
DYNABYTE: A Dynamic Sampling Algorithm
for Redundant Content Detection

Emir Halepovic, Carey Williamson and Majid Ghaderi
Department of Computer Science

University of Calgary
2500 University Drive NW, Calgary, AB, Canada T2N 1N4

{emirh, carey, mghaderi}@cpsc.ucalgary.ca

Abstract— Protocol-independent redundant traffic elimination
(RTE) is an "on the fly" method for detecting and removing
redundant chunks of data from network-layer packets traversing
a constrained link or path. Efficient algorithms are needed to
sample data chunks and detect redundancy, so that RTE does not
hinder network throughput. A recently proposed static algorithm
samples chunks based on highly-redundant trigger bytes
observed in data content. While this algorithm is fast, it requires
pre-computed traffic information for the configurat ion of its
static parameters, and it tends to either under-sample (reducing
byte savings) or over-sample (increasing processing cost) on
heterogeneous traffic. We propose a dynamic sampling algorithm
for redundant content detection. Our algorithm is adaptive and
self-configuring, and can precisely match the specified sampling
rate. Furthermore, it offers byte savings comparable to the static
algorithm, with very low additional processing overhead.

Keywords-Algorithm, Sampling, Redundancy, Detection,
Elimination, Performance, Network, Traffic

I. INTRODUCTION

Redundancy detection is widely used in the storage,
management, and transmission of digital content. Example
applications include file compression [12], data de-duplication
in storage systems [6], plagiarism detection [10], and
redundant traffic elimination (RTE) in networks [1, 2, 11].

Algorithms for redundancy detection generally involve a
sampling stage to establish suitable "fingerprints" for content,
and a matching stage to compare new samples to those that
have been seen previously. In some applications, an additional
stage is used to encode the redundant content in a compact
form, or decode it to restore the original data.

The sampling and fingerprinting stage typically incurs the
highest processing cost, necessitating an efficient algorithm
[1]. This consideration is especially important for RTE, which
needs to operate at link speed, without hindering throughput.

The observed redundancy in Internet data traffic is typically
15-60% [2]. This redundancy arises from the skewed
popularity of content [3, 4], leading to repeated transfers of
popular content to many users. Transfers of redundant content
can waste network resources, saturate limited-bandwidth links
(e.g., wireless or cellular access networks), and increase
economic costs for users (e.g., usage-based charges).

The most obvious approach to redundancy elimination is
object-level caching, which is widely used in Web caches,

proxies, and content delivery networks. However, these
approaches are not as effective as protocol-independent RTE
at the IP-layer [11]. RTE relies upon middle-boxes inserted at
two ends of a bandwidth-constrained link. An RTE module
runs on each of these middle-boxes and maintains a cache of
recently transferred packets. When a new arriving packet
carries data that matches content in the cache, the packet is
encoded using fewer bytes and transferred across the
bandwidth-constrained link. The RTE module at the other end
of the link decodes the data and reconstructs the original
packet. This technique captures redundancy inside and across
objects, and is also protocol-independent.

A recent proposal advocates RTE at end-systems rather than
inside the network [1]. To support this approach, a new
sampling algorithm, SAMPLEBYTE, was designed that can
run on end-user devices such as mobile phones [1].
SAMPLEBYTE provides efficient execution, with adjustable
processing cost. The latter feature is important on battery-
powered devices, since the sampling rate of the algorithm
directly affects processing costs.

While SAMPLEBYTE is simple, efficient, and performs well
with suitable settings for chunk size and sampling period, it
requires pre-configuration based on training data.
Furthermore, its configuration remains static throughout
operation.

In this paper, we study the sensitivity, robustness, and
performance of SAMPLEBYTE under other parameter
configurations, specifically with larger chunk size and
sampling period. In addition, we study if the benefits of
SAMPLEBYTE can be achieved in a dynamic manner,
without training. In particular, we propose a self-configuring
dynamic algorithm, DYNABYTE, as a logical extension of
SAMPLEBYTE, and show that it achieves comparable byte
savings to SAMPLEBYTE. DYNABYTE improves upon the
sampling heuristic, providing precise control of the sampling
rate, predictable processing cost, and low overhead compared
to the static configuration.

The rest of this paper is organized as follows. Section II
reviews prior related work. Section III describes the data sets
and methodology used. Section IV provides an overview of
SAMPLEBYTE, with detailed analysis following in Section
V. Section VI presents the new DYNABYTE algorithm, while
Section VII provides the evaluation results. Section VII
concludes the paper.

II. BACKGROUND AND RELATED WORK

Content-based chunking is the most general technique for
redundancy elimination. Objects or files are divided into
chunks, with comparison between chunks made within or
across files (Fig. 1). The first byte of each chunk is called a
marker. Chunks generally do not correspond to a specific
location inside the file. Rather, they are defined by their
content, so they may overlap, or have some distance between
them. Data chunks can have a fixed or varying size. Chunks
are identified using a probabilistically unique hash value
called a fingerprint. Fingerprints are commonly SHA-1
checksums or Rabin fingerprints [6, 8, 11]. Rabin fingerprints
are especially useful because they can be computed efficiently
using a sliding window over a byte stream. Fingerprints and
chunks are stored in a chunk cache or packet cache (in case of
RTE) at two ends of the network link or path. Depending on
the implementation, chunks may not need to be stored in the
sender side cache, but fingerprints are always stored. The
receiver side normally stores both fingerprints and chunks.
When a redundant chunk is identified using a fingerprint on
the sender side, instead of sending the whole chunk, only
meta-data is sent. The encoded meta-data may consist of
fingerprints or other information sufficient to reconstruct the
whole chunk or a matching region using the receiver-side
cache. In some cases, the matched region can be expanded
beyond the identified chunk to increase the detected
redundancy.

In some deployments, the caches at each endpoint must be
synchronized (i.e., have similar sizes and management
policies, so that they contain information about the same
chunks), while in other deployments, they do not [1, 9]. The
original proposal envisioned caches to be placed at the ends of
a constrained link inside the network [11]. Today, high-end
hardware products using RTE are deployed between
geographically distributed offices of a single enterprise [5].
This approach is often called WAN optimization.

Regardless of the architecture or particular deployment, the
core of any RTE engine is a sampling algorithm. A fraction
1/� of all possible chunks is selected for caching, since it is
impractical to cache all possible chunks. The parameter p
(e.g., � = 32) is called the sampling period. The selection of
chunks is based on some property of either the chunk or its
fingerprint, such as its numeric value [2] or a specific byte
pattern [11].

III. DATA SETS AND METHODOLOGY

In this paper, we use full-payload network traces collected
from the Internet access link at the University of Calgary. A
total of 8 traces were collected, each one hour in duration,
starting at 9 am and 9 pm each day. All traces are bi-
directional. The total IP payload transmitted is 233.6 GB. The
details of each trace are shown in Table 1.

The collection of traces at different hours of the day and
different days of the week allows us to study redundancy
characteristics as traffic varies. It also complements the
campus data set used in previous work [2].

We further divide traces into incoming and outgoing traffic,
which are studied separately. The main reason for this is that
different levels of redundancy may exist in each direction. The
volume of data traversing different directions may also call for
different cache sizes, RTE algorithms, or parameters.

We show the application profile of inbound and outbound
traffic for the aggregate traces in Table 2. Our traces have
similar composition as the one analyzed in [2].

A custom-written simulator is used for the evaluation of the
algorithms. Simulations are performed on a Linux-based
server with 3 GHz quad-core CPU, and 32 GB of RAM.

Our primary metrics for evaluation are byte savings,
processing time, and actual sampling rate. We use 64-byte
chunks with a range of sampling periods. The byte savings
represent net savings after including an encoding overhead
penalty of 5 bytes per chunk. When using fixed-size chunks,
we only need to encode the chunk location in the packet
payload, and the offset in the cache. The location within the
packet payload can be encoded with 11 bits, and a 512 MB
cache can store 8 million 64-byte chunks. Therefore, we need
a total of 11 + 23 = 34 bits of overhead per chunk. For
larger caches, or any additional meta-data, increasing the
penalty to 40 bits (5 bytes) per chunk still represents only
7.8% overhead for the 64-byte chunk. Smaller chunk sizes
would have correspondingly higher overhead, since more
chunks could be stored in the cache.

TABLE 1: SUMMARY OF THE DATA TRACES (GB)

Trace Date Time In Out Total

1 April 6, 2006 9 am 19.9 15.5 35.4

2 April 6, 2006 9 pm 8.2 14.9 23.1

3 April 7, 2006 9 am 23.6 16.9 40.5

4 April 7, 2006 9 pm 18.3 12.5 30.8

5 April 8, 2006 9 am 8.8 8.2 17.0

6 April 8, 2006 9 pm 18.9 12.3 31.2

7 April 9, 2006 9 am 7.7 10.6 18.3

8 April 9, 2006 9 pm 21.9 15.4 37.3

Fig. 1: Terminology of RTE.

Chunk A Chunk B Chunk C

Distance Overlap

Chunk cache

Chunk A

Chunk BFP B

FP A

FP B = fingerprint (Chunk B)

Marker

Payload

Skip

TABLE 2: APPLICATION PROFILE FOR CAMPUS TRACES

Direction HTTP Email P2P SSL Other Unknown

Inbound 45% 7% 11% 9% 6% 22%

Outbound 30% 6% 23% 7% 7% 27%

IV. OVERVIEW OF SAMPLEBYTE

SAMPLEBYTE combines the robustness of content-based
sampling with the computational efficiency of fixed selection
(Fig. 2) [1]. Content-based sampling is robust against small
changes in object content, and fixed selection is very fast,
since it computes fingerprints for exactly 1/� sampled chunks
at regular fixed locations.

SAMPLEBYTE uses a 256-entry lookup table, with one entry
for each possible byte value. A fixed set of k byte values are
specified as markers and they trigger chunk selection. As a
data block is scanned byte-by-byte (line 5 in Fig. 2), a byte is
chosen as a chunk marker if the corresponding entry in the
lookup table is set (lines 6 and 7). A fingerprint is then
computed using Jenkins Hash (line 8) and �/2 bytes of
content are skipped (line 10) before the sampling process
resumes.

The special marker bytes are set by using a training trace with
an algorithm that does not depend on byte frequencies [10].
The most prevalent redundant bytes detected in this phase
become marker bytes for SAMPLEBYTE, which increases the
probability of selecting the most redundant chunks. Clearly,
higher k leads to a higher sampling rate, while lower k leads to
fewer sampled chunks. In prior work, using � = 8 marker
bytes is found to be effective, with negligible improvement in
savings when more than 8 marker bytes are used. The
identified marker bytes are 0, 32, 48, 101, 105, 115, 116, and
255. We refer to these bytes as "generic markers".

Since marker bytes have high redundancy, the top 8 of them
can account for 10-12% of all traffic, such as in our traces.
Therefore, on average 1 out of every 8-10 bytes will be
selected as chunk marker, with high probability, which is
much more than expected with � = 32, for example. The skip
parameter is used to limit the worst-case sampling rate, and it
is statically configured to �/2 in SAMPLEBYTE. This means
that the upper bound is 2/�, twice the target rate of 1/�.

Under-sampling can still happen, since highly redundant
bytes, such as 0, 32 (space character), and 255, are often found
in consecutive blocks, so many of them are skipped.

In previous work, an additional step is used with the goal of
increasing the detected redundancy. After a redundant chunk
is detected for caching, the matching region is expanded byte
by byte around the chunk to achieve the largest possible match
[2, 11]. Expansion introduces overhead in processing cost and
storage, but improves average detected redundancy by 13.6%
over an exact chunk match [1].

We implement SAMPLEBYTE with two modifications.
Instead of Jenkins hash, we use FNV hash function [7]. Also,
we are interested in a scenario where fixed-size chunks are
used for redundancy elimination, instead of expanding the
matching region around the selected chunk. These
modifications do not affect the relative comparison of
SAMPLEBYTE and DYNABYTE.

The key benefits of SAMPLEBYTE are:

• Speed and efficiency. Skipping half of a sampling period
avoids unnecessary fingerprint computation for chunks
that would not be selected anyway.

• Bounded sampling rate. The skip parameter limits the
maximum sampling rate to 2/�. Adjusting p affects the
upper bound on sampling rate, which directly determines
processing cost.

• Simpler computation. In a client-server scenario,
fingerprint computation is only required at the server.
Clients can always determine where chunks start based on
the generic markers.

In prior work, SAMPLEBYTE was evaluated on a large set of
traces from several enterprises and a university, using default
chunk size of 32 bytes and sampling period of � = 32 [1]. Its
performance was found to be satisfactory. We examine if
SAMPLEBYTE performs equally well on aggregate traces
from multiple users and under different parameters, such as a
larger chunks size of 64 bytes, and longer sampling periods,
such as 48, 64 or more.

The goal of this study is to explore whether a dynamic
algorithm can match or exceed the savings of static
SAMPLEBYTE at acceptable cost. In particular, we explore
the following specific questions about SAMPLEBYTE:

• Are generic marker bytes suitable? As traffic changes,
the k generic markers may no longer be the most frequent
bytes, which may adversely affect savings or processing
time. In other words, generic markers may or may not be
representative of the upcoming traffic traversing the link.

• How many marker bytes are appropriate? In
SAMPLEBYTE, the value of k is fixed at 8. While 8 was
appropriate for SAMPLEBYTE on a certain set of traces,
we would like to ascertain if this holds for our traces.
Since k affects sampling rate and savings, we may be
over-sampling or under-sampling if we use the wrong
number of marker bytes.

• Is the actual sampling rate predictable? Due to
probabilistic sampling based on generic markers, we
suspect that the actual sampling rate may deviate
substantially from the target 1/�. We would like to verify
if this happens, and under what conditions. This is
especially important if RTE is deployed on a battery-
powered device and it needs to control its processing
requirements precisely.

V. ANALYSIS OF SAMPLEBYTE

To answer our first question, we apply SAMPLEBYTE with 8
generic markers to our traces, and compare its performance to
SAMPLEBYTE using traffic-specific markers ("specific
markers"). The top 8 specific markers are obtained from a

1
2
3
4
5
6
7
8
9
10

//Let w = 32; p = 32; Assume len >= w;
//TABLE[i] maps byte i to either 0 or 1
//hash() computes a hash over a w byte window
SAMPLEBYTE(data, len)
for(i = 0; i < len - w; i++)
 if (TABLE[data[i]] == 1)
 marker = i;
 fingerprint = hash(data + i);
 store marker, fingerprint in cache;
 i = i + p/2;

Fig. 2: SAMPLEBYTE algorithm.

training trace in the same manner that the generic markers
were obtained in [1]. We use a wide range of sampling periods
to better illustrate algorithm behaviour, while noting that the
important range is between 32 and 64, for commonly used
chunk sizes of 32-64 bytes in commercial RTE systems.

Fig. 3 shows the total byte savings and overall sampling rate
for inbound Trace 2. (Note that the x-axis is not linear).
Specific markers clearly outperform generic markers in
savings for all sampling periods, by 24-56% (Fig. 3a). The
plot of actual sampling rate shows that both sets of markers
result in similar sampling (Fig. 3b). Therefore, the higher
savings with specific markers are due to better markers, and
not due to a higher sampling rate. This result is a strong
argument in favour of traffic-specific markers.

Next we examine whether � = 8 is an appropriate choice for
our traces. We apply SAMPLEBYTE with � = 32 to one of
our traces, using specific markers, and vary k from 1 to 16. We
track byte savings, actual sampling rate, and processing time
for inbound Trace 2 from our data sets.

Fig. 4a shows the increase in savings as k changes. One could
reasonably conclude that there are no gains in savings beyond
� = 8, but the same argument can be made for � = 6, where
the savings plateau. For the generic markers, the savings also
reach their maximum at � = 6, though the overall savings are
lower by 38%. These results show that there is a benefit to
finding the proper k value for each trace.

We also notice that the actual sampling rate is well below the
target rate for smaller k values, while the opposite happens for
larger k values (Fig. 4b). Therefore, while the maximum
sampling rate is bounded, it certainly does not follow the
target rate well for any k other than 8.

The processing time curve mimics that for sampling rate, as
expected (Fig. 4c), and shows the consequence of using larger
k values. A small increase in k may cause a large increase in
processing cost, with no improvement in byte savings. For
example, the savings obtained for � = 6 and � = 8 are the
same, while the processing time for � = 8 is 14% higher.

Finally, we examine the actual sampling rate across several
sampling periods p. We fix k at 8 and repeat the experiment to
observe the behaviour of SAMPLEBYTE with generic
markers. The results are shown in Fig. 5. The detected
redundancy decreases as the sampling period increases, as
expected, due to fewer selected chunks (Fig. 5a). Once the
encoding penalty is taken into consideration, the net byte
savings actually do not change much. Therefore, we may be
able to adjust the sampling period in order to control CPU
usage, while maintaining similar byte savings.

We further note that the actual sampling rate changes only by
a factor of 3 when the sampling period varies by a factor of 8
(Fig. 5b). That is, there is no direct correspondence between
actual sampling rate and given sampling period.
SAMPLEBYTE under-samples for smaller p, and over-
samples for larger p. Having the actual sampling rate
correspond more closely to the given sampling period is
desirable.

Similarly, it would be desirable if processing time was directly
controllable via the sampling period. If we were to sample
with � = 32, and the system is too busy to sustain this value,
it may request the RTE process to reduce its load by half.
While we might intuitively expect that doubling p to 64 would
reduce processing time by 50%, the actual reduction is only
30% in Fig. 5c.

When energy is scarce, we would like to make good trade-offs
between savings versus required power. The highest savings
of 12.3% are achieved with � = 48. If we were to accept a
small penalty in savings of 1% (relative), we would reduce
processing cost by 15%. For a 7% sacrifice of savings, we

Fig. 4: SAMPLEBYTE behaviour as number of markers changes.

0%

5%

10%

15%

20%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sa
vin

gs
(%

)

Number of markers k

Specific markers
Generic markers

a)

0%
1%
2%
3%
4%
5%
6%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sa
mp

lin
g r

ate
 (%

)

Number of markers k

Target rate
Actual rate

b)

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Tim

e (
x1

00
0s

)
Number of markers k

c)

Fig. 3: SAMPLEBYTE with specific markers vs. generic markers.

0%

5%

10%

15%

20%

16 24 32 48 64 96 128

Sa
vin

gs
(%

)

Sampling period p

Specific markers
Generic markers

0%
1%
2%
3%
4%
5%
6%
7%

16 24 32 48 64 96 128

Sa
mp

lin
g r

ate
 (%

)

Sampling period p

Specific markers
Generic markers
Target rate

b)

a)

could reduce processing cost by 33% with � = 96. Therefore,
there is room for substantial savings in processing time.

The presented results show that both savings and processing
cost could be improved by specific markers, properly adjusted
k, and the precise sampling rate.

VI. DYNABYTE: DYNAMIC SAMPLEBYTE...

Armed with a better understanding of the benefits and
drawbacks of static SAMPLEBYTE, we can now describe the
design of DYNABYTE. The goal with DYNABYTE is to
preserve the benefits of SAMPLEBYTE, such as byte savings
and adjustable processing cost, without requiring any training
phase or pre-configuration. We also want precise control of
the sampling rate.

A. Achieving the target sampling rate

To track if the algorithm is matching the target sampling rate,
it suffices to count the number of sampled chunks. The actual
sampling rate is compared to the target after a suitable
interval, e.g. S seconds, or B bytes.

The sampling rate can be adjusted using the existing skip and k
parameters in SAMPLEBYTE. By changing k, we alter the
cumulative probability of the marker bytes, which in turn
affects the probability of finding a marker within the next
block of bytes. By adjusting skip, we can also change the
sampling rate. For example, for � = 32, increasing skip from
16 to 24 reduces the worst-case sampling rate from 2/� to
4/3�. In DYNABYTE, we use these two parameters to
control the actual sampling rate, while following some basic
principles of AIMD (Additive Increase Multiplicative
Decrease) control.

Consider the skip parameter and its range. For ���� = �, the
actual sampling rate will be at most 1/p. Therefore, skip should
never exceed p, if we are close to the target sampling rate. On
the other hand, we should not allow ���� < �/2. The reason
for this is that we should avoid selecting chunks that have too
many overlapping bytes. For a chunk size of 64 bytes and
� = 32, ���� = �/2 allows up to 48 bytes of overlap between
consecutive chunks. If both chunks are redundant, then the
second chunk provides only 16 bytes of detected redundancy.
With an encoding penalty of 5 bytes, we save a total of 11
bytes, which is only 17% of the chunk size. Needless to say,
these savings are not worthwhile. The important feature of
skip is that it precisely bounds the sampling rate within a
factor of 2, when in the range [�/2, �]. This is why skip is the
primary control parameter in DYNABYTE.

The k parameter, on the other hand, has a larger range from 1
to 256, and its effect on sampling rate is more difficult to
predict. Therefore, we will use k as a secondary control
parameter in DYNABYTE. The sampling rate adjustment will
be made first by changing skip, and if one of the limits
imposed on skip is reached, then k will be adjusted. The initial
value for skip is �/2, and for k it is 8.

B. Dynamic adjustment of marker bytes

To ensure that markers correspond to traffic, we use a simple
history-based ranking of bytes. For each interval i, we
compute byte frequencies and select the top k bytes as markers
for the following interval � + 1 . This interval may be the
same as the rate-adjusting interval, but does not have to be.

We track the changes in the top 8 markers for each 16 MB
interval on our training trace, and find that changes are rare,
with 1 or 2 bytes changing on most occasions. Therefore,
frequent updates of chunk markers are not necessary.

C. DYNABYTE algorithm

The pseudo-code for DYNABYTE is shown in Fig. 6. The
data of length length is scanned byte by byte (line 8).
Each scanned byte is checked in the TABLE to see if it is a
chunk marker (line 9). If so, the chunk is selected for caching,
and its fingerprint is calculated (line 10). If the selected chunk
is a cache hit, it is encoded (or decoded) inside the data packet
(line 11). Otherwise, the chunk and its fingerprint are added to
the cache (line 12). Relevant counters and byte frequencies are
also calculated (lines 13 and 14). The chunk_counter
variable is used to track the actual sampling rate.

Periodically, the algorithm updates the TABLE based on byte
frequencies (line 17). It also periodically checks the actual
sampling rate (line 19). If the sampling rate is more than a
threshold t off target (line 23), parameters are adjusted (lines
25 and 28).

The algorithm first adjusts the ���� parameter, as required. If
���� has reached one of its limits, then the algorithm switches
to adjusting � instead (lines 26 and 29).

D. Adjusting skip and k

Both skip and k may be adjusted in small or large steps.
Naturally, both can be adjusted by 1, but this causes a slow
response in sampling rate. Most importantly, algorithm should

Fig. 5: SAMPLEBYTE behaviour as sampling period changes.

0%

5%

10%

15%

20%

16 24 32 48 64 96 128

Sa
vin

gs
(%

)

Sampling period p

Redundancy
Savings

a)

0%
1%
2%
3%
4%
5%
6%
7%

16 24 32 48 64 96 128

Sa
mp

lin
g r

ate
 (%

)

Sampling period p

Target rate
Actual rate

b)

0.0

0.5

1.0

1.5

2.0

16 24 32 48 64 96 128

Tim
e (

x1
00

0s
)

Sampling period p

c)

respond rapidly to over-sampling in order to minimize use of
CPU and/or battery power.

Therefore, when correcting over-sampling, skip is adjusted to
the maximum value p, which guarantees a sampling rate of at
most 1/�. In this case, k is immediately reset to its default
value of 8. Note that this approach solves the problem of over-
sampling from a large k (Fig. 4), and obviates the need to find
the best k for a particular type of traffic.

When under-sampling, skip is adjusted proportionally based
on the degree of under-sampling and the available range of
values. For example, if � = 32 , then the minimum skip
value is ���_���� = 16. Therefore, the available range is
(� − ���_����).

If under-sampling by a factor of m, then the new skip value is
calculated as ���� = ���� − (� − �)(� − ���_����), where
t is the tolerance threshold. The under-sampling factor is
moderated by the tolerance threshold first, to avoid excessive
adjustment if the threshold was barely exceeded.

If skip is already at the smallest allowed value when under-
sampling by a factor of m, then k needs to be increased. Since
the range of k is much larger, increasing k proportionally
causes large jumps in sampling rate, which is undesirable.
Again, we respond slower to under-sampling than to over-
sampling. Therefore, we use a slow increase in k as follows:

� = � + (� − �)(256 − �)/8,
where t is the tolerance threshold. The division by 8 is found
to perform well, and causes no abrupt increases in sampling
rate. Incrementing k by 1 or 2 would also be acceptable.

VII. EVALUATION OF DYNABYTE

To evaluate DYNABYTE, we conduct a direct comparison
with SAMPLEBYTE. Both algorithms are applied to the full
set of our traces, with different sampling periods. To provide
the fairest possible comparison, specific markers are used for
SAMPLEBYTE, since they yield higher savings (Fig. 4). The
default k value for DYNABYTE is 8.

We are further interested in per-interval statistics, which show
in more detail the behaviour of the algorithms. We employ a
data volume interval of 100 MB for periodic adjustment of
sampling rate, if necessary.

A. DYNABYTE vs. SAMPLEBYTE: Performance results

Fig. 7 shows per-interval savings, sampling rate, and
processing time for both SAMPLEBYTE and DYNABYTE,
as well as skip and k adjustment for DYNABYTE. The chunk
size is 64 bytes, with � = 32, and a cache size of 500 MB.
The first 4 GB of Trace 1 are shown as an example. There are
several distinct parts of this trace. The first part is about 200
MB of low-redundancy traffic (~10%). Then high-redundancy
traffic follows (~60%) until the 1,500 MB mark, before

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// Assume length >= chunk_size;
// TABLE[i] maps byte i to either 0 or 1
// hash() computes FNV hash over a w-byte chunk
chunk_size = 32; p = 32; chunk_counter = 0;
target_r = 1/p; t = 0.05;
skip = p/2; k = 8;
DYNABYTE(data, length) {
 for (i = 0; i < length - w; i++)
 if (TABLE[data[i]] == 1)
 fingerprint = hash(data + i);
 if (cache_hit(fingerprint)) encode data
 else add fingerprint and chunk to cache;
 chunk_counter++;
 update_byte_frequencies(chunk);
 i = i + skip;
 if (at_table_adjustment_period(i))
 adjust_table();
 if (at_rate_adjustment_period(i))
 adjust_rate(chunk_counter, i)
}
adjust_rate(counter, processed_data) {
 actual_r = counter / processed_data;
 if (actual_r and target_r within t) return;
 if (actual_r > target_rate)
 skip = p;
 k = 8;
 else
 if (skip > 1) decrease skip
 else if (k < 256) increase k;
}

Fig. 6: DYNABYTE algorithm.

Fig. 7: Behaviour of SAMPLEBYTE and DYNABYTE per interval.

0%
10%
20%
30%
40%
50%
60%
70%

0 500 1000 1500 2000 2500 3000 3500 4000

Sa
vin

gs
(%

)

Processed data (MB)

DYNABYTE
SAMPLEBYTE

a)

0

5

10

15

20

0 500 1000 1500 2000 2500 3000 3500 4000
Tim

e (
s)

Processed data (MB)

SAMPLEBYTE
DYNABYTE

c)

0
4
8

12
16
20
24
28
32
36

0 500 1000 1500 2000 2500 3000 3500 4000

Sk
ip

an
dk

Processed data (MB)

skip
k

d)

0%
1%
2%
3%
4%
5%
6%

0 500 1000 1500 2000 2500 3000 3500 4000

Sa
mp

lin
g r

ate
 (%

)

Processed data (MB)

SAMPLEBYTE
DYNABYTE
Target rate

b)

returning to low redundancy (~12%) until the 3,000 MB mark.
The last part has moderate redundancy of 17 - 20%.

DYNABYTE starts with randomly chosen markers, which
cause under-sampling during the first 100 MB of data (Fig.
7b). The markers are updated based on the first interval, and k
is increased as well (Fig. 7d). The increase in k and a change
to specific markers leads to some over-sampling, which is
adjusted at the 200 MB checkpoint by increasing skip to p
(Fig. 7d), and resetting k to its default value. DYNABYTE
then proceeds with sampling rate adjustment via the skip
parameter, and keeps the sampling rate close to the target level
(Fig. 7b).

While DYNABYTE was adaptively adjusting parameters
based on the traffic, SAMPLEBYTE began to over-sample
based on its static parameters. This led to higher processing
cost (Fig. 7c) and lower savings for SAMPLEBYTE (Fig. 7a),
due to overlapping chunks and cache churn.

Therefore, our DYNABYTE algorithm often matches, and
sometimes exceeds, the RTE savings achieved by
SAMPLEBYTE, without requiring any training stage or pre-
configured parameters (Fig. 7a). It stays within the target
sampling rate, and controls processing time, unlike
SAMPLEBYTE. When both algorithms sample at
approximately same rate, DYNABYTE has slightly higher
processing time. However, this extra processing time is small
(6-8%), and it does not compromise byte savings.

A counter-intuitive result is that the processing time for both
algorithms sometimes drops when the sampling rate increases.
This happens when redundancy is very high, because cache
hits dominate. Cache hits require minimal processing
compared to new chunks, which cause changes to the cache
and indexing.

The additional benefit of DYNABYTE is illustrated in Fig. 8,
which shows the time series of the first 10 minutes of inbound
Trace 1 with several distinct parts in respect to the data rate
observed over 1-second intervals. The vertical lines
correspond to the values on the x-axis of Fig. 7. The high-
redundancy traffic, where DYNABYTE records higher
savings than SAMPLEBYTE (Fig. 7a), is the traffic with the
highest load on the network link (Fig. 8). Therefore,
DYNABYTE helps when it is needed the most.

When comparing the overall savings and processing cost over
several different settings for the sampling period (Fig. 9), we
note that DYNABYTE achieves higher savings than

SAMPLEBYTE with generic markers (Fig. 9a) for all but the
largest sampling period considered (� = 128). DYNABYTE
has comparable savings to SAMPLEBYTE using specific
markers for sampling periods up to 48, and slightly lower for
� = 64. The reduced savings for larger sampling periods is
simply due to DYNABYTE adhering to the target sampling
rate, which SAMPLEBYTE does not.

The processing time of DYNABYTE is generally lower than
that of SAMPLEBYTE, except for the smallest sampling
periods of 16 and 24 (Fig. 9c). However, these small sampling
periods are rarely used in practice. Nonetheless, the changes in
processing time for DYNABYTE closely follow the changes
in sampling period by adhering to the target sampling rate
(Fig. 9b). For example, increasing p from 32 to 64 reduces
processing time to 50%, as desired, compared to a 30%
reduction for SAMPLEBYTE.

Finally, reaction of SAMPLEBYTE and DYNABYTE to
changes in sampling period during operation is compared in
Fig. 10. DYNABYTE starts with random markers. The initial
sampling period is 32. Two changes are introduced, at 1,000
MB and 2,000 MB, where p changes to 64 and 48,
respectively. DYNABYTE precisely adapts to the target
sampling rate within a few intervals (Fig. 10b) and improves
savings (Fig. 10a), while SAMPLEBYTE shows very little
adjustment.

The behaviour of both algorithm is consistent across all traces,
with higher savings achieved for outbound traffic.

B. Performance considerations

To keep DYNABYTE performing at speeds comparable to
SAMPLEBYTE, we cannot afford to do too much extra

Fig. 9: Comparison of SAMPLEBYTE and DYNABYTE.

0%

5%

10%

15%

20%

16 24 32 48 64 96 128

Sa
vin

gs
(%

)

Sampling period p

DYNABYTE
SAMPLEBYTE (Specific markers)
SAMPLEBYTE (Generic markers)

a)

0%
1%
2%
3%
4%
5%
6%
7%

16 24 32 48 64 96 128

Sa
mp

lin
g r

ate
 (%

)

Sampling period p

DYNABYTE
SAMPLEBYTE
Target rate

b)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

16 24 32 48 64 96 128

Tim
e (

x1
00

0s
)

Sampling period p

DYNABYTE
SAMPLEBYTE

c)

Fig. 8: Data rate time series of Trace 1.

0

5

10

15

20

0 60 120 180 240 300 360 420 480 540 600

Da
ta

rat
e (

MB
/s)

Time (seconds)

1650 MB 3000 MB 4000 MB250 MB

processing. The following strategies are employed to reduce
the processing cost of DYNABYTE:

• Byte frequencies used for setting the markers are counted
only for non-overlapping chunks. This retains a better
representative sample of traffic compared to using only
redundant chunks, while keeping overhead low.

• Markers are updated when adjusting k, or at most every
20 updates of skip, whichever comes first. We observe
that between 1 and 3 markers change between consecutive
adjustments with this interval.

C. Choosing parameter settings

DYNABYTE does not optimize savings explicitly, since this
is difficult to estimate in advance. Therefore, it depends on
reasonable choices of global parameters, like SAMPLEBYTE.
Commonly, chunk sizes of 32-64 bytes were used in literature
for protocol-independent RTE. When using chunk expansion,
a chunk size of 32 bytes is a very good choice. When using
fixed-size chunks, as in our case, a 64-byte chunk is a much
better choice, because of the higher savings.

A sampling period of 32 is commonly used in the literature,
and we also find it appropriate. However, it is important to
understand the relationship between chunk size and sampling
period. If the sampling period is equal to the chunk size, some
consecutive chunks will overlap, and some will have a gap
between them. With ���� = �/2, and p equal to the chunk
size, the maximum overlap is exactly half of the chunk size.
On the other hand, the maximum gap will be one half of the
chunk size, with high probability.

It is reasonable to allow overlaps of up to half a chunk simply
to bound the sampling rate. Another reason for allowing at
most half-chunk overlap is to avoid a case where two
consecutive chunks are both cache hits, and the second one
produces very little savings. Furthermore, we should avoid
extreme cases where three or more consecutive chunks overlap
to such a degree that only the first and last account for all of
the savings from the overlapping group.

When DYNABYTE is used, with or without expansion, the
best trade-off between savings and processing time is when
the sampling period is approximately equal to the chunk size.

D. Applicability of DYNABYTE

DYNABYTE can be used for both RTE, as well as similarity
detection outside networking or communication domain. A
strategy to never correct under-sampling can be used for RTE,
since it occurs mostly for smaller sampling periods, and does
not hurt savings. On the other hand, we may wish to correct
under-sampling if redundancy detection is the main objective,
such as in applications that detect similarity, e.g. plagiarism
detection. Correct sampling rate will then increase the level of
detected redundancy, and there is no concern with encoding
penalty. In any domain, even if sampling rate correction is
expected to be rare, specific markers should be used simply
because they improve detected redundancy.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we described DYNABYTE as a dynamic
sampling algorithm for redundancy detection in network
traffic or other digital content. DYNABYTE improves upon
SAMPLEBYTE by providing dynamic self-configuration and
adaptation. Our algorithm provides comparable savings to
SAMPLEBYTE, with little or no additional overhead.
Furthermore, DYNABYTE closely matches the desired
sampling rate, and precisely controls its processing cost.

IX. REFERENCES
[1] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C.

Muthukrishnan, R. Ramjee, and G. Varghese, "EndRE: An end-system
redundancy elimination service for enterprises," in USENIX NSDI, San
Jose, CA, 2010, pp. 419-432.

[2] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, "Redundancy
in network traffic: Findings and implications," in ACM SIGMETRICS,
Seattle, WA, USA, 2009, pp. 37-48.

[3] M. Arlitt and C. Williamson, "Internet web servers: Workload
characterization and performance implications," IEEE/ACM
Transactions on Networking, vol. 5, 1997, pp. 631-645.

[4] L. Breslau, C. Pei, F. Li, G. Phillips, and S. Shenker, "Web caching and
Zipf-like distributions: Evidence and implications," in IEEE INFOCOM,
1999, pp. 126-134 vol.1.

[5] CISCO. "WAN optimization and application acceleration,"
http://www.cisco.com/en/US/products/ps6870/.

[6] P. Kulkarni, F. Douglis, J. Lavoie, and J. Tracey, "Redundancy
elimination within large collections of files," in USENIX Annual
Technical Conference, Boston, MA, USA, 2004, pp. 59-72.

[7] L. C. Noll. "Fowler / Noll / Vo (FNV) hash,"
http://www.isthe.com/chongo/tech/comp/fnv/index.html.

[8] M. Rabin, "Fingerprinting by random polynomials," Center for Research
in Computing Technology, Harvard University, Technical Report TR-
CSE-03-01, 1981.

[9] S. C. Rhea, K. Liang, and E. Brewer, "Value-based web caching," in
WWW Budapest, Hungary: ACM, 2003, pp. 619-628.

[10] S. Schleimer, D. Wilkerson, and A. Aiken, "Winnowing: Local
algorithms for document fingerprinting," in SIGMOD San Diego, CA,
USA, 2003, pp. 76-85.

[11] N. Spring and D. Wetherall, "A protocol-independent technique for
eliminating redundant network traffic," in ACM SIGCOMM, Stockholm,
Sweden, 2000, pp. 87-95.

[12] J. Ziv and A. Lempel, "Compression of individual sequences via
variable-rate coding," IEEE Transactions on Information Theory, vol.
24, 1978, pp. 530-536.

Fig. 10: Reaction of two algorithms to change in sampling period.

0%

5%

10%

15%

20%

0 500 1000 1500 2000 2500 3000

Sa
vin

gs
(%

)

Processed data (MB)

DYNABYTE
SAMPLEBYTE

a)

0%

1%

2%

3%

4%

0 500 1000 1500 2000 2500 3000

Sa
mp

lin
g r

ate
 (%

)

Processed data (MB)

Target
DYNABYTE
SAMPLEBYTE

b)

