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Abstract—This paper considers the problem of indoor wireless
planning using smart antennas. Smart antennas have gained much
attention in wireless networking because of their capability in
providing more spatial reuse and increased network capacity.
Recent research has demonstrated their effectiveness in indoor
environments where omni-directional antennas have been tradi-
tionally the dominant technology. Much of the work, however,
assumes that a network is already deployed and focuses on
scheduling antenna patterns. In this work, we investigate finding
a wireless plan for an indoor environment where the wireless
plan specifies minimum number of antennas required to provide
complete coverage of the environment as well as the location,
transmission power and beam pattern for each antenna. This
problem is more challenging than radio planning using omni-
directional antennas because of the special shape of antenna
beams. Both single-beam and multi-beam antenna patterns are
considered and Integer Linear Programming formulations are
provided for computing the minimum cost wireless plan. More-
over, to solve large-scale instances of the problem an efficient
polynomial-time heuristic is proposed.

I. INTRODUCTION

Emerging popularity of WiFi-enabled consumer devices in
recent years, has resulted in growing demand for wireless
Internet access in indoor environments such as university
campuses and corporate buildings. The large number of users
connected to such wireless LANs have to compete to gain
access to the shared wireless medium. The high-rate of
contention reduces the overall throughput of these networks.
Moreover, laptops and other powerful handheld devices that
are capable of running bandwidth-intensive applications con-
stantly request higher data rates from the network. To address
the limited bandwidth challenge, new technologies such as the
smart antennas are being used to build more efficient wireless
LANs [1] [3].

Usually a single access point (AP) 1 is not capable of
providing satisfactory service for an indoor environment (e.g.,
university campus), thus multiple APs are deployed to cover
the area. In a multi-AP wireless LAN, transmitted signals
might be degraded or even corrupted due to interference from
transmissions of other APs. While according to Signal to
Interference-plus-Noise Ratio (SINR) model [10], noise can
have the same negative effect, interference is the dominant
limiting factor for the performance of multiple transmitter
wireless networks [2]. Thus, to enhance the performance of
a wireless network, either the average received signal power
should be increased or the interference power should be
decreased. Smart antennas can serve both goals well.

1We use the terms access point and antenna interchangeably.

Smart antenna refers to an antenna array consisting of mul-
tiple omni-directional antenna elements, combined with smart
signal processing algorithms [4]. Smart antennas have been
extensively used in radar and aerospace systems, and most
recently, in wireless communication systems. Perhaps the most
important feature of a smart antenna is its beamforming capa-
bility. When beamforming to a user, the smart antenna creates
a directional beam toward the desired user and null the signal
in the directions of undesired users by appropriately adjusting
the magnitude and phase of the signal transmitted by each of
its elements. In comparison to omni-directional transmissions,
beamforming reduces interference allowing more concurrent
transmissions in the network. Moreover, by concentrating
the transmission energy in a specific direction, beamforming
creates a signal that is orders of magnitude stronger than that
of the signals in other directions. One can further reduce
interference in a network by combining beamforing feature
with power control [5] and scheduling [1], [6].

While these techniques can significantly improve the per-
formance of wireless networks, the amount of interference
in a wireless network, and consequently its performance,
fundamentally depends on the network geometry [2]. The
process of finding the optimal network geometry, which nat-
urally happens during the planning phase of a network, is
what we call the wireless planning problem (WPP). In this
work, we provide a mathematical optimization framework
to systematically solve this problem. In our framework, the
objective is to find the optimal network geometry determined
by antennas’ configuration in terms of antenna location and
beam pattern as well as transmission power so that a minimum
pre-specified SINR is observed across the network.

There exist several work on wireless planning mainly in the
context of omni-directional antennas [7] [8]. Osais et al. [9]
examine the connected coverage problem in wireless sensor
networks with the objective of providing coverage over a set
of control points with minimum number of sensors. A point
is covered if it is within the range of at least one sensor. In
contrast to [9], our goal is to provide a minimum required
SINR throughout the network which is a more desirable
property compared to just covering the network area. Moreover
it considers only a restricted form of sensors in which a sensors
covers only a single directional beam. It has been shown that
such a restriction for antennas results in a sub-optimal network
performance [6]. In this paper, we consider a general antenna
model and find the optimal wireless plan that satisfies a pre-
specified performance constraint for all the network users.

The main contributions of this paper are as follows:



• We define WPP formally and establish its correspondence
to NP-hard set-cover problem.

• We then consider three variations of the problem rep-
resenting different antenna beam patterns, and provide
Integer Linear Programs to find the optimal wireless plan
for each variation.

• We propose a polynomial-time heuristic to solve WPP
and through numerical results we demonstrate its effi-
ciency.

The rest of the paper is organized as follows. Section II
provides an overview of smart antennas and our system model.
In Section III, WPP is formally defined and its complex-
ity is discussed. Our optimization framework is formulated
in Section IV. In Section V, a polynomial-time algorithm
is presented to solve large-scale instances of the problem.
Sample numerical results are provided in Section VI. Finally,
Section VII concludes this paper.

II. SYSTEM MODEL AND ASSUMPTIONS

A. Antenna Model

A K-element smart antenna consists of K omni-directional
antenna elements with sophisticated signal processing algo-
rithms capable of identifying signal’s direction of arrival and
calculating beamforming weights w = [w1, w2 . . . , wK ] based
on that direction. The objective is to estimate the direction that
makes highest Signal-to-Noise-Ratio (SNR) at the receiver and
determine amplitude and phase of each element so that the
beam would be created towards that direction. Each wi is a
complex number of the form wi = |wi|e−φi , where |wi| and
φi denote, respectively, the amplitude and phase of the signal
generated by antenna element i.

There are two main types of smart antennas, namely
adaptive and switched antennas. In the former, beamforming
weights are computed based on receiver channel conditions,
while in the latter, beam patterns are fixed and weights are pre-
computed. Although switched smart antennas provide lower
antenna gains for specific users, they do not need instantaneous
channel feedback from the receivers. Thus, in this work,
we consider switched antennas, which achieve considerable
performance at a lower complexity. A K-element switched
antenna can produce K distinct beams in different directions.
Let D = {d1, d2, . . . , dK} denote the set of possible direc-
tions.

For consumer devices, typically, omni-directional antennas
are used because of size limitations. Therefore, the system
we consider in this paper consists of smart antenna APs and
typical omni-directional clients. Similar to [1], we consider
a two-phase TDMA-based MAC protocol to synchronize
downlink and uplink traffic. The first phase is dedicated to
directional transmissions from APs to clients, while the second
phase is reserved for clients omni-directional transmissions.
The majority of the traffic in enterprise WLANs tends to be
downlink, therefore, our goal is to find a network coverage
plan that meets downlink traffic requirements.

B. Network Model

The indoor area is discretized into a set of n possible
user locations L = {l1, l2, . . . , ln} that must be covered by
the wireless plan. This is a natural approximation of the
environment (as users cannot be in any arbitrary location) that
gives the problem a discrete structure rather than a continuous
structure which is more difficult to formulate. This approxi-
mation could be made as accurate as needed by considering
more possible user locations. There is also a set of m potential
antenna locations denoted by A = {a1, a2, . . . , am}. Each of
ai’s is a possible location for placing an antenna and no more
than one antenna can be located at a point.

C. Communication Model

Let Pi ≤ Pmax denote the transmission power of antenna
ai, i.e., the antenna placed at location ai ∈ A. We assume
that each antenna can choose a transmission power from a set
of power levels P = {p1, p2, . . . , pl}, where pi ≤ Pmax for
1 ≤ i ≤ l.

Let Pij denote the power received by location lj ∈ L from
antenna ai. Two propagation models, namely the Protocol
Model and the Physical Model [10], are widely used in the
literature for modeling the effect of interference in wireless
networks. In this paper, we consider the more complicated
Physical Model as it provides a more accurate representation
of the average behavior of received signal power in a wireless
network.

In the Physical Model, a user at location lj successfully
receives information from its associated AP, ai if the SINR of
the ai’s transmission at lj is beyond a threshold βj , otherwise
nothing can be received. Let γj denote the SINR at location lj
and T = {t1, t2, . . . , tl} denote the set of active transmissions
other than ai’s transmission. Then γj is given by

γj =
Pi/d

α
ij∑

tk∈T Pk/d
α
kj + ηj

(1)

where, dij is the distance between ai and lj , α ≥ 2 is the path-
loss exponent, and ηj denotes the noise power at location lj .
For notational simplicity, define gij as gij = 1/dαij .

The bit-rate achievable by user located at lj is a non-
decreasing function of γj . For instance, using Shannon’s
formula, the maximum error-free rate λj achievable by user
j is given by λj = log(1 + γj). Thus by using different
thresholds γj across users, non-uniform traffic demand in the
network could be addressed.

III. WIRELESS PLANNING PROBLEM

In this section, we formalize our definition of a wireless plan
and define the wireless planning problem that is considered in
this paper.

Definition 1 (Wireless Plan). Let U = A×B be the universe of
possible beam pattern placements, where A denotes the set of
potential antenna locations and B denotes the set of possible
beam patterns that is defined as B = {(b1, ..., bK)|bi ∈
P;
∑

1≤i≤K bi ≤ Pmax}. A nonempty set W ⊆ U s.t



W = {(ai, bli)|ai = aj ⇒ bli = blj} is called a wireless
plan.

According to definition of wireless plan, two antenna can
not be placed at the same locations. All the wireless plans
do not satisfy the coverage requirements of the network. The
following definition specifies a plan by which the coverage
condition is satisfied.

Definition 2 (Desirable Wireless Plan). Given a prespecified
SINR threshold βj for each location lj ∈ L, A wireless plan
W+ is called desirable if ∀lj ∈ L, γj > βj .

Due to the cost associated with deployment and mainte-
nance of a wireless network, the objective of network planning
process is to minimize the number of antennas required to
cover the entire network.

Definition 3 (Wireless Planning Problem). The objective of the
wireless planning problem is to find a desirable wireless plan
W∗ that minimizes the number of required antennas. More
formally, the wireless planning problem is defined as

W∗ = argmin
W+

∑
(ai,.)∈W+

1

.

(2)

A. Computational Complexity

Wireless LAN planning problem has be shown to be NP-
hard [8] [7]. Thus there is no hope of finding any polynomial
time algorithm for it. Actually this problem is an extension of
NP-hard set-cover problem [11]. WPP formulations that will
be presented in the paper are all based on integer formulation
of set-cover problem, thus in this section we present this
problem and show that how a simpler form of WPP can be
cast to this problem. Set-cover is defined as follows,

Definition 4 (Set-cover Problem). Given a universe U , a
collection of subsets of U denoted by S = {S1, . . . , ST }, and
a cost function c : S → R+, find a minimum cost subcollection
of S denoted by C that covers all elements of U .

Consider a simpler variation of WPP in which interference
is ignored in computing SINR for all locations.We refer to this
variation as WPP-S. We illustrate constructively the mapping
of WPP-S to set-cover problem.

Here, the universe U is the set of locations to be covered
U = L and collection of subsets S is defined as S = {Sim
| Sim is the set of all locations lj ∈ L that are covered by
(ai, bm) ∈ A × B}. Let the cost of a set Sim be the price
of installing an antenna at ai. Considering equal cost for all
the antennas, the objective of WPP-S is to find the minimum
number of ai’s which covers the universe L.

We say a point lj is covered by Sim when it is within
the area of one of the beams of bm such that the transmitted
power p on that beam, meets the requirement of SINR model.
Since in WPP-S, we don’t consider interference from other
concurrent transmissions, equation (1) is reduced to

p ≥ dαijηjβj (3)
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Fig. 1. Beam pattern of a directional antenna.

We model the antenna beam as a circular sector in which the
relationship between the beam and the set of points it covers
is determined by the Target In Sector (TIS) test [12]. This
test states that a point lj is covered by beam d of an antenna
located at ai if both of the following conditions are satisfied:

1) dij ≤ r,
2) ~vdi · ~dij ≥ dij ∗ cos( θ2 ),

where ~dij is the vector from location ai to lj , ~vdi is a unit
vector that denotes the beam direction, r is the transmission
range (obtained from 3) and θ is the central angel of the beam
(see Fig. 1).

The first condition in TIS checks if the point lj is within
the transmission range of the antenna placed at ai. The second
condition checks if the vector ~dij is within the central angle
of the antenna beam by computing the inner product of ~vdi
and ~dij . The equality holds when point lj is along one of the
two edges of the transmission sector of the antenna beam.

A brute force solution is to consider all subsets of S in
increasing order of cardinality, check the coverage condition 1,
and output the first subset that satisfies it. However, there
is an exponential number of subsets which results in worst-
case exponential running time. In the following sections we
formulate the problem as a integer linear program and present
a polynomial-time heuristic to solve it.

IV. WIRELESS PLANNING FORMULATION

In this section, we derive integer linear programs for several
instances of WPP. In derivation of these formulations we
basically extend integer formation of set-cover problem 4 by
adding constraints of WPP to it.

min
∑
Si∈S

wixSi

s. t.
∑

Si : u∈Si

xSi
≥ 1 ∀u ∈ U

xSi
∈ {0, 1} ∀Si ∈ S .

(4)

Where wi is the weight assigned to set Si. The constraint
indicates coverage of every member u of the universal set U by
at least one covering subset. The objective function indicates
the goal to minimize the cost of the cover.

The SINR constraint described in section II is a nonlinear
function, hence to simplify the formulation, we pre-compute



gij for every pair (ai, lj) ∈ A × L. This computation takes
O(|A||L|) time, where |A| and |L| are the cardinalities of the
sets A and L respectively.

We also need to know the set of points that is covered by
each antenna beam-pattern pair. As we have already mentioned
we use TIS test to find this set. Although the power radiated
from an antenna in the form of an electromagnetic signal
decays as the signal travels in the environment but does
not disappear completely over finite distances of an indoor
environment. Thus, we assume that within the central angle of
the antenna beam the antenna coverage range is unbounded.
Obviously, the boundaries of the indoor environment(set L)
put a limit on the cardinality of the covered set by each beam.
Matrix C[cj,im]|L|,|A||B| represents coverage relationship be-
tween all (lj ; ai, bm) pairs such that

cdji =


1, If location lj is under the coverage of antenna ai

when it radiates based on beam pattern m,
0, otherwise.

Computing matrix C takes O(|A||L||B|) time.
We consider three different beam pattern types, namely

Constant Power Single-Beam, Dynamic Power Single-Beam,
Dynamic Power Multi-Beam. These antenna patterns differ in
the number of beams that an antenna can radiate and the set
of available power levels for each beam.

A. Constant Power Single-Beam System

In this system, antennas radiate a single-beam with maxi-
mum power Pmax. There are D| beam patterns totally. Thus,
we only need to find the optimal antenna locations and
orientations but not the power levels. To formulate WPP in
this case, we introduce a set X = {xdi |ai ∈ A, d ∈ D} of
binary decision variables to represent the decision space of
the problem where xdi is defined as follows

xdi =


1, If an antenna is placed at location ai and

directed towards direction d,
0, otherwise.

Another set of decision variables H = {hdji|lj ∈ L, ai ∈
A, d ∈ D} is defined to capture the associations of lj ∈ L
to xdi ∈ X as follows

hdji =

{
1 If location lj is associated to antenna beam xdi
0 otherwise.

Using the above definitions, WPP can be represented as the
following Integer Linear Program:

min
∑
i,d

xdi (5a)

s. t. ∑
d

xdi ≤ 1, ∀ai ∈ A (5b)

∑
i,d h

d
jix

d
iPij∑

i,d(1− hdji)cdjixidPij + ηj
≥ γj , ∀lj ∈ L (5c)∑

i,d

hdji ≤ 1, ∀lj ∈ L (5d)

hdji ≤ xdi , ∀(lj , ai, d), lj ∈ L, ai ∈ A, d ∈ D (5e)

hdji ≤ cdji, ∀(lj , ai, d), lj ∈ L, ai ∈ A, d ∈ D (5f)

The objective function (5a) captures our desire to minimize
the number of antennas used in the plan. (5b) enforces
existence of at most one antenna at each AP location; by
constraint (5c), coverage of each location lj according to SINR
model is guaranteed; the numerator in the constraint takes the
received power from beam d of antenna ai if it is installed
and lj is associated to it. The denominator takes the sum of
received powers from all existing antennas which cover lj and
lj is not associated to them plus ηj . (5d) indicates that each
location lj should be associated to at most one antenna beam.
Constraints (5e) and (5f) denote that when lj is associated to
beam d of the antenna ai, such beam must exist and cover lj .

Due to inclusion of hdjix
d
i term, the constraint (5c) is

quadratic. However, because of constraints (5e) and (5f) and
the fact that hdji, x

d
i , and cdjk all take {0, 1} values, we have

hdjix
d
i = hdji and hdjic

d
ji = hdji. Thus, this constraint can be

represented as follows:∑
i,d h

d
jiPij∑

i,d c
d
jix

d
iPij −

∑
i,d h

d
jiPij + ηj

≥ γj (6)

or, equally as the following linear constraint:∑
i,d

hdjiPij − γj(
∑
i,d

cdjix
d
iPij) +

γj(
∑
i,d

hdjiPij)− γjηj ≥ 0 (7)

B. Dynamic Power Single-Beam System
With fixed power assignment, the only available options to

cover all the points in the area are installing new antennas
or changing the locations and directions of current available
antennas. Nevertheless, based on the SINR capture model, it is
possible to change transmission powers of deployed antennas
and cover new points. Since the transmission power of an
antenna can take any value pl ∈ P , there exist |P||D| beam
patterns in this case.

To include variable power assignment in our optimization
framework, decision variables xdi and hdji are redefined as

xdi [l] =


1, If an antenna is placed at ai , directed towards

direction d and transmit at power pl,
0, otherwise.

and

hdji[l] =

{
1, If location lj is associated to antenna xdi [l],
0, otherwise.

These variables are substituted in 5a,5b,5c,5d, 5e,5f, and Pij
is also adjusted to obtain the formulation of dynamic power
single-beam system.



C. Dynamic Power Multi-Beam System

Smart antennas can radiate multi-beam beam patterns by
combining multiple beams in different directions and adjusting
amplitude and phase of them. In this case, the supplied power
is distributed among active beams either uniformly or non-
uniformly, but the sum of allocated powers is bounded above
to Pmax. If the difference of each two consecutive power levels
is the same pi+1−pi = Pmax/l,∀1 ≤ i ≤ |P|−1, the number
of these patterns is equal to

(|P|+|D|
|D|

)
. Following the method

of previous subsections, new binary variable are defined. We
define xbi as the binary variable which takes value 1 when
there is an antenna at location ai radiating beam pattern b.
Also binary variable hbji captures association of location lj
to xbi . By substituting these variables in 5a,5b,5c,5d, 5e,5f,
we obtain the formulation for a dynamic power multi-beam
system.

D. Discussion

The above formulations all can be solved using integer
programming algorithms like branch and cut implemented
in various optimization softwares. Branch and cut employs
a linear programming algorithm such as Simplex to find
the optimal solution to integrability-relaxed version of the
problem. Since the solution may not be integral, through
techniques like cutting plane and branching suitable inequality
constraints are found and augmented to the problem to forbid
the same fractional results happen again. These steps are done
successively until an optimal integer solution is achieved.
This approach may need exponential number of iterations to
explore the entire integer domain of the problem. In addition,
even medium-size instances of WPP results a large number
variables and constraints. Thus, finding the optimum solution
for large instances of WPP using integer programming solvers
may become impractical. However, even a suboptimal solution
might be much better than ad hoc planning and be close
to optimal one. In the following section we present our
polynomial-time heuristic to find such a solution.

V. GREEDY ALGORITHM

Branch and cut considers all possible pairs of (antenna,
beam patterns) and prunes the space successively to find the
optimal solution. Based on set-cover heuristic [11], we present
a heuristic in which WPP is solved for one antenna at a time,
choosing appropriate place and beam pattern for it. This leads
to a greedy approach in which we make a locally optimum
decision at the moment with hope that sequence of locally
optimum decisions achieves globally optimal solution. The
algorithm is called GreedySelect and shown in algorithm 1.
We show the list of selected (antenna,beam patterns) as S
and covered locations by C. At first both sets are empty. In
each iteration, the pair of antenna location and beam pattern
that covers maximum uncovered user locations is selected and
added to S . This process continues until all user locations
are covered or addition of new antennas isn’t possible or
doesn’t improve coverage. When an antenna enters S never
leaves it, however introduction of new antennas may remove

some locations from C. Since, there are at most |A| antennas
available, the number of iterations is O(|A|). Finding and
updating information at each iteration takes O(|A||L|), so the
time complexity of GreedySelect is O(|A|2|L|).

Algorithm 1: GreedySelect Algorithm
Input: A,L
Output: S, C
begin
S ←− ∅;
C ←− ∅;
while |S| < |A| and |C| < |L| do

Cnum← |C|;
foreach (ai, bk) /∈ S do
S ← S ∪ (ai, bk);
foreach lj ∈ L do

Compute γj ;

Covered←
∑
j 1{γj>βj};

if Covered > Cnum then
(besta, bestb)← (ai, bk);
Cnum← Covered;

S ← S − (ai, bk);

if Cnum >
∑
j 1{γj>βj} then

S ← S ∪ (besta, bestb);
C ← {j|γj > βj};

VI. NUMERICAL RESULTS

In this section, we provide numerical results to compare
different antenna placement scenarios.

A. Network Setup

User locations are distributed according to 2D Poisson
distribution with parameter λ = 1 in a square area. A user
location is selected with probability p = 0.7 as a possible
antenna location. K is set to 4, thus there are four possible
beam directions each with the central angle of π

2 . The set
of power levels P includes four values of 1, 2, 3, 4. The path
loss exponent α is assumed to be 2. For each location lj ,
SINR threshold βj , and noise ηj are set to 1. In the results,
Optimal refers to the results of integer formulations and
Greedy refers to the results of GreedySelect algorithm. We use
Fixed, Variable, and Multi as abbreviations of constant power
single-beam system, dynamic power single-beam system, and
dynamic power multi-beam system respectively.

B. Results

we increase area of the network from 9 to 36. λ remains
fixed, so the average number of user locations will be increased
from 9 to 36. For each network size, we average the results
of Greedy and Optimal over 10 runs.

The optimal number of antennas required to cover all
locations is demonstrated in figure 2. These results compare
different beam pattern types. As observed, dynamic power
multi-beam pattern constantly outperforms other types of beam
patterns. We also measured the results of greedy algorithm for
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Fig. 2. Optimal number of antennas to cover the network
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Fig. 3. Coverage ratio of GreedySelect algorithm

different beam patterns to compare them with the associated
optimal ones. Greedy algorithm may fail to find a total
coverage plan when it is available. We define coverage ratio
as the ratio of the number of locations covered by the greedy
algorithm to the number of locations. The coverage ratio
achieved by greedy algorithm is shown in figure 3. For small
network sizes where maximum distance between two locations
in network is comparable to antenna transmission radius, we
observe total coverage. However for larger network sizes when
there isn’t such a relationship, GreedySelect almost achieves
75% coverage. As apparent from the plot, we expect this
ratio continues to hold. This plot suggests that for a random
distribution of nodes GreedySelect finds a plan with constant
coverage ratio(near 1).

When GreedySelect algorithm covers all locations, it typ-
ically needs more antennas than the optimal one. We define
antenna ratio as the ratio of the number of antennas employed
in GreedySelect to the optimal case. It is another criterion
which together with coverage ratio show the behavior of
GreedySelect. The antenna ratio is depicted in figure 4. As
apparent for larger network sizes, antenna ratio is almost 0.8.
All in all, antenna ratio of 0.8 and coverage ratio of 0.75
confirm the efficiency of the greedy algorithm.
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Fig. 4. Antenna ratio of GreedySelect algorithm

VII. CONCLUSION

The problem of indoor wireless planning using smart anten-
nas is investigated in this study. We formulate single-beam and
multi-beam cases of WPP as integer linear programs. Due to
complexity of finding the optimal solution, we also present a
greedy heuristic. Although numerical results confirm efficiency
of greedy algorithm, optimal solutions are always desirable.
Thus in the future, we intend to apply integer programming
decomposition methods to make finding optimal solution more
tractable. Considering fairness issues in the planing problem
is another interesting area for future research.
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