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Abstract— Protocol-independent redundant traffic elimination 
(RTE) is an "on the fly" method for detecting and removing 
redundant chunks of data from network-layer packets traversing 
a constrained link or path. Efficient algorithms are needed to 
sample data chunks and detect redundancy, so that RTE does not 
hinder network throughput. A recently proposed static algorithm 
samples chunks based on highly-redundant trigger bytes 
observed in data content. While this algorithm is fast, it requires 
pre-computed traffic information for the configurat ion of its 
static parameters, and it tends to either under-sample (reducing 
byte savings) or over-sample (increasing processing cost) on 
heterogeneous traffic. We propose a dynamic sampling algorithm 
for redundant content detection. Our algorithm is adaptive and 
self-configuring, and can precisely match the specified sampling 
rate. Furthermore, it offers byte savings comparable to the static 
algorithm, with very low additional processing overhead. 

Keywords-Algorithm, Sampling, Redundancy, Detection, 
Elimination,  Performance, Network, Traffic 

I. INTRODUCTION 

Redundancy detection is widely used in the storage, 
management, and transmission of digital content. Example 
applications include file compression [12], data de-duplication 
in storage systems [6], plagiarism detection [10], and 
redundant traffic elimination (RTE) in networks [1, 2, 11]. 

Algorithms for redundancy detection generally involve a 
sampling stage to establish suitable "fingerprints" for content, 
and a matching stage to compare new samples to those that 
have been seen previously. In some applications, an additional 
stage is used to encode the redundant content in a compact 
form, or decode it to restore the original data. 

The sampling and fingerprinting stage typically incurs the 
highest processing cost, necessitating an efficient algorithm 
[1]. This consideration is especially important for RTE, which 
needs to operate at link speed, without hindering throughput. 

The observed redundancy in Internet data traffic is typically 
15-60% [2]. This redundancy arises from the skewed 
popularity of content [3, 4], leading to repeated transfers of 
popular content to many users. Transfers of redundant content 
can waste network resources, saturate limited-bandwidth links 
(e.g., wireless or cellular access networks), and increase 
economic costs for users (e.g., usage-based charges). 

The most obvious approach to redundancy elimination is 
object-level caching, which is widely used in Web caches, 

proxies, and content delivery networks. However, these 
approaches are not as effective as protocol-independent RTE 
at the IP-layer [11]. RTE relies upon middle-boxes inserted at 
two ends of a bandwidth-constrained link. An RTE module 
runs on each of these middle-boxes and maintains a cache of 
recently transferred packets. When a new arriving packet 
carries data that matches content in the cache, the packet is 
encoded using fewer bytes and transferred across the 
bandwidth-constrained link. The RTE module at the other end 
of the link decodes the data and reconstructs the original 
packet. This technique captures redundancy inside and across 
objects, and is also protocol-independent. 

A recent proposal advocates RTE at end-systems rather than 
inside the network [1]. To support this approach, a new 
sampling algorithm, SAMPLEBYTE, was designed that can 
run on end-user devices such as mobile phones [1]. 
SAMPLEBYTE provides efficient execution, with adjustable 
processing cost. The latter feature is important on battery-
powered devices, since the sampling rate of the algorithm 
directly affects processing costs. 

While SAMPLEBYTE is simple, efficient, and performs well 
with suitable settings for chunk size and sampling period, it 
requires pre-configuration based on training data. 
Furthermore, its configuration remains static throughout 
operation. 

In this paper, we study the sensitivity, robustness, and 
performance of SAMPLEBYTE under other parameter 
configurations, specifically with larger chunk size and 
sampling period. In addition, we study if the benefits of 
SAMPLEBYTE can be achieved in a dynamic manner, 
without training. In particular, we propose a self-configuring 
dynamic algorithm, DYNABYTE, as a logical extension of 
SAMPLEBYTE, and show that it achieves comparable byte 
savings to SAMPLEBYTE. DYNABYTE improves upon the 
sampling heuristic, providing precise control of the sampling 
rate, predictable processing cost, and low overhead compared 
to the static configuration. 

The rest of this paper is organized as follows. Section II 
reviews prior related work. Section III describes the data sets 
and methodology used. Section IV provides an overview of 
SAMPLEBYTE, with detailed analysis following in Section 
V. Section VI presents the new DYNABYTE algorithm, while 
Section VII provides the evaluation results. Section VII 
concludes the paper. 



 

II. BACKGROUND AND RELATED WORK 

Content-based chunking is the most general technique for 
redundancy elimination. Objects or files are divided into 
chunks, with comparison between chunks made within or 
across files (Fig. 1). The first byte of each chunk is called a 
marker. Chunks generally do not correspond to a specific 
location inside the file. Rather, they are defined by their 
content, so they may overlap, or have some distance between 
them. Data chunks can have a fixed or varying size. Chunks 
are identified using a probabilistically unique hash value 
called a fingerprint. Fingerprints are commonly SHA-1 
checksums or Rabin fingerprints [6, 8, 11]. Rabin fingerprints 
are especially useful because they can be computed efficiently 
using a sliding window over a byte stream. Fingerprints and 
chunks are stored in a chunk cache or packet cache (in case of 
RTE) at two ends of the network link or path. Depending on 
the implementation, chunks may not need to be stored in the 
sender side cache, but fingerprints are always stored. The 
receiver side normally stores both fingerprints and chunks. 
When a redundant chunk is identified using a fingerprint on 
the sender side, instead of sending the whole chunk, only 
meta-data is sent. The encoded meta-data may consist of 
fingerprints or other information sufficient to reconstruct the 
whole chunk or a matching region using the receiver-side 
cache. In some cases, the matched region can be expanded 
beyond the identified chunk to increase the detected 
redundancy.  

In some deployments, the caches at each endpoint must be 
synchronized (i.e., have similar sizes and management 
policies, so that they contain information about the same 
chunks), while in other deployments, they do not [1, 9]. The 
original proposal envisioned caches to be placed at the ends of 
a constrained link inside the network [11]. Today, high-end 
hardware products using RTE are deployed between 
geographically distributed offices of a single enterprise [5]. 
This approach is often called WAN optimization. 

Regardless of the architecture or particular deployment, the 
core of any RTE engine is a sampling algorithm. A fraction 
1/� of all possible chunks is selected for caching, since it is 
impractical to cache all possible chunks. The parameter p 
(e.g., � = 32) is called the sampling period. The selection of 
chunks is based on some property of either the chunk or its 
fingerprint, such as its numeric value [2] or a specific byte 
pattern [11]. 

III. DATA SETS AND METHODOLOGY 

In this paper, we use full-payload network traces collected 
from the Internet access link at the University of Calgary. A 
total of 8 traces were collected, each one hour in duration, 
starting at 9 am and 9 pm each day. All traces are bi-
directional. The total IP payload transmitted is 233.6 GB. The 
details of each trace are shown in Table 1.  

The collection of traces at different hours of the day and 
different days of the week allows us to study redundancy 
characteristics as traffic varies. It also complements the 
campus data set used in previous work [2]. 

We further divide traces into incoming and outgoing traffic, 
which are studied separately. The main reason for this is that 
different levels of redundancy may exist in each direction. The 
volume of data traversing different directions may also call for 
different cache sizes, RTE algorithms, or parameters. 

We show the application profile of inbound and outbound 
traffic for the aggregate traces in Table 2. Our traces have 
similar composition as the one analyzed in [2]. 

A custom-written simulator is used for the evaluation of the 
algorithms. Simulations are performed on a Linux-based 
server with 3 GHz quad-core CPU, and 32 GB of RAM. 

Our primary metrics for evaluation are byte savings, 
processing time, and actual sampling rate. We use 64-byte 
chunks with a range of sampling periods. The byte savings 
represent net savings after including an encoding overhead 
penalty of 5 bytes per chunk. When using fixed-size chunks, 
we only need to encode the chunk location in the packet 
payload, and the offset in the cache. The location within the 
packet payload can be encoded with 11 bits, and a 512 MB 
cache can store 8 million 64-byte chunks. Therefore, we need 
a total of 11 +  23 =  34  bits of overhead per chunk. For 
larger caches, or any additional meta-data, increasing the 
penalty to 40 bits (5 bytes) per chunk still represents only 
7.8% overhead for the 64-byte chunk. Smaller chunk sizes 
would have correspondingly higher overhead, since more 
chunks could be stored in the cache. 

TABLE 1: SUMMARY OF THE DATA TRACES (GB) 

Trace Date Time In Out Total 

1 April 6, 2006 9 am 19.9 15.5 35.4 

2 April 6, 2006 9 pm 8.2 14.9 23.1 

3 April 7, 2006 9 am 23.6 16.9 40.5 

4 April 7, 2006 9 pm 18.3 12.5 30.8 

5 April 8, 2006 9 am 8.8 8.2 17.0 

6 April 8, 2006 9 pm 18.9 12.3 31.2 

7 April 9, 2006 9 am 7.7 10.6 18.3 

8 April 9, 2006 9 pm 21.9 15.4 37.3 

 

 
Fig. 1: Terminology of RTE. 
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TABLE 2: APPLICATION PROFILE FOR CAMPUS TRACES 

Direction HTTP Email P2P SSL Other Unknown 

Inbound 45% 7% 11% 9% 6% 22% 

Outbound 30% 6% 23% 7% 7% 27% 
 



 

IV. OVERVIEW OF SAMPLEBYTE  

SAMPLEBYTE combines the robustness of content-based 
sampling with the computational efficiency of fixed selection 
(Fig. 2) [1]. Content-based sampling is robust against small 
changes in object content, and fixed selection is very fast, 
since it computes fingerprints for exactly 1/� sampled chunks 
at regular fixed locations. 

SAMPLEBYTE uses a 256-entry lookup table, with one entry 
for each possible byte value. A fixed set of k byte values are 
specified as markers and they trigger chunk selection. As a 
data block is scanned byte-by-byte (line 5 in Fig. 2), a byte is 
chosen as a chunk marker if the corresponding entry in the 
lookup table is set (lines 6 and 7). A fingerprint is then 
computed using Jenkins Hash (line 8) and �/2  bytes of 
content are skipped (line 10) before the sampling process 
resumes. 

The special marker bytes are set by using a training trace with 
an algorithm that does not depend on byte frequencies [10]. 
The most prevalent redundant bytes detected in this phase 
become marker bytes for SAMPLEBYTE, which increases the 
probability of selecting the most redundant chunks. Clearly, 
higher k leads to a higher sampling rate, while lower k leads to 
fewer sampled chunks. In prior work, using � = 8  marker 
bytes is found to be effective, with negligible improvement in 
savings when more than 8 marker bytes are used. The 
identified marker bytes are 0, 32, 48, 101, 105, 115, 116, and 
255. We refer to these bytes as "generic markers". 

Since marker bytes have high redundancy, the top 8 of them 
can account for 10-12% of all traffic, such as in our traces. 
Therefore, on average 1 out of every 8-10 bytes will be 
selected as chunk marker, with high probability, which is 
much more than expected with � = 32, for example. The skip 
parameter is used to limit the worst-case sampling rate, and it 
is statically configured to �/2 in SAMPLEBYTE. This means 
that the upper bound is 2/�, twice the target rate of 1/�.  

Under-sampling can still happen, since highly redundant 
bytes, such as 0, 32 (space character), and 255, are often found 
in consecutive blocks, so many of them are skipped. 

In previous work, an additional step is used with the goal of 
increasing the detected redundancy. After a redundant chunk 
is detected for caching, the matching region is expanded byte 
by byte around the chunk to achieve the largest possible match 
[2, 11]. Expansion introduces overhead in processing cost and 
storage, but improves average detected redundancy by 13.6% 
over an exact chunk match [1].  

We implement SAMPLEBYTE with two modifications. 
Instead of Jenkins hash, we use FNV hash function [7]. Also, 
we are interested in a scenario where fixed-size chunks are 
used for redundancy elimination, instead of expanding the 
matching region around the selected chunk. These 
modifications do not affect the relative comparison of 
SAMPLEBYTE and DYNABYTE. 

The key benefits of SAMPLEBYTE are: 

• Speed and efficiency. Skipping half of a sampling period 
avoids unnecessary fingerprint computation for chunks 
that would not be selected anyway. 

• Bounded sampling rate. The skip parameter limits the 
maximum sampling rate to 2/�. Adjusting p affects the 
upper bound on sampling rate, which directly determines 
processing cost. 

• Simpler computation. In a client-server scenario, 
fingerprint computation is only required at the server. 
Clients can always determine where chunks start based on 
the generic markers. 

In prior work, SAMPLEBYTE was evaluated on a large set of 
traces from several enterprises and a university, using default 
chunk size of 32 bytes and sampling period of � = 32  [1]. Its 
performance was found to be satisfactory. We examine if 
SAMPLEBYTE performs equally well on aggregate traces 
from multiple users and under different parameters, such as a 
larger chunks size of 64 bytes, and longer sampling periods, 
such as 48, 64 or more. 

The goal of this study is to explore whether a dynamic 
algorithm can match or exceed the savings of static 
SAMPLEBYTE at acceptable cost. In particular, we explore 
the following specific questions about SAMPLEBYTE: 

• Are generic marker bytes suitable? As traffic changes, 
the k generic markers may no longer be the most frequent 
bytes, which may adversely affect savings or processing 
time. In other words, generic markers may or may not be 
representative of the upcoming traffic traversing the link. 

• How many marker bytes are appropriate? In 
SAMPLEBYTE, the value of k is fixed at 8. While 8 was 
appropriate for SAMPLEBYTE on a certain set of traces, 
we would like to ascertain if this holds for our traces. 
Since k affects sampling rate and savings, we may be 
over-sampling or under-sampling if we use the wrong 
number of marker bytes. 

• Is the actual sampling rate predictable? Due to 
probabilistic sampling based on generic markers, we 
suspect that the actual sampling rate may deviate 
substantially from the target 1/�. We would like to verify 
if this happens, and under what conditions. This is 
especially important if RTE is deployed on a battery-
powered device and it needs to control its processing 
requirements precisely. 

V. ANALYSIS OF SAMPLEBYTE 

To answer our first question, we apply SAMPLEBYTE with 8 
generic markers to our traces, and compare its performance to 
SAMPLEBYTE using traffic-specific markers ("specific 
markers"). The top 8 specific markers are obtained from a 
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//Let w = 32; p = 32; Assume len >= w; 
//TABLE[i] maps byte i to either 0 or 1 
//hash() computes a hash over a w byte window 
SAMPLEBYTE(data, len) 
for(i = 0; i < len - w; i++) 
   if (TABLE[data[i]] == 1) 
      marker = i; 
      fingerprint = hash(data + i); 
      store marker, fingerprint in cache; 
      i = i + p/2; 

Fig. 2: SAMPLEBYTE algorithm. 



 

training trace in the same manner that the generic markers 
were obtained in [1]. We use a wide range of sampling periods 
to better illustrate algorithm behaviour, while noting that the 
important range is between 32 and 64, for commonly used 
chunk sizes of 32-64 bytes in commercial RTE systems. 

Fig. 3 shows the total byte savings and overall sampling rate 
for inbound Trace 2. (Note that the x-axis is not linear). 
Specific markers clearly outperform generic markers in 
savings for all sampling periods, by 24-56% (Fig. 3a). The 
plot of actual sampling rate shows that both sets of markers 
result in similar sampling (Fig. 3b). Therefore, the higher 
savings with specific markers are due to better markers, and 
not due to a higher sampling rate. This result is a strong 
argument in favour of traffic-specific markers. 

Next we examine whether � = 8 is an appropriate choice for 
our traces. We apply SAMPLEBYTE with � = 32 to one of 
our traces, using specific markers, and vary k from 1 to 16. We 
track byte savings, actual sampling rate, and processing time 
for inbound Trace 2 from our data sets.  

Fig. 4a shows the increase in savings as k changes. One could 
reasonably conclude that there are no gains in savings beyond 
� = 8, but the same argument can be made for � = 6, where 
the savings plateau. For the generic markers, the savings also 
reach their maximum at � = 6, though the overall savings are 
lower by 38%. These results show that there is a benefit to 
finding the proper k value for each trace. 

We also notice that the actual sampling rate is well below the 
target rate for smaller k values, while the opposite happens for 
larger k values (Fig. 4b). Therefore, while the maximum 
sampling rate is bounded, it certainly does not follow the 
target rate well for any k other than 8. 

The processing time curve mimics that for sampling rate, as 
expected (Fig. 4c), and shows the consequence of using larger 
k values. A small increase in k may cause a large increase in 
processing cost, with no improvement in byte savings. For 
example, the savings obtained for � = 6  and � = 8  are the 
same, while the processing time for � = 8 is 14% higher. 

Finally, we examine the actual sampling rate across several 
sampling periods p. We fix k at 8 and repeat the experiment to 
observe the behaviour of SAMPLEBYTE with generic 
markers. The results are shown in Fig. 5. The detected 
redundancy decreases as the sampling period increases, as 
expected, due to fewer selected chunks (Fig. 5a). Once the 
encoding penalty is taken into consideration, the net byte 
savings actually do not change much. Therefore, we may be 
able to adjust the sampling period in order to control CPU 
usage, while maintaining similar byte savings. 

We further note that the actual sampling rate changes only by 
a factor of 3 when the sampling period varies by a factor of 8 
(Fig. 5b). That is, there is no direct correspondence between 
actual sampling rate and given sampling period. 
SAMPLEBYTE under-samples for smaller p, and over-
samples for larger p. Having the actual sampling rate 
correspond more closely to the given sampling period is 
desirable. 

Similarly, it would be desirable if processing time was directly 
controllable via the sampling period. If we were to sample 
with � =  32, and the system is too busy to sustain this value, 
it may request the RTE process to reduce its load by half. 
While we might intuitively expect that doubling p to 64 would 
reduce processing time by 50%, the actual reduction is only 
30% in Fig. 5c. 

When energy is scarce, we would like to make good trade-offs 
between savings versus required power. The highest savings 
of 12.3% are achieved with � =  48. If we were to accept a 
small penalty in savings of 1% (relative), we would reduce 
processing cost by 15%. For a 7% sacrifice of savings, we 

 
Fig. 4: SAMPLEBYTE behaviour as number of markers changes. 
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Fig. 3: SAMPLEBYTE with specific markers vs. generic markers. 
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could reduce processing cost by 33% with � =  96. Therefore, 
there is room for substantial savings in processing time. 

The presented results show that both savings and processing 
cost could be improved by specific markers, properly adjusted 
k, and the precise sampling rate. 

VI. DYNABYTE: DYNAMIC SAMPLEBYTE...  

Armed with a better understanding of the benefits and 
drawbacks of static SAMPLEBYTE, we can now describe the 
design of DYNABYTE. The goal with DYNABYTE is to 
preserve the benefits of SAMPLEBYTE, such as byte savings 
and adjustable processing cost, without requiring any training 
phase or pre-configuration. We also want precise control of 
the sampling rate. 

A.  Achieving the target sampling rate  

To track if the algorithm is matching the target sampling rate, 
it suffices to count the number of sampled chunks. The actual 
sampling rate is compared to the target after a suitable 
interval, e.g. S seconds, or B bytes. 

The sampling rate can be adjusted using the existing skip and k 
parameters in SAMPLEBYTE. By changing k, we alter the 
cumulative probability of the marker bytes, which in turn 
affects the probability of finding a marker within the next 
block of bytes. By adjusting skip, we can also change the 
sampling rate. For example, for � =  32, increasing skip from 
16 to 24 reduces the worst-case sampling rate from 2/�  to 
4/3�.  In DYNABYTE, we use these two parameters to 
control the actual sampling rate, while following some basic 
principles of AIMD (Additive Increase Multiplicative 
Decrease) control. 

Consider the skip parameter and its range. For ���� =  �, the 
actual sampling rate will be at most 1/p. Therefore, skip should 
never exceed p, if we are close to the target sampling rate. On 
the other hand, we should not allow ���� < �/2. The reason 
for this is that we should avoid selecting chunks that have too 
many overlapping bytes. For a chunk size of 64 bytes and 
� = 32, ���� = �/2 allows up to 48 bytes of overlap between 
consecutive chunks. If both chunks are redundant, then the 
second chunk provides only 16 bytes of detected redundancy. 
With an encoding penalty of 5 bytes, we save a total of 11 
bytes, which is only 17% of the chunk size. Needless to say, 
these savings are not worthwhile. The important feature of 
skip is that it precisely bounds the sampling rate within a 
factor of 2, when in the range [�/2, �]. This is why skip is the 
primary control parameter in DYNABYTE. 

The k parameter, on the other hand, has a larger range from 1 
to 256, and its effect on sampling rate is more difficult to 
predict. Therefore, we will use k as a secondary control 
parameter in DYNABYTE. The sampling rate adjustment will 
be made first by changing skip, and if one of the limits 
imposed on skip is reached, then k will be adjusted. The initial 
value for skip is �/2, and for k it is 8.  

B. Dynamic adjustment of marker bytes 

To ensure that markers correspond to traffic, we use a simple 
history-based ranking of bytes. For each interval i, we 
compute byte frequencies and select the top k bytes as markers 
for the following interval � +  1 . This interval may be the 
same as the rate-adjusting interval, but does not have to be. 

We track the changes in the top 8 markers for each 16 MB 
interval on our training trace, and find that changes are rare, 
with 1 or 2 bytes changing on most occasions. Therefore, 
frequent updates of chunk markers are not necessary. 

C. DYNABYTE algorithm 

The pseudo-code for DYNABYTE is shown in Fig. 6. The 
data of length length is scanned byte by byte (line 8). 
Each scanned byte is checked in the TABLE to see if it is a 
chunk marker (line 9). If so, the chunk is selected for caching, 
and its fingerprint is calculated (line 10). If the selected chunk 
is a cache hit, it is encoded (or decoded) inside the data packet 
(line 11). Otherwise, the chunk and its fingerprint are added to 
the cache (line 12). Relevant counters and byte frequencies are 
also calculated (lines 13 and 14). The chunk_counter 
variable is used to track the actual sampling rate. 

Periodically, the algorithm updates the TABLE based on byte 
frequencies (line 17). It also periodically checks the actual 
sampling rate (line 19). If the sampling rate is more than a 
threshold t off target (line 23), parameters are adjusted (lines 
25 and 28). 

The algorithm first adjusts the ���� parameter, as required. If 
���� has reached one of its limits, then the algorithm switches 
to adjusting � instead  (lines 26 and 29).  

D. Adjusting skip and k 

Both skip and k may be adjusted in small or large steps. 
Naturally, both can be adjusted by 1, but this causes a slow 
response in sampling rate. Most importantly, algorithm should 

 
Fig. 5: SAMPLEBYTE behaviour as sampling period changes. 
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respond rapidly to over-sampling in order to minimize use of 
CPU and/or battery power. 

Therefore, when correcting over-sampling, skip is adjusted to 
the maximum value p, which guarantees a sampling rate of at 
most 1/�. In this case, k is immediately reset to its default 
value of 8. Note that this approach solves the problem of over-
sampling from a large k (Fig. 4), and obviates the need to find 
the best k for a particular type of traffic.  

When under-sampling, skip is adjusted proportionally based 
on the degree of under-sampling and the available range of 
values. For example, if  � =  32 , then the minimum skip 
value is ���_���� =  16.  Therefore, the available range is 
(� − ���_����).  

If under-sampling by a factor of m, then the new skip value is 
calculated as  ���� = ���� − (� − �)(� − ���_����), where 
t is the tolerance threshold. The under-sampling factor is 
moderated by the tolerance threshold first, to avoid excessive 
adjustment if the threshold was barely exceeded. 

If skip is already at the smallest allowed value when under-
sampling by a factor of m, then k needs to be increased. Since 
the range of k is much larger, increasing k proportionally 
causes large jumps in sampling rate, which is undesirable. 
Again, we respond slower to under-sampling than to over-
sampling. Therefore, we use a slow increase in k as follows:  

� = � + (� − �)(256 − �)/8, 
where t is the tolerance threshold. The division by 8 is found 
to perform well, and causes no abrupt increases in sampling 
rate. Incrementing k by 1 or 2 would also be acceptable. 

VII. EVALUATION OF DYNABYTE 

To evaluate DYNABYTE, we conduct a direct comparison 
with SAMPLEBYTE. Both algorithms are applied to the full 
set of our traces, with different sampling periods. To provide 
the fairest possible comparison, specific markers are used for 
SAMPLEBYTE, since they yield higher savings (Fig. 4). The 
default k value for DYNABYTE is 8. 

We are further interested in per-interval statistics, which show 
in more detail the behaviour of the algorithms. We employ a 
data volume interval of 100 MB for periodic adjustment of 
sampling rate, if necessary. 

A. DYNABYTE vs. SAMPLEBYTE: Performance results 

Fig. 7 shows per-interval savings, sampling rate, and 
processing time for both SAMPLEBYTE and DYNABYTE, 
as well as skip and k adjustment for DYNABYTE. The chunk 
size is 64 bytes, with � = 32, and a cache size of 500 MB. 
The first 4 GB of Trace 1 are shown as an example. There are 
several distinct parts of this trace. The first part is about 200 
MB of low-redundancy traffic (~10%). Then high-redundancy 
traffic follows (~60%) until the 1,500 MB mark, before 
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// Assume length >= chunk_size; 
// TABLE[i] maps byte i to either 0 or 1 
// hash() computes FNV hash over a w-byte chunk 
chunk_size = 32; p = 32; chunk_counter = 0; 
target_r = 1/p; t = 0.05; 
skip = p/2; k = 8; 
DYNABYTE(data, length) { 
  for (i = 0; i < length - w; i++) 
    if (TABLE[data[i]] == 1) 
      fingerprint = hash(data + i); 
      if (cache_hit(fingerprint)) encode data 
      else add fingerprint and chunk to cache; 
      chunk_counter++; 
      update_byte_frequencies(chunk); 
      i = i + skip; 
      if (at_table_adjustment_period(i)) 
         adjust_table(); 
      if (at_rate_adjustment_period(i)) 
         adjust_rate(chunk_counter, i) 
} 
adjust_rate(counter, processed_data) { 
  actual_r = counter / processed_data; 
  if (actual_r and target_r within t) return; 
  if (actual_r > target_rate)  
     skip = p;  
     k = 8; 
  else    
     if (skip > 1) decrease skip 
     else if (k < 256) increase k; 
} 

Fig. 6: DYNABYTE algorithm. 

Fig. 7: Behaviour of SAMPLEBYTE and DYNABYTE per interval. 
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returning to low redundancy (~12%) until the 3,000 MB mark. 
The last part has moderate redundancy of 17 - 20%. 

DYNABYTE starts with randomly chosen markers, which 
cause under-sampling during the first 100 MB of data (Fig. 
7b). The markers are updated based on the first interval, and k 
is increased as well (Fig. 7d). The increase in k and a change 
to specific markers leads to some over-sampling, which is 
adjusted at the 200 MB checkpoint by increasing skip to p 
(Fig. 7d), and resetting k to its default value. DYNABYTE 
then proceeds with sampling rate adjustment via the skip 
parameter, and keeps the sampling rate close to the target level 
(Fig. 7b). 

While DYNABYTE was adaptively adjusting parameters 
based on the traffic, SAMPLEBYTE began to over-sample 
based on its static parameters. This led to higher processing 
cost (Fig. 7c) and lower savings for SAMPLEBYTE (Fig. 7a), 
due to overlapping chunks and cache churn. 

Therefore, our DYNABYTE algorithm often matches, and 
sometimes exceeds, the RTE savings achieved by 
SAMPLEBYTE, without requiring any training stage or pre-
configured parameters (Fig. 7a). It stays within the target 
sampling rate, and controls processing time, unlike 
SAMPLEBYTE. When both algorithms sample at 
approximately same rate, DYNABYTE has slightly higher 
processing time. However, this extra processing time is small 
(6-8%), and it does not compromise byte savings. 

A counter-intuitive result is that the processing time for both 
algorithms sometimes drops when the sampling rate increases. 
This happens when redundancy is very high, because cache 
hits dominate. Cache hits require minimal processing 
compared to new chunks, which cause changes to the cache 
and indexing. 

The additional benefit of DYNABYTE is illustrated in Fig. 8, 
which shows the time series of the first 10 minutes of inbound 
Trace 1 with several distinct parts in respect to the data rate 
observed over 1-second intervals. The vertical lines 
correspond to the values on the x-axis of Fig. 7. The high-
redundancy traffic, where DYNABYTE records higher 
savings than SAMPLEBYTE (Fig. 7a), is the traffic with the 
highest load on the network link (Fig. 8). Therefore, 
DYNABYTE helps when it is needed the most. 

When comparing the overall savings and processing cost over 
several different settings for the sampling period (Fig. 9), we 
note that DYNABYTE achieves higher savings than 

SAMPLEBYTE with generic markers (Fig. 9a) for all but the 
largest sampling period considered (� = 128). DYNABYTE 
has comparable savings to SAMPLEBYTE using specific 
markers for sampling periods up to 48, and slightly lower for 
� =  64. The reduced savings for larger sampling periods is 
simply due to DYNABYTE adhering to the target sampling 
rate, which SAMPLEBYTE does not. 

The processing time of DYNABYTE is generally lower than 
that of SAMPLEBYTE, except for the smallest sampling 
periods of 16 and 24 (Fig. 9c). However, these small sampling 
periods are rarely used in practice. Nonetheless, the changes in 
processing time for DYNABYTE closely follow the changes 
in sampling period by adhering to the target sampling rate 
(Fig. 9b). For example, increasing p from 32 to 64 reduces 
processing time to 50%, as desired, compared to a 30% 
reduction for SAMPLEBYTE. 

Finally, reaction of SAMPLEBYTE and DYNABYTE to 
changes in sampling period during operation is compared in 
Fig. 10. DYNABYTE starts with random markers. The initial 
sampling period is 32. Two changes are introduced, at 1,000 
MB and 2,000 MB, where p changes to 64 and 48, 
respectively. DYNABYTE precisely adapts to the target 
sampling rate within a few intervals (Fig. 10b) and improves 
savings (Fig. 10a), while SAMPLEBYTE shows very little 
adjustment. 

The behaviour of both algorithm is consistent across all traces, 
with higher savings achieved for outbound traffic. 

B. Performance considerations 

To keep DYNABYTE performing at speeds comparable to 
SAMPLEBYTE, we cannot afford to do too much extra 

 
Fig. 9: Comparison of SAMPLEBYTE and DYNABYTE. 
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Fig. 8: Data rate time series of Trace 1. 
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processing. The following strategies are employed to reduce 
the processing cost of DYNABYTE: 

• Byte frequencies used for setting the markers are counted 
only for non-overlapping chunks. This retains a better 
representative sample of traffic compared to using only 
redundant chunks, while keeping overhead low. 

• Markers are updated when adjusting k, or at most every 
20 updates of  skip, whichever comes first. We observe 
that between 1 and 3 markers change between consecutive 
adjustments with this interval. 

C.  Choosing parameter settings 

DYNABYTE does not optimize savings explicitly, since this 
is difficult to estimate in advance. Therefore, it depends on 
reasonable choices of global parameters, like SAMPLEBYTE. 
Commonly, chunk sizes of 32-64 bytes were used in literature 
for protocol-independent RTE. When using chunk expansion, 
a chunk size of 32 bytes is a very good choice. When using 
fixed-size chunks, as in our case, a 64-byte chunk is a much 
better choice, because of the higher savings. 

A sampling period of 32 is commonly used in the literature, 
and we also find it appropriate. However, it is important to 
understand the relationship between chunk size and sampling 
period. If the sampling period is equal to the chunk size, some 
consecutive chunks will overlap, and some will have a gap 
between them. With ���� =  �/2, and p equal to the chunk 
size, the maximum overlap is exactly half of the chunk size. 
On the other hand, the maximum gap will be one half of the 
chunk size, with high probability. 

It is reasonable to allow overlaps of up to half a chunk simply 
to bound the sampling rate. Another reason for allowing at 
most half-chunk overlap is to avoid a case where two 
consecutive chunks are both cache hits, and the second one 
produces very little savings. Furthermore, we should avoid 
extreme cases where three or more consecutive chunks overlap 
to such a degree that only the first and last account for all of 
the savings from the overlapping group. 

When DYNABYTE is used, with or without expansion, the 
best trade-off between savings and processing time is when 
the sampling period is approximately equal to the chunk size. 

D.  Applicability of DYNABYTE 

DYNABYTE can be used for both RTE, as well as similarity 
detection outside networking or communication domain. A 
strategy to never correct under-sampling can be used for RTE, 
since it occurs mostly for smaller sampling periods, and does 
not hurt savings. On the other hand, we may wish to correct 
under-sampling if redundancy detection is the main objective, 
such as in applications that detect similarity, e.g. plagiarism 
detection. Correct sampling rate will then increase the level of 
detected redundancy, and there is no concern with encoding 
penalty. In any domain, even if sampling rate correction is 
expected to be rare, specific markers should be used simply 
because they improve detected redundancy. 

VIII. SUMMARY AND CONCLUSIONS 

In this paper, we described DYNABYTE as a dynamic 
sampling algorithm for redundancy detection in network 
traffic or other digital content. DYNABYTE improves upon 
SAMPLEBYTE by providing dynamic self-configuration and 
adaptation. Our algorithm provides comparable savings to 
SAMPLEBYTE, with little or no additional overhead. 
Furthermore, DYNABYTE closely matches the desired 
sampling rate, and precisely controls its processing cost. 
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Fig. 10: Reaction of two algorithms to change in sampling period. 
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