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Abstract—Covert communication considers the ability of trans-
mitter Alice to communicate reliably to intended receiver Bob
without being detected by adversary warden Willie. One collec-
tion of approaches to covert signaling is for Alice to alter the
state of a system in such a way that the altered state conveys
information to Bob. Motivated by recent work on the foundations
of covert communications that has largely considered the physical
layer, we provide a fundamental characterization of one approach
to covert signaling via activity: employing a codebook pre-shared
with Bob, Alice encodes a message by selecting from the codebook
the appropriate pattern of slots to insert innocuous packets into
a slotted ALOHA system in the presence of other users. The
intended recipient Bob detects patterns in the activity of the
slotted ALOHA system to determine which codeword was sent.
We provide a fundamental analysis of the performance of such a
system under a covertness constraint. First, we consider signaling
schemes derived specifically for the proposed channel when Bob
or Willie has various abilities to discern the number of packets
in a given slot. Given the challenges in such design, we next
recognize that techniques from optical communications, although
designed for a different channel, can potentially be employed and
thus yield a large class of schemes that provide lower bounds on
the achievable rate. Numerical results are provided to support
the analytical development and to demonstrate the potential of
covert signaling through such an approach.

I. INTRODUCTION

Security is a major concern of modern communication
networks, where it is often obtained by encryption. However,
this is not sufficient in applications where the very existence
of transmission arouses suspicion. For example, in military
communications, the detection of a transmission may reveal
activity in the region. This motivates the study of covert
communication: a transmitter Alice reliably sending messages
to a legitimate receiver Bob without that communication
being detected by an attentive warden Willie. In practice,
spread spectrum techniques have been traditionally employed
at the physical layer to achieve covert communications. More
recently, there has been an active line of research exploring
the fundamental limits of covert communications. Bash et al.
in [1] proved that Alice can transmit at most O(

√
n) covert

bits to Bob in n channel uses of an AWGN channel. Perfor-
mance limits with scaling constants for covert communications
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were established in successive work [2]–[4]. Communication
schemes to achieve n covert bits in n channel uses are then
provided in [5], where an uninformed jammer is added to the
system. Further work has begun to consider covert commu-
nications with a continuous-time model that corresponds to
true physical channels [6]–[8]. In many of these systems, the
transmitter Alice is not allowed to transmit at all and must
hide in the background noise or jamming (e.g. [1]), but, more
generally, Alice is allowed some innocuous behavior, but is
not allowed to deviate from such.

In analogy with spread spectrum work at the physical
layer, practical covert communications have been studied in
higher layers. Of interest here are a number of efforts that
aim to perform covert signaling by altering the state of a
system in such a way that it can be detected by the intended
recipient. For example, in [9] and [10], the behavior of TCP
flows is modeled by a Markov chain composed of the states
of TCP packets, and covert transmissions are achieved if
deviations from the expected state cannot be detected. Our
interest here is extending the line of fundamental analyses
of covert communications [1]–[8] to consider a system that
conveys information by altering the state of a system. How-
ever, it is challenging to perform fundamental analysis of the
performance of such systems under a covertness constraint
since even simple examples can lead to intractable analytic
problems. For example, considering Alice altering the state of
a general Markov chain which is then observed by Bob through
a noisy channel requires the entropy of a hidden Markov model
(HMM), which is hard to obtain [11]. Instead, we turn to a
slotted ALOHA system, as described below.

In [12], we considered a scenario in which covert com-
munication is achieved by carefully hiding covert messages
among the legitimate (i.e., overt) messages transmitted by
Alice to Bob. Specifically, the covert messages are inserted
in the sequence of Alice’s legitimate messages such that their
effect on the system state is undetectable by the observer
Willie. To receive covert messages, Bob decodes all messages
received from Alice, some of which are covert messages. Such
a model relies on a strong assumption that Willie does not look
inside the transmitted messages; rather, Willie is constrained
to be only an observer of the state of the system, e.g., how
many messages are on the channel. Thus, as long as Alice’s
covert messages do not cause the state of the system to deviate



appreciably from its expected state, Willie will not be able to
detect covert messages.

In this work, we consider a more capable adversary than
that in [12]: Willie not only observes the state of the system
to detect unexpected deviations, but also looks inside the
messages to ensure messages do not convey any informa-
tion covertly. Thus, the actual messages cannot be used for
covert communication between Alice and Bob anymore, as
this would be detected by Willie. Instead, Alice tries to
covertly communicate with Bob by altering her pattern of
activity: inserting packets to modulate the state of the system
itself. Then, by coding information in her activity patterns,
Alice can covertly communicate with Bob without directly
sending any observable message to Bob. The communication
is accomplished through a shared resource, which is the state
of the system. However, since Willie observes the state of the
system, any manipulation of the system state has to be done
carefully to avoid detection by Willie.

The contributions of the paper are:
• Fundamental Characterization of Activity-Based Covert

Channels: To our knowledge, we provide the first funda-
mental characterization of a covert system that conveys
information by activity patterns that alter channel state.

• Derivation of Achievable Schemes: We derive and char-
acterize covert schemes specifically fitted to conveying
information through activity in a slotted ALOHA system.

• Leveraging Optical Communication Approaches: Given
the challenges faced, we demonstrate that optical com-
munication methods can be adopted to the proposed
framework and hence a large class of schemes can be
employed. These achievable schemes provide a lower
bound on the potential rate of covert approaches.

Section II presents the system model and metrics. Section III
provides constructions fitted to the proposed framework, and
Section IV discusses lower bounds on achievability derived
from optical communications. Numerical results are presented
in Section V, and conclusions are presented in Section VI.

II. SYSTEM MODEL AND METRICS

A. System Model

Consider a slotted random access channel with multiple
system users, among whom is a transmitter Alice who wishes
to convey covert information to intended recipient Bob without
detection by an attentive warden Willie. Fig. 1 illustrates the
system model. Each of the system users, other than Alice,
randomly and independently transmits a packet in each slot
with some probability. It is well-known that in such a random
access system, the number of packets transmitted by the users
during “standard” operation (i.e., the number of non-covert
packets) can be approximated by a Poisson random variable
with a suitable rate λ [12]. Each of Bob and Willie can observe
the state of the system, perhaps with some limitations as
described below, and, in contrast to [12], the adversary Willie
is able to observe packet contents, hence preventing Alice from
sending covert information explicitly or in encrypted form

Fig. 1: Slotted ALOHA System: by modulating her activity pattern,
the transmitter Alice attempts to communicate with the receiver Bob
without being detected by warden Willie.

within the packet contents to Bob. Thus, the user-of-interest
Alice, while trying to avoid detection by the warden Willie, is
restricted to communicating with the intended recipient Bob
by adding some number of packets to successive slots and
conveying information through such activity.

Traditionally, packets involved in a collision would simply
be discarded and retransmission would be required. However,
it is possible for an advanced receiver to recover some packets
from a collision through multi-packet reception [13]. Likewise,
the ability to detect multiple simultaneous transmissions is
denoted as Multi-Packet Detection (MPD), and a receiver is
called a K-MPD detector if it can detect up to K packet
transmissions in a time slot on a channel. As in [12], we will
consider scenarios where Bob and Willie have various abilities
to perform multi-packet detection.

B. Metrics

1) Willie: Willie’s goal is to determine whether Alice is
conveying covert information in a time slot or not. Willie will
observe a state of the system that will depend on the number
of packets on the channel and his ability to observe such.
We define the null hypothesis (H0) to be that Alice is not
conveying covert information, and the alternative hypothesis
(H1) to be that Alice is conveying covert information. Let
Willie’s probability of false alarm be denoted by PFA, and
his probability of missed detection be denoted by PMD. We
say that the transmission is covert if, for a given ε > 0, we
have PFA + PMD ≥ 1− ε.

The optimal hypothesis test performed by Willie can be
characterized by the total variation distance between the
distribution P0 of observed channel states given H0 and the
distribution P1 of observed channel states given H1 [1]:

PFA + PMD = 1− dTV (P0,P1),

where,

dTV (P0,P1) =
1

2

∑
s∈S |P0(s)− P1(s)| , (1)

and S denotes the set of possible channel states. Hence,
covertness is achieved if:

dTV (P0,P1) < ε . (2)

2) Bob: We will say communication between Alice and
Bob is reliable if the probability of decoding error is less than
or equal to δ for any δ > 0 as the length of the codeword
used by Alice and Bob approaches infinity. Since the effective
channels built throughout this work will be discrete memory-



less channels (DMCs), the achievable rate with vanishing error
probability in the limit of long block length is the maximum
mutual information between the effective channel’s input and
output, and hence optimizing the mutual information will be
the focus of succeeding sections.

III. ACHIEVABLE COVERT SCHEMES

In this section, we derive and characterize covert schemes
specifically fitted to conveying covert information through
activity in a slotted ALOHA system. Specifically, we establish
constructions such that Alice can covertly transmit binary
codewords to Bob in such a system. We will analyze the
achievable rate in various scenarios.

A. Construction

We employ random coding and generate M codewords,
each of length n, by independently drawing symbols from
a Bernoulli distribution such that the symbol takes the value
1 with probability p1, and 0 with probability p0 = 1 − p1.
As in [1], this codebook is shared between Alice and Bob,
and thus is unknown to Willie. The shared codebook in the
covert context plays a role similar to that of a shared secret
in cryptography. If Alice decides to transmit, she selects the
codeword corresponding to her message, and adds the number
of packets on the channel in the i’th time slot according to
the i’th symbol of the codeword. She adds no packets for
symbol 0, and one packet for symbol 1. Thus, the channel
input X ∼ Bernoulli(p1) is the number of packets sent by
Alice in each time slot. As mentioned earlier, the number
of non-covert packets in the background follows a Poisson
distribution with parameter λ. This model corresponds to a
discrete-time Poisson (DTP) channel with X being the channel
input and Y being the output.

B. Achievable Rate

Here we analyze the achievable rate of the covert scheme
when Bob has different detection capabilities.

1) 0-MPD at Bob: When Bob employs 0-MPD, he can
only distinguish an idle channel and a busy channel. Hence,
he either observes no packets (state s = 0) , or observes one
or more packets (state s = 1). Given the distribution of p0 and
p1, the entropy of Bob’s observed state Y is given by:

H(Y ) = −
1∑
s=0

P (Y = s) logP (Y = s)

= −p0e−λ log p0e−λ − (1− p0e−λ) log(1− p0e−λ)
and the entropy of Y given Alice’s transmission X is:
H(Y |X) = EX [H(Y |X = x)] = p0 ·H(Y |X = 0)

= −p0e−λ log e−λ − p0(1− e−λ) log(1− e−λ) .
The mutual information between X and Y is then given by:
I(X;Y ) =H(Y )−H(Y |X)

=− p0e−λ log p0 − (1− p0e−λ) log(1− p0e−λ)
+ p0(1− e−λ) log(1− e−λ) .

In order to find the p0 that maximizes the mutual informa-
tion I(X;Y ), we take the derivative of I(X;Y ):
dI(X;Y )

dp0
=e−λ log(

1

p0
− e−λ) + (1− e−λ) log(1− e−λ).

Setting the above to zero results in:

p0 =
1

2g(λ) + e−λ
, (3)

where, g(λ) = −(1 − e−λ) log(1 − e−λ). Thus, when Alice
employs the probability p1 = 1 − p0 to send a packet in a
time slot on the channel, we achieve the maximum mutual
information.

2) ∞-MPD at Bob: When Bob employs ∞-MPD, he can
determine the exact number of packets on the channel (state
s = 1, . . . ,∞). Hence, this is the most capable Bob. Given
the distribution of p0 and p1, the entropy of Bob’s observation
Y is given by:

H(Y ) =−
∞∑
s=0

P (Y = s) logP (Y = s)

=− p0e−λ log p0e−λ

−
∞∑
k=0

(
p0
λk+1e−λ

(k + 1)!
+ p1

λke−λ

k!

)
· log

(
p0
λk+1e−λ

(k + 1)!
+ p1

λke−λ

k!

)
,

and the entropy of Y given Alice’s transmission X is:

H(Y |X) =− p0
∞∑
k=0

λke−λ

k!
log

λke−λ

k!

− p1
∞∑
k=1

λk+1e−λ

(k + 1)!
log

λk+1e−λ

(k + 1)!
.

Given the effective DMC, we know that rates approaching
maxp0 I(X;Y ) = maxp0 (H(Y )−H(Y |X)) are achievable.

Since the analytic expression for the achievable rate does
not appear to have a simple form, we provide numerical
results in Section V. In addition, we will show in Section IV
that a randomization step added after the codebook will
yield an optical communication model, for which previous
schemes from optical communications can be applied to
provide suboptimal, but achievable rates, for our problem of
covert communications over the slotted ALOHA channel.

C. Covertness Constraints

Here we provide the covertness constraints when Willie has
different capabilities in detecting the number of packets on the
channel in each time slot.

1) 0-MPD at Willie: When Willie employs 0-MPD, the
total variation distance between the distribution P0 and P1

of the observed channel states conditioned on H0 and H1,
respectively, is given by:

dTV (P0,P1) =
1

2

1∑
s=0

|P0(s)− P1(s)|

=
1

2
|e−λ − p0e−λ|+

1

2
|1− e−λ − 1 + p0e

−λ| = p1e
−λ .



Thus, according to (2), covertness is achieved if:
p1 < min(1, ε · eλ), (4)

for any given ε > 0.
2) 1-MPD at Willie: When Willie employs 1-MPD, he can

distinguish between an idle channel (s = 0) and one packet
transmission (s = 1), but when more than one packet is
transmitted over the channel, he only knows that more than
one packet was on the channel (s = 2). The total variation
distance between P0 and P1 is given by:

dTV (P0,P1) =
1

2

2∑
s=0

|P0(s)− P1(s)|

=
1

2
|e−λ − p0e−λ|+

1

2
|λe−λ − p0λe−λ − (1− p0)e−λ|

+
1

2
|(p0λ+ 1)e−λ − (1 + λ)e−λ|

=
1

2
(1− p0)(1 + λ+ |λ− 1|)e−λ .

Thus, according to (2), covertness is achieved if:

p1 < min

(
1,

2ε

(1 + λ+ |λ− 1|)e−λ

)
, (5)

for any given ε > 0.

IV. LEVERAGING OPTICAL COMMUNICATION
APPROACHES

As mentioned in Section III-B, it is difficult to derive a
simple (e.g., closed-form) analytic expression for the achiev-
able rate with our proposed covert scheme when Bob employs
∞-MPD. Given the challenges faced, in this section we
demonstrate that our covert communication model based on
a slotted ALOHA system, with a small randomization step
after the codebook, is equivalent to an oft-studied optical com-
munication model. This allows us to apply previous studies in
optical communications to this problem to find achievable rates
and hence lower bound the potential rate of covert approaches.

A. Background on Optical Communications

In optical communications, at the transmitter, a laser emits
a stream of discrete photons with a time-varying rate which is
proportional to the amplitude of the input current. The receiver
consists of a photon detector which can determine the arrival
times of individual photons. The stream of photons is typically
modeled as an inhomogeneous Poisson point process with
time-varying intensity proportional to the input current. The
stream of photons generated in the laser on the background is
modeled as an additive Poisson process with some fixed rate.
With a randomization step after our codebook as described
in the construction below, we have the standard discrete-time
Poisson (DTP) model for optical communications, which is
first studied in [15]. A DTP channel with dark current λ
is a memoryless channel which takes input X ∈ R+, and
outputs Y ∈ Z+. Conditional on input x, the output is Poisson
distributed with mean x+λ. Thus, the conditional channel law:

W (y|x) = e−(x+λ)
(x+ λ)y

y!
, x ∈ R+, y ∈ Z+ (6)

where the input x corresponds to the intensity of a photon-
emitting source at the transmitter; the dark current λ models
the background interference; and the output y corresponds to
the number of photons arriving at the receiver.

B. Construction Using Optical Communication Approaches

We extend signaling schemes from optical communications
to our framework of a slotted ALOHA system. As before,
we employ random coding and generate M codewords, each
of length n, independently drawing symbols from a Bernoulli
distribution such that the symbol takes the value 1 with prob-
ability p1, and 0 with probability p0 = 1− p1. The codebook
is shared between Alice and Bob but not Willie [1]. If Alice
decides to transmit, she selects the codeword corresponding
to her message, and adds a number of packets in the i’th
slot according to the i’th symbol of the codeword. Different
from our previous proposed scheme where Alice adds either
no packets or just one packet, here she adds no packets for
symbol 0, and adds a Poisson number of packets with mean
λa > 0 for symbol 1. Thus, the channel input X is the rate of
packets added by Alice, and X is either 0 or λa depending on
the symbol transmitted. As long as λa is bounded by the covert
limits established in [12], e.g., λa ≤ ln 1

1−εeλ if λ ≤ ln 1
ε and

Willie employs 0-MPD, covertness can be achieved.

C. Achievable Rate

In order to analyze the performance of the covert scheme
in Section IV-B, we analyze the capacity of the DTP channel.
Previous studies have provided asymptotic lower bounds on
the capacity with average-power and peak-power constraints.
In [14], Lapidoth et al. study the asymptotic capacity of a DTP
channel with an average-power constraint

E[X] ≤ E , (7)
and a peak-power constraint

Pr(X > A) = 0. (8)
Note that (7) corresponds to the constraint on the average rate
of packets added by Alice in each time slot for our covert
scheme, i.e.,

p1λa ≤ E . (9)
The peak-power constraint in (8) corresponds to a constraint
on the peak rate of packets added by Alice in each time slot.
Let C denote the capacity of the channel. Lapidoth et al. show
that when λ scales with E , we have

lim
E→0

C

E log 1
E

= 1, (10)

and when λ is held constant and does not scale with E :

lim inf
E→0

C

E log log 1
E
≥ 1

2
. (11)

The constraint in (9) can be combined with the covertness
constraints established in [12]. For example, when Willie
employs 0-MPD, which requires λa ≤ ln 1

1−εeλ to be covert if
λ ≤ ln 1

ε for any given ε > 0, we have the combined constraint

p1 ln
1

1− εeλ
≤ E . (12)
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Fig. 2: The optimal probability p1 that maximize I(X;Y ) when Bob employs 0-MPD and the upper bounds of p1 that achieve covertness
when Willie employs either 0-MPD or 1-MPD.
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Fig. 3: The achievable mutual information I(X;Y ) under different activity constraints when Bob employs 0-MPD.

Letting E = p1 ln
1

1−εeλ , which is a very small number for
small λ, we can further derive from (10) when λ→ 0:

C = p1 ln
1

1− εeλ
log
( 1

p1 ln
1

1−εeλ

)
,

and in (11) when λ is a small constant:

C ≥ 1

2
p1 ln

1

1− εeλ
log log

( 1

p1 ln
1

1−εeλ

)
. (13)

We provide numerical results for (13) in the next section.

V. NUMERICAL RESULTS

In this section, we provide numerical results when Bob and
Willie have various detection capabilities.

A. 0-MPD at Bob

Fig. 2 shows the optimal p1 that maximizes I(X;Y ) when
Bob employs 0-MPD and the upper bounds of p1 by the
covertness constraints when Willie employs 0-MPD, respec-
tively. The parameter ε for the covertness constraint is set to be
0.2, 0.1 and 0.05. In realistic scenarios, the operating regime

of the system is around λ = 1, which is depicted in Fig. 2(a).
However, to better observe the trends in the behavior of the
system, we have also plotted our results for a large range of
λ, which is depicted in Fig. 2(b). An interesting observation is
that, while higher background traffic (i.e., larger λ) provides
Alice with increased opportunities to hide her covert messages,
it does not necessarily lead to an increased covert throughput
as it also increases the error rate at Bob. Indeed, we observe
that as λ increases, the optimal p1 that maximize I(X;Y )
approaches a constant. Thus, when Bob employs 0-MPD, from
(3) and (4), we see that Alice should employ:

p1 = min
(
1, 1− 1

eg(λ) − e−λ
, ε · eλ

)
,

in order to maximize her transmission rate while maintaining
covertness. When Bob employs 1-MPD, from (3) and (5), we
see that Alice should employ:

p1 = min
(
1, 1− 1

eg(λ) − e−λ
,

2ε

(1 + λ+ |λ− 1|)e−λ
)
,
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Fig. 4: The probability p1 and the corresponding mutual information I(X;Y ) when Bob employs ∞-MPD.

in order to maximize her transmission rate while maintaining
covertness. The associated mutual information I(X;Y ) is
shown in Fig. 3. In particular, the case when λ is around 1 is
depicted in Fig. 3(a), and the case when λ has a large range
is depicted in Fig. 3(b). From these figures, we can see that,
as the background traffic increases, the mutual information
approaches zero regardless of any activity constraint on Alice.

B. ∞-MPD at Bob

Fig. 4(a) shows the optimal p1 that maximizes I(X;Y )
when Bob employs an∞-MPD receiver and the upper bounds
of p1 by different covertness constraints in the case of 0-MPD
and 1-MPD at Willie. Fig. 4(b) shows the achievable mutual
information with and without an activity constraint. Again, to
maximize her covert transmission rate, Alice should employ
a probability p1 that is the minimum between the optimal p1
that maximize I(X;Y ) and the p1 that satisfies either (4) or
(5) for covertness when Willie employs 0-MPD and 1-MPD,
respectively. Comparing Fig. 4(b) with Fig. 3(a), we see that
the achievable rate is significantly higher in the latter since
Bob employs ∞-MPD, which is more capable in determining
the exact number of packets on the channel.

Section IV allows us to adopt constructions from opti-
cal communication, which gives achievable (but suboptimal)
covert schemes. As an example, in Fig. 4(b), we plot the bound
of capacity in (13) which is obtained under the covert scheme
from optical communications when Willie employs 0-MPD
and ε = 0.05. As expected, it is lower compared with the
achievable rate of the scheme given in Section III but this
alternate construction technique will allow us to consider a
larger set of scenarios.

VI. CONCLUSION

In this paper, we studied covert communication via activity
modulation in a slotted ALOHA system. Alice transmits
legitimate packets in a pattern of slots determined by the
codeword corresponding to the message to be sent to intended
recipient Bob. We first considered achievable covert schemes

and derived fundamental limits on the system parameters and
performances when Bob or Willie have different detection
capabilities. We then showed that optical communication
approaches can be applied to the considered system, which
provide a lower bound on the potential rate of our covert
communication system.
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