandwidth should be provisioned for
every consecutive service si and si+1. To this end, we define
binary decision variables ysi` (t), where ysi` (t) = 1 means that
link ` is used to route the traffic between hosting nodes of
services si and si+1. Additionally, to unify the formulation and
present it in a compact manner, we assume that a base station
is a router and also assume that a hypothetical router resides on
the user device that connects the device to the corresponding
base station. We call this hypothetical router β

′
and denote the

extended set of routers by R′ = R∪{β(t), β
′}. The following

constraints specify a path,∑
`∈δ+(r)

ysi` (t)−
∑

`∈δ−(r)

ysi` (t) = 0, (3)

∑
`∈δ−(n)

ysi` (t)−
∑

`∈δ+(n)

ysi` (t) = xsin − xsi+1
n , (4)

where, δ+(·) and δ−(·) show the incoming and outgoing
links of routers and servers, respectively. Furthermore, the
following constraint is employed to ensure the capacity of links
is respected,∑

si∈S
λsi+1

(t)ysi` (t) ≤ b`(t). ∀` ∈ L, t ∈ T (5)

Delay. The end-to-end chain delay is composed of four fun-
damental components: (1) processing delay2, (2) transmission
delay, (3) propagation delay, and (4) migration delay. These
delays, respectively, are represented by Γ1(t), Γ2(t), Γ3(t),
and Γ4(t), and are computed as follows:

Γ1(t) =
∑
s∈S

∑
n∈N

xsn(t)πsλs(t)

cn(t)
, (6)

Γ2(t) =
∑
si∈S

∑
n∈N

∑
`∈δ−(n)

ysi` (t)λsi+1
(t)

b`(t)
, (7)

Γ3(t) =
∑
si∈S

∑
`∈L

y
si+1

` (t)d`(t), (8)

Γ4(t) =
∑
a,b∈N

xsa(t− 1)xsb(t)ρ
s
a,b(t). (9)

The user objective is to minimize weighted end-to-end delay,

Min.
T∑
t=0

4∑
i=1

γiΓi(t), (10)

where, γi are the scale factors that specify the relative impor-
tance of different components of the end-to-end delay.

2We compute the processing delay using a simplified version of the
Amdahl’s law.

V. PROPOSED METHOD

In this section, we present the design of CHANGE, our pro-
posed bandit-based algorithm for online SFC orchestration at
the edge. To reduce the computational complexity of the bandit
solution, we apply the contextual bandit formulation [38] by
characterizing the environment with a set of arms (i.e., place-
ment options) and specifying their relations in subsection V-A.
Then, we show how to reduce the uncertainty about the quality
of arms and use the result to efficiently compute a service
placement by dynamic programming in subsection V-B.

A. Bandit-based Environment Characterization

To learn about the environment, we consider each server
and link as an option that can be used for placing a service.
This is analogous to the concept of arm in bandit theory.
The available options in each timeslot are defined to be
Ot ⊆ L ∪ N , which is the set of all links, user’s device,
edge servers, and the remote cloud. At the beginning of each
timeslot, based on the information learned so far, the user
selects a subset of feasible options for the placement of the
service chain and minimizes the end-to-end delay. At the end
of each timeslot, the user observes the contribution of each
option to the delay objective. Specifically, for each selected
option o ∈ Ot, the user observes some value δo(t). This
value is only a noisy estimate of the true value of the option
o ∈ Ot. Our goal is to quickly and efficiently estimate the
true values of delays incurred by each option. According to
our delay formulation, each option contributes linearly to the
user’s perceived end-to-end delay. Following the framework
of contextual bandits, we assume that in each timeslot t,
the significance of each option depends only on an unknown
system parameter vector θ and a contextual feature vector
χχχo(t) that is fully known to the user. For example, the edge
server capacities are unknown parameters but the user’s current
location is a known contextual feature. We adopt the contextual
information used in [9]. Thus, the observed value δo(t) is
characterized as follows:

δo(t) = θᵀ ×χχχo(t) + εo(t), (11)

where, εo(t) is the zero-mean measurement noise. The user’s
goal is to minimize the expected cumulative delay in the period
of service placement, which is defined as,

E

[∑
t∈T

∑
o∈Ot

δo(t)

]
. (12)

In the following, we fully describe the system parameter vector
θ and contextual feature vector χχχo(t).
System Parameters. The parameter vector of the system
(which is unknown to the user) is composed of four sub-
vectors, where each sub-vector contains parameters that are
related to a specific type of delay.



1) θc is the sub-vector of parameters that determine the
processing delay based on the number of CPU cores in
each computing node:

θc = [
1

cn
, ∀n ∈ N ]. (13)

2) θb is the sub-vector of parameters that determine the
transmission delay based on the bandwidth of links:

θb = [
1

b`
, ∀` ∈ L]. (14)

3) θd is the sub-vector of parameters that determine the
propagation delay:

θd = [d`, ∀` ∈ L]. (15)

4) θρ is the sub-vector of parameters that determine the
service migration delay:

θρ = [ρsa,b, ∀a, b ∈ N , s ∈ S]. (16)

Finally, it is possible to construct the system parameter vector
θ from the concatenation of the aforementioned sub-vectors:

θ = θc ⊕ θb ⊕ θd ⊕ θρ, (17)

where, ⊕ is the concatenation operator.
Notation. In the following, we use the notation 1p to represent
an indicator function that is equal to 1 when the logical
predicate p is true and is equal to 0 otherwise.
Contextual Features. We define a contextual feature vector
to represent the known information at the user’s side for
each placement option o ∈ Ot. Each option is either a
link o = ` ∈ L or a computation node o = n ∈ N .
Since the information about links and nodes are different, we
define a feature vector for nodes and links separately. The
contextual vector, similar to the parameter vector, comprises
four sub-vectors that correspond to four types of delay. The
link contextual sub-vectors are defined as follows:

1) χχχb`(t) is the sub-vector corresponding to the transmission
delay. χχχb`(t) contains contextual information about the
user’s transmission rate.

χχχb`(t) = [1`′=`,∃n∈N :`′∈δ−(n)λs(t), ∀`′ ∈ L]. (18)

Note that if the user uses link ` to transfer the result of
computation out of the computation node n, the multipli-
cation of this sub-vector by the system parameter vector
computes the expected transmission delay.

2) When the user selects a link, its corresponding propagation
delay is incurred. Thus, the contextual propagation delay
sub-vector of link `, denoted by χχχd` (t), is defined as:

χχχd` (t) = [1`′=`, ∀`′ ∈ L], (19)

Note that when this sub-vector is multiplied by the corre-
sponding system sub-vector the propagation delay of ` is
obtained.

Alg. 1: CHANGE: Chain Orchestrator at the Edge
1 Input: N ,L,S,χχχ
2 VVV 0 ← IIId×d
3 bbb0 ← 000d
4 for t ∈ T do
5 θ̂(t)← VVV −1t−1bbbt−1
6 δ̄o(t)← θ̂(t)ᵀχχχo(t),∀o ∈ Ot
7 δ̂o(t)← δ̄o(t)−

√
χχχo(t)ᵀVVV

−1
t χχχo(t)

8 Pt ← Place(δ̂o(t),S[t])
9 VVV t ← VVV t−1 +

∑
o∈Pt χχχo(t)χχχo(t)

ᵀ

10 bbbt ← bbbt−1 +
∑
o∈Pt δo(t)χχχo(t)

11 end

3) Since links have no effect on the computational and mi-
gration delays, the corresponding sub-vectors, denoted by
χχχc`(t) and χχχρ` (t), respectively, are zero vectors:

χχχc`(t) = [0, ∀n ∈ N ], (20)

χχχρ` (t) = [0, ∀a, b ∈ N , s′ ∈ S]. (21)

Thus, the contextual feature vector of each link ` that is going
to be used to route the traffic towards service s ∈ S is obtained
from the concatenation of these sub-vectors:

χχχ`(t) = χχχc`(t)⊕χχχb`(t)⊕χχχd` (t)⊕χχχ
ρ
` (t), (22)

The contextual feature vector of each computation node is
defined based on four sub-vectors as follows:

1) The contextual sub-vector of computation features, denoted
by χχχcn(t), is defined as follows:

χχχcn(t) = [1n′=n × πsλs(t), ∀n′ ∈ N ]. (23)

Note that if we multiply this sub-vector by the sub-vector of
system parameters for computation, the computation delay
of running the service s on node n is obtained.

2) The migration contextual sub-vector contains information
about the placement of services in the previous timeslot.
We denote this sub-vector by χχχρn(t) and define it as follows:

χχχρn(t) = [1s′=s,b=nx
s
a(t− 1), ∀a, b ∈ N , s′ ∈ S]. (24)

3) Since computation nodes do not affect the transmission and
propagation delays, the corresponding contextual feature
sub-vectors, denoted by χχχbn(t) and χχχdn(t), respectively, are
zero vectors:

χχχbn(t) = [0, ∀` ∈ L], (25)

χχχdn(t) = [0, ∀` ∈ L]. (26)

Finally, the contextual feature of each node n where service
s ∈ S is placed is obtained by concatenating the mentioned
sub-vectors:

χχχn(t) = χχχcn(t)⊕χχχbn(t)⊕χχχdn(t)⊕χχχρn(t), (27)



B. Delay-aware SFC Placement

In this subsection, we present the design of CHANGE that
efficiently estimates each arm’s value, which is equivalent
to the expected delay of each placement option. CHANGE
repeatedly examines different placement strategies and adjusts
the estimates based on the noisy feedback it receives from
the system. Then, CHANGE uses the expected estimated delay
values to compute a placement with the minimum end-to-end
delay. CHANGE is outlined in Algorithm 1. CHANGE gets the
service chain, the contextual features, and available nodes and
links as the input. To estimate the expected delay for each
placement option, the algorithm has to estimate the system
parameter vector θ. We use θ̂(t) and δ̂o(t) to represent the
estimated parameter vector and estimated delay for placement
option o at timeslot t. To compute these values, we applied the
confidence bound-based algorithm in [38]. The algorithm starts
with an initial estimate for the covariance matrix and mean
vector of system parameters at lines 2 and 3. The expected
values show our resource capacity estimates and the covariance
matrix characterizes the uncertainty about the estimates. We
gradually improve our estimations and update the covariance
matrix accordingly. In each timeslot, the estimated system
parameter vector is obtained from the covariance matrix and
the mean vector in 5. The estimated system parameter vector is
used to compute the excepted delay of each placement option
in line 6. A lower bound for delay values is computed in
line 7. A placement strategy is computed based on the obtained
lower bounds in line 8. The placement strategy, based on
dynamic programming, is outlined in Algorithm 2. Finally,
the computed placement is implemented and the algorithm
observes the delay values incurred as a result. In lines 9 and
10, the covariance matrix and the mean vector are updated
accordingly.

The dynamic programming-based placement strategy in
Algorithm 2 gets the delay estimates δ̂o(t) and required service
set S[t] and calculates the optimal SFC placement by defining
the cost of an optimal solution recursively in a bottom-up
fashion. Our algorithm finds the optimal solution by starting
from placing one single service and successively moving to the
next service while taking the previous solutions into account.
There are three recurrence relations for the calculation of the
minimum delay cost D̃(si, j) to place service si on node
j as described on line 5-12, where lj,k denotes the link
between node j and k. Each delay cost D̃(si, j) depends on
D̃(si+1, j) and δ̂o(t). The algorithm then determines S[t]’s
optimal placement by extracting the node with the minimum
delay cost to place the first service and the host list associated
with it (line 18 and 19).

VI. PERFORMANCE EVALUATION

In this section, first, we use simulations to investigate
different aspects of CHANGE with an emphasis on scalability.
Then, we use Mininet-WiFi [39], which supports WiFi access
points and user mobility, to study the performance of CHANGE
under realistic environmental dynamics.

Alg. 2: Place(δ̂o(t), S[t])

1 H(i, j)← 0 ∀i ∈ S[t],∀j ∈ N
2 D̃(si, j)← 0 ∀i ∈ S[t],∀j ∈ N
3 for i ∈ S..1 do
4 foreach j ∈ N do
5 if i = 1 then
6 D̃(si, j) = δ̂lβ(t),j(t) + δ̂j(t) +

min{δ̂lj,k(t) + D̃(si+1, k)}k∈N .
7 else
8 if i = S then
9 D̃(si, j) = δ̂j(t) + δ̂lj,β(t)(t)

10 else
11 D̃(si, j) =

δ̂j(t)+min{δ̂lj,k(t)+D̃(si+1, k)}k∈N .
12 end
13 end
14 H(i, j)← H(i− 1, k).append(k)
15 end
16 end
17 Extract the node with the minimum cost to place s1:

n← argmin{D̃(s1, j)}j∈N
18 Get the corresponding host list as the solution

Pt ← H(1, n)
19 Return Pt

A. Simulation Settings

Network Settings. Similar to [9], we simulated a 2km × 2km
grid network area with 25 edge servers and a remote cloud.
The propagation delay of user-to-edge and edge-to-cloud links
are uniformly distributed in [10, 50] and [100, 200] millisec-
onds, respectively. The service migration delay is uniformly
distributed in [10, 200] milliseconds. The ratio of processing
delay factors πs to node capacities is set appropriately to
achieve a processing delay of [0.5, 1] and 0.1 milliseconds
per Kbits of data flow in edge servers and cloud, respectively.
We set these values based on [40] so that the environment
can provide the conventional end-to-end delays for existing
applications (e.g., web service 500ms, video streaming 100ms,
and online gaming 60ms).
SFC Settings. We consider SFCs of length 3 to 5 (similar
to [41]) and the traffic rate of each chain in each time slot is
randomly selected from the set {10, 2.5, 0.25} Kbps.
Mobility Model. The user selects random starting and desti-
nation points in the simulated area and walks with a constant
speed chosen randomly from [1, 1.5] meters per second. When
the user reaches the destination, a new random destination is
selected. Throughout the movement, the user is automatically
connected to the closest radio base station.
Implemented Methods. We compare CHANGE with the offline
optimum obtained by solving our optimization formulation
with Gurobi [42] and the following online methods:

• Serving on the cloud (SC): The user always uses the remote
cloud to minimize the computation delay.



1 2 3 4 5
Computing delay levels on edge

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pe

rfo
rm

an
ce

 ra
tio

CHANGE SC SE

(a) Computation delay.

1 2 3 4 5
Propagation delay levels on edge

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
rfo

rm
an

ce
 ra

tio

CHANGE SC SE

(b) Propagation delay.

Fig. 2: Impact of computation and propagation delays.

• Serving on the edge (SE): The user always places the chain
on the edge servers to avoid the latency to reach the cloud.

• ε-greedy: The user chooses a random placement with prob-
ability ε and otherwise computes the best solution based on
delays observed in previous time slots.

• Adaptive greedy: Same as ε-greedy except that the value
of ε decreases over time to avoid over-exploration.

The simulations parameters are summarized in Table III.

B. Simulation Results

In this subsection, we present our simulation results. All
numeric results are normalized with an appropriate maximum
or minimum value from each experiment.

TABLE III: Simulation parameters

Parameter Value

Number of nodes 26 (25 edge, 1 cloud)
Edge VNF proc. delay (ms/kbit) 0.5 - 1 (uniform)
Cloud VNF proc. delay (ms/kbit) 0.1
Number of links 65
Link delay (ms) on edge 10 - 50 (uniform)
Link delay (ms) edge2cloud 100 - 200 (uniform)
Migration delay (ms) 10 - 200 (uniform)
VNFs per SFC requests 3 - 5
VNF request (bits) [250, 2500, 10000]

1.0 2.0 3.0 4.0 5.0
The weight of migration delay

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
rfo

rm
an

ce
 ra

tio

CHANGE SC SE

Fig. 3: Migration cost.

0 500 1000 1500 2000 2500 3000 3500 4000
Learning slots

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
av

er
ag

e 
co

st

0

2500

5000

7500

10000

12500

15000

17500

re
gr

etCHANGE
Offline optimum
Regret

Fig. 4: Convergence analysis.

Impact of Network Delays. We considered five levels of com-
putation and transmission delays to investigate their effect on
service quality. Figs. 2(a) and 2(b) show that CHANGE achieves
about 15− 20% reduction in end-to-end delay compared with
other methods. For low delays, SE achieves a comparable
result because SFCs can be served on the edge with no
switching delay due to migration from and to the cloud. SC
becomes more competitive when the delays are higher because
the computation power of the cloud becomes more significant.
Nevertheless, CHANGE achieves a proper balance between the
resources located at the edge and the cloud.
Impact of Migration Delay. We considered five levels to
represent the relative importance of migration delay to other
types of delay. Fig. 3 shows that CHANGE outperforms SE
and SC in all scenarios. Specifically, our proposed algorithm
achieves an overall 20% improvement compared with other
methods. Overall, Figs. 2 and 3 show that CHANGE is able
to jointly consider different types of delay and optimize the
performance with regards to them.
Convergence Analysis. To investigate the convergence of
CHANGE, we trace the average SFC placement cost in each
timeslot and compare it with the offline optimum. Fig. 4
shows CHANGE converges to a fixed value close to the offline
optimum after about 500 time slots. Also, we presented
the value of time-average regret that gradually converges to
a constant value around 2000-th timeslot. The down-trend



3 4 5 6 7 8 9 10
Number of Services

0

50

100

150

200

250

Ru
nn

in
g 
Ti
m
e 
(s
)

9 nodes
16 nodes
25 nodes
36 nodes

(a) Run time analysis

2 3 4 5
Number of services on SFC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pe
rfo

rm
an

ce
 ra

tio

CHANGE ε-greedy adaptive greedy

(b) Number of services in SFC

2x2 3x3 4x4 5x5
Size of the MEC network

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an
ce
 ra

tio

CHANGE ε-greedy adaptive greedy

(c) Size of the MEC network

Fig. 5: Scalability analysis by measuring runtime and cost for different network sizes and chain lengths.

0 200 400 600 800 1000
Learning slots

0

5

10

15

20

Av
er
ag

e 
re
sp
on

se
 ti
m
e

CHANGE
ε-greedy
offline optimum

Fig. 6: Comparison of CHANGE and ε-greedy convergence in Mininet-
WiFi.

indicates that CHANGE can quickly learn the system dynamics
and make near-optimal decisions.
Scalability. To investigate the scalability, we gradually in-
creased the problem size by considering grid networks with
sizes 3 × 3 to 6 × 6 and chains with sizes 3 to 10. Fig. 5(a)
shows that the runtime is dominated by the number of available
edge servers. Considering that there are 1000 time slots in
this simulation, the average per-time-slot running time is less
than 0.3 seconds, which is acceptable for any practical usages.
Then, we compare the cost of different algorithms for different
chain and edge network sizes. Figs. 5(b) and 5(c) show that the
performance of CHANGE is much less influenced by problem
instances’ complexity compared to other algorithms, which
demonstrates that our algorithm is more scalable.

C. Mininet-WiFi Settings

Network and SFC Settings. We create an edge-enabled
network with 9 wireless base stations in a 100× 100 squared
meter area. Each base station is connected to a server that
provides computation services. The user, who is connected to
the closest base station automatically, moves with a constant
speed that is selected randomly from the interval [1, 5] meters
per second. We use the log-distance propagation loss model
for wireless connections, sockets and artificial delay to emulate
VNFs and computation delay, respectively. The user repeatedly

sends packets to the closest base station, where the packet is
then forwarded to traverse the services in the chain. The last
service in the chain sends a response back that allows the user
to collect the end-to-end-delay (by time-stamping the packets).
Mininet-WiFi is set up in a VM that runs Ubuntu 16.04.2
LTS with 2 CPU cores and 4GB of RAM. The VM runs on
a Windows 10 machine with i5-7400 and 8GB of RAM.
Mobility Model. To further investigate the effect of mobility,
we consider the following mobility models:

1) Random Walk (RW): A variant of the random waypoint
model [43], where the user moves with a constant velocity.

2) Random Direction (RD): A variant of the random way-
point model, where the user has no wait time.

3) Time Variant Community (TVC): In this model, the user
will periodically re-appear at the same location.

4) Gauss Markov (GM): In this model, the velocity of the
user is assumed to be correlated over time and modeled as
a Gauss-Markov stochastic process

5) Reference Point (RP): This model simulates a group
behavior where the user follows a group leader and are
randomly distributed around a reference point.

D. Mininet-WiFi Results

Response Time. Fig. 6 shows the convergence performance
of CHANGE in an emulated wireless network using the settings
shown in Table IV. Despite unstable averages at the beginning,
CHANGE’s average cost decreases as the learning slot increases
and converges to a stable level around 1000-th time slots,
which is similar to convergence results in the simulations.
Also, CHANGE outperforms ε-greedy over the entire course of
1000 learning slots. This is because ε-greedy does not select

TABLE IV: Mininet-WiFi setting

Parameter Value

VNFs per SFC 2-4
VNF request (byte) [10, 25, 100]
Link delay (ms) 100-500
Switch delay (ms) 400 - 2000
Proc.delay (ms/byte) 10 - 50
Maximum speed 5 m/s
Minimum speed 1 m/s



RW RD TVC GM RP
Mobility models

0

2

4

6

8

10
Av
er
ag

e 
re
sp
on

se
 ti
m
e 
(s
)

CHANGE adaptive greedy ε-greedy

(a) Mobility Models

50-100ms 150-200ms 250-300ms
Link delays

0

2

4

6

8

10

12

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
(s

)

CHANGE adaptive greedy ε-greedy

(b) Link Delay

10-50ms 50-100ms 100-150ms
Processing delays

0

5

10

15

20

25

30

Av
er
ag

e 
re
sp
on

se
 ti
m
e 
(s
)

CHANGE adaptive greedy ε-greedy

(c) Processing Delay

2 3 4
Length of SFC

0

2

4

6

8

10

12

14

Av
er
ag

e 
re
sp

on
se

 ti
m
e 
(s
)

CHANGE adaptive greedy ε-greedy

(d) SFC Length

Fig. 7: Effects of environmental parameters in Mininet-WiFi.

arms combinatorially, and therefore has a larger decision space
than CHANGE, which degrades its learning performance.
Mobility. Figure 7(a) shows the performance of CHANGE under
different mobility models in Mininet-WiFi, from which we can
see that different mobility models can result in various average
response times for both greedy and CHANGE algorithms. This
is due to multiple parameters in a mobility model such as
average velocity, wait time and mobility range. For example,
RD model results in a higher response time than RW because
the user’s velocity is continuously changing in RD, while RW
model sets the user in a constant velocity.
Different Network Delays. In this experiment, we analyze the
impact of different delays (e.g., per-packet computing delay
and transmission delay) on the average response time after 500
timeslots. The response time increases as the link delay and
processing delay increase. The results are shown in Fig. 7(b)
and Fig. 7(c), respectively. It can also be observed that the pro-
cessing delay has a greater impact on the overall response time
than transmission delay in Mininet-WiFi emulation, which is
often the case in most real-world SFC applications.
Different Length of SFC. Figure 7(d) shows the effect of SFC
length (e.g., the number of VNFs in each SFC) on average

response time. As expected, response time increases as the
length of SFC increases. Overall, Fig. 7 shows that CHANGE
outruns the two greedy approaches by about 1 to 5 seconds
under varying environmental settings.

VII. CONCLUSION

In this work, we addressed the problem of service function
chain orchestration with the objective of end-to-end delay
optimization in mobile edge computing, while considering
the service migration cost and user mobility. We formulated
the problem as an integer linear program. To handle the
uncertainties in the real environment we applied the theory
of contextual bandits. Then, we used an efficient dynamic
programming method to perform the chain orchestration task.
Through extensive simulations and emulations, we analyzed
the utility and performance of our algorithm.

In the future, we will consider multiple users and corporate
different users’ information into our service orchestrator and
evaluate our proposal in larger network size and realistic net-
work platforms. We will also consider more complex service
models other than the chain model



REFERENCES

[1] P. Ren, X. Qiao, Y. Huang et al., “Edge ar x5: An edge-assisted multi-
user collaborative framework for mobile web augmented reality in 5G
and beyond,” IEEE TCC, pp. 1–1, 2020.

[2] I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future of
wireless communications systems,” IEEE Access, vol. 8, pp. 133 995–
134 030, 2020.

[3] Y. Hu, M. Patel, D. Sabella et al., “Mobile edge computing: A key
technology towards 5G,” ETSI White Paper, 2015.

[4] M. Chiosi, D. Clarke, P. Willis et al., “An introduction, benefits, enablers,
challenges & call for action,” ETSI White Paper, 2012.

[5] M. Nguyen, M. Dolati, and M. Ghaderi, “Deadline-aware SFC orchestra-
tion under demand uncertainty,” IEEE TNSM, vol. 17, no. 4, pp. 2275–
2290, 2020.

[6] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio–temporal edge service
placement: A bandit learning approach,” IEEE Trans. Wireless Commun.,
vol. 17, no. 12, pp. 8388–8401, 2018.

[7] B. Yang, W. K. Chai, Z. Xu et al., “Cost-efficient NFV-enabled mobile
edge-cloud for low latency mobile applications,” IEEE Trans. Netw.
Service Manag., vol. 15, no. 1, pp. 475–488, 2018.

[8] D. Zhang, Y. Ma, C. Zheng et al., “Cooperative-competitive task
allocation in edge computing for delay-sensitive social sensing,” in
IEEE/ACM SEC, 2018, pp. 243–259.

[9] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An online
learning approach,” in Proc. IEEE INFOCOM, 2019, pp. 1468–1476.

[10] Y. Nam, S. Song, and J. Chung, “Clustered NFV service chaining
optimization in mobile edge clouds,” IEEE COMML, vol. 21, no. 2,
pp. 350–353, 2017.

[11] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “VNF
placement optimization at the edge and cloud,” Future Internet, vol. 11,
no. 3, 2019.

[12] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function place-
ment and resource optimization in NFV and edge computing enabled
networks,” Comput. Netw., vol. 152, pp. 12 – 24, 2019.

[13] P. Jin, X. Fei, Q. Zhang et al., “Latency-aware VNF chain deployment
with efficient resource reuse at network edge,” in Proc. IEEE INFO-
COM, 2020, pp. 267–276.

[14] V. Farhadi, F. Mehmeti, T. He et al., “Service placement and request
scheduling for data-intensive applications in edge clouds,” in IEEE
INFOCOM, 2019, pp. 1279–1287.

[15] D. Harris, J. Naor, and D. Raz, “Latency aware placement in multi-
access edge computing,” in Proc. IEEE NetSoft, 2018, pp. 132–140.

[16] L. Chen and J. Xu, “Budget-constrained edge service provisioning with
demand estimation via bandit learning,” IEEE J-SAC, vol. 37, no. 10,
pp. 2364–2376, 2019.

[17] G. L. Santos, J. Kelner, D. Sadok, and P. T. Endo, “Using reinforcement
learning to allocate and manage SFC in cellular networks,” in Proc. IEEE
CNSM, 2020, pp. 1–5.

[18] Z. Zhang, L. Ma, K. K. Leung et al., “Q-placement: Reinforcement-
learning-based service placement in software-defined networks,” in Proc.
IEEE ICDCS, 2018, pp. 1527–1532.

[19] M. Nakanoya, Y. Sato, and H. Shimonishi, “Environment-adaptive sizing
and placement of NFV service chains with accelerated reinforcement
learning,” in Proc. IFIP/IEEE IM, 2019, pp. 36–44.

[20] Q. Jin, S. Ge, J. Zeng, X. Zhou, and T. Qiu, “Scarl: Service function
chain allocation based on reinforcement learning in mobile edge com-
puting,” in Proc. CBD, 2019, pp. 327–332.

[21] Y. Xiao, Q. Zhang, F. Liu et al., “NFVdeep: Adaptive online service
function chain deployment with deep reinforcement learning,” in Proc.
IEEE/ACM IWQoS, 2019.

[22] H. Chai, J. Zhang, Z. Wang, J. Shi, and T. Huang, “A parallel placement
approach for service function chain using deep reinforcement learning,”
in Proc. IEEE ICCC, 2019, pp. 2123–2128.

[23] W. Mao, L. Wang, J. Zhao, and Y. Xu, “Online fault-tolerant VNF
chain placement: A deep reinforcement learning approach,” in Proc.
NETWORKING, 2020, pp. 163–171.

[24] Y. Liu, H. Lu, X. Li, Y. Zhang, L. Xi, and D. Zhao, “Dynamic service
function chain orchestration for nfv/mec-enabled iot networks: A deep
reinforcement learning approach,” IEEE IoT-J, 2020.

[25] Y. Liu, H. Lu, X. Li, D. Zhao, W. Wu, and G. Lu, “A novel approach
for service function chain dynamic orchestration in edge clouds,” IEEE
Wireless Commun. Lett., pp. 1–1, 2020.

[26] M. Ghobaei-Arani, A. A. Rahmanian, M. Shamsi, and A. Rasouli-
Kenari, “A learning-based approach for virtual machine placement in
cloud data centers,” Int. J. Commun. Syst., vol. 31, no. 8, p. e3537.

[27] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal VNF placement at the network edge,” in Proc. IEEE INFOCOM,
2018, pp. 693–701.

[28] P. Roy, A. Tahsin, S. Sarker, T. Adhikary, M. A. Razzaque, and M. M.
Hassan, “User mobility and quality-of-experience aware placement of
virtual network functions in 5G,” Comput. Commun., vol. 150, pp. 367
– 377, 2020.

[29] M. Wang, B. Cheng, and J. Chen, “Poster: A linear programming
approach for SFC placement in mobile edge computing,” in Proc.
MobiCom, 2019.

[30] C. Morin, G. Texier, C. Caillouet, G. Desmangles, and C.-T. Phan, “VNF
placement algorithms to address the mono- and multi-tenant issues in
edge and core networks,” in Proc. IEEE CloudNet, 2019.

[31] A. Brogi, S. Forti, and F. Paganelli, “Probabilistic qos-aware placement
of VNF chains at the edge,” CoRR, vol. abs/1906.00197, 2019.

[32] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay-
aware VNF placement and chaining based on a flexible resource
allocation approach,” in Proc. CNSM, 2017, pp. 1–7.

[33] D. Chemodanov, P. Calyam, and F. Esposito, “A near optimal reli-
able composition approach for geo-distributed latency-sensitive service
chains,” in Proc. IEEE INFOCOM, 2019, pp. 1792–1800.

[34] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. IEEE CloudNet, 2014, pp. 7–13.

[35] T. Subramanya, D. Harutyunyan, and R. Riggio, “Machine learning-
driven service function chain placement and scaling in mec-enabled 5g
networks,” Comput. Netw., vol. 166, p. 106980, 2020.

[36] R. Cziva and D. P. Pezaros, “Container network functions: Bringing
NFV to the network edge,” IEEE Commun. Mag., vol. 55, no. 6, pp.
24–31, 2017.

[37] W. Chen, K. Ye, and C. Xu, “Co-locating online workload and of-
fline workload in the cloud: An interference analysis,” in Proc. IEEE
HPCC/SmartCity/DSS, 2019, pp. 2278–2283.

[38] L. Qin, S. Chen, and X. Zhu, “Contextual combinatorial bandit and its
application on diversified online recommendation,” in Proc. SDM, 2014,
pp. 461–469.

[39] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and C. E. Rothen-
berg, “Mininet-wifi: Emulating software-defined wireless networks,” in
Proc. CNSM, 2015, pp. 384–389.

[40] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in Proc.
IEEE NFV-SDN, 2015, pp. 191–197.

[41] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource and
task allocation for energy minimization in mobile cloud systems,” IEEE
J-SAC, vol. 33, no. 12, pp. 2510–2523, 2015.

[42] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2019.
[Online]. Available: http://www.gurobi.com

[43] E. Hyytiä and J. Virtamo, “Random waypoint mobility model in cellular
networks,” Wirel. Netw., vol. 13, no. 2, p. 177–188, 2007.


