
Cloud-based Spectrum Sharing
in Virtual Wireless Networks
Fatemeh Shirzad

Department of Computer Science
University of Calgary

Calgary, Canada
Email: fatemeh.shirzad@ucalgary.ca

Majid Ghaderi
Departmnet of Computer Science

University of Calgary
Calgary, Canada

Email: mghaderi@cs.ucalgary.ca

Abstract—This paper studies the network-wide spectrum shar-
ing problem in virtual cellular networks applicable to Cloud
Radio Access Network architecture. Virtual wireless networks
share network resources such as time-frequency resources on
the same physical infrastructure. A critical problem is then the
allocation of shared physical resources to the virtual networks
so that the utilization of the resources is maximized. We for-
mulate the problem as a linear integer maximization problem,
which is shown to be NP-hard. We then develop a polynomial
time heuristic algorithm called Non-balancing Spectrum Sharing
(NSS), which is guaranteed to achieve a solution whose resource
utilization approaches half of that of the optimal solution in the
worst-case. Two additional heuristic algorithms are also proposed
to improve the worst-case performance of NSS by enabling load
balancing among adjacent base stations. We have simulated the
proposed algorithms and the optimal algorithm under different
network configurations. The simulation results confirm that i)
NSS performs remarkably close to the optimal algorithm, and
ii) the two other heuristic algorithms outperform NSS, and
consequently are even closer to the optimal algorithm in the
simulated scenarios.

Index Terms—Virtualization; Spectrum Sharing; Wireless Net-
work Embedding; Virtual Resource Allocation; Cloud Radio
Access Networks; Cellular Networks;

I. INTRODUCTION

A. Motivation

One of the problems facing cellular networks today is the
scarcity of wireless resources because of an upsurge in mobile
data traffic. According to [1], mobile data will experience
tenfold growth from 2014 to 2019. One approach to address
this problem is to add new infrastructure such as new base
stations to improve spatial frequency reuse. However, this
approach would increase both the fixed and operational costs
of the network, while the revenue of the network operator
would not increase at the same pace because of government
regulations and competition in the market.

While current cellular networks are faced with a shortage
of radio resources, the radio frequencies currently allocated
to these networks are actually underutilized [2]. Extensive
research is being conducted to address this problem and design
networks that are more efficient in utilizing limited radio
resources [3].

One of the promising proposals to address the underuti-
lization of radio resources in cellular networks is based on

radio access network (RAN) virtualization. RAN virtualization
refers to the sharing of physical radio network resources
among several virtual networks. Network virtualization, in
general, improves resource utilization for physical network
owners and reduces management and equipment costs for
virtual network operators [3].

With RAN virtualization, several Mobile Virtual Network
Operators (MVNOs) lease infrastructure and spectrum from
Mobile Network Operators (MNOs), who own the network
infrastructure and spectrum. This reduces start-up costs and
time for MVNOs. Today, MVNOs lease spectrum statically,
which means MVNOs acquire sufficient spectrum to support
peak traffic demand. However, there are times in which the
actual demand is much lower than the peak demand. This
results in an underutilization of resources. RAN virtualization
enables dynamic allocation of spectrum resources to MVNOs,
which results in higher utilization of radio and infrastructure
resources.

One of the main issues in realizing RAN virtualization
is resource sharing, particularly spectrum sharing, among
multiple virtual RANs. We note that several phrases are used
in the literature to refer to this problem, such as spectrum
sharing, wireless resource allocation, and wireless virtual net-
work embedding. We will use these phrases interchangeably
throughout the paper when appropriate.

A few solutions have recently been proposed in the literature
to address the resource sharing problem in virtual RANs [4]–
[10], which will be discussed later in Subsection I-C. The
problem with these existing solutions is that they consider base
stations independently. However, in cellular networks, resource
allocation on one base station may affect resource allocation
on other base stations. In fact, we can accommodate requests
in regions that are common to more than one base station in
such a way that more balanced allocation is achieved, i.e., one
base station is not overwhelmed with requests. By distributing
the load more evenly among neighboring base stations, fewer
resource requests from virtual networks are rejected. Thus,
more resource requests are accommodated across the base
stations, which leads to a higher utilization of radio resources.

2

Fig. 1: The structure of a frame in LTE cellular systems.

Fig. 2: The conceptual architecture of the virtualized RAN.

B. Our Work

In this paper, we investigate the spectrum sharing problem
from a radio access network point of view. In fact, we take
a network-wide view towards resource sharing as opposed to
treating base stations individually as with the above-mentioned
works. In our approach, resource allocation decisions are
made in a relatively short time scale, which is in the order
of user scheduling operations. Considering short time scale
is in accordance with the recommendation made by Third
Generation Partnership Project (3GPP) about network sharing
in future networks [11]. For example, in Long-Term Evolution
(LTE) networks, user scheduling decisions are made at the
beginning of each scheduling frame, where a frame consists
of 10 timeslots and each timeslot is 1 ms (see Fig. 1). Making
frame-level decisions implies that a virtual network knows
exactly the amount of its resource requirement over each frame
and hence can ask the network for that much requirement at
the beginning of the frame.

We focus on Cloud-RAN architecture [12], in which spec-
trum sharing can be performed in a centralized way. There-
fore, we assume that a central hypervisor controls sharing
of spectrum to virtual networks (see Fig. 2). The objective
of the spectrum sharing algorithm on the hypervisor is to
accommodate as many resource requests as possible.

Our main contributions, in this paper, are summarized as
follows.
• We formulate the spectrum sharing problem in the cel-

lular network virtualization context as a linear integer
maximization problem, which is shown to be NP-hard.

• A 1
2 -approximation algorithm of polynomial time com-

plexity called Non-balancing Spectrum Sharing (NSS) is
developed to solve the problem. We analyze the compu-
tational complexity of NSS and prove that it achieves the
approximation ratio 1

2 .
• Two other heuristic solutions called Balancing Spectrum

Sharing 1 (BSS1) and Balancing Spectrum Sharing 2
(BSS2) are proposed based on the idea of balancing the
load among neighboring base stations. Using simulations,
we show that BSS1 and BSS2 have better worst-case
performances than NSS.

• We study the performances of the three proposed algo-
rithms and the optimal algorithm via simulation.

C. Related Work

Network virtualization in wired networks has been investi-
gated extensively [13]. However, wireless network virtualiza-
tion is still in its infancy and faces several challenges that need
to be addressed in order to have a practical solution [3]. One of
the main issues, in this regard, is resource sharing, particularly
spectrum sharing among wireless virtual networks.

A framework in [4] is proposed for the spectrum sharing
problem. In this framework, a physical network has different
dimensions such as frequency, time, and space. Each virtual
request is a set of resource blocks with the same dimensions
as those of the physical network, and the problem is to place
these blocks on the physical network so that maximum revenue
is achieved. Based on this framework, a number of heuristic
solutions are proposed in [5] and [6]. Another approach to
the spectrum sharing problem is presented in [10], where
the authors introduce Network Virtualization Substrate (NVS)
with two levels of scheduling: slice level (virtual network
level) and flow level. Other solutions for spectrum sharing
in wireless networks are presented in [7]–[9].

Perhaps the closest work to ours is the work presented
in [14]. Although [14] presents a network-wide approach to
spectrum sharing, it does not consider resource requests over a
short time scale because of signaling overheads. This restric-
tion is primarily due to the distributed network architecture
they have considered which is the traditional LTE-type cellu-
lar architecture. Our approach is based on allocating virtual
network resource requests over a time frame. This means that
the problem is formulated and solved at the beginning of each
time frame. The importance of working at such a short time
scale is that virtual networks require such capability in order
to have control over their user scheduling decisions. Moreover,
it is more feasible for virtual networks to have more accurate
information about their resource demands [5].

D. Paper Organization

The rest of the paper is organized as follows. In Section II,
we describe our system model and present a formulation
of the problem as a linear integer maximization problem.
Our proposed algorithms and their analysis are described in

3

Section III. The simulation results are presented in Section IV.
Section V concludes the paper.

II. SYSTEM MODEL

In this section, we describe the system architecture, the
resource model, and the problem formulation.

A. System Architecture

Different components of the system considered in this paper
are depicted in Fig. 2. As shown in the figure, the task of
scheduling individual users is the responsibility of each virtual
network. The virtualization layer, called hypervisor, allocates
physical resource blocks to virtual networks based on the
resource requests it receives from them. In this architecture,
virtual networks have full control and visibility over the
allocation of their resources to their users. For instance, a
virtual network may wish to consider Quality of Service (QoS)
requirements and/or fairness among individual users, while
another virtual network only considers revenue maximization
when scheduling individual users. This customization property
is a key requirement of a virtualization system [3].

There are three units in the hypervisor layer. One unit
estimates or acquires the required amount of resources. The
second unit, access control unit, ensures that Service Level
Agreements (SLAs) are satisfied by providing fairness and
isolation among virtual networks. If SLAs are satisfied, the
resource requests are then sent to the third unit, resource
allocation unit. The resource allocation unit runs the spectrum
sharing algorithm, which could be one of the algorithms
proposed in this paper.

Our proposed algorithms are designed for Cloud-RAN
architecture, in which the functionality of a traditional base
station is divided between remote radio heads (RRHs) and
baseband processing units (BBU) hosted in a center called
BBU pool. RRH and BBU perform the radio interface and
processing functionalities, respectively. BBUs are pooled to-
gether in the data center and are shared among base stations.
Fig. 3 shows the high-level architecture of a Cloud-RAN. We
utilize this architecture to develop a network-level resource
allocation mechanism. Interested readers may refer to [12] for
more details on Cloud-RAN.

B. Resource Model

We assume that the physical resources are divided into a
number of orthogonal time-frequency resources such as in
LTE systems. Each of these resources is called a resource
block, which is the smallest unit that can be allocated to a
user. Following the LTE architecture, a set of resource blocks
in time and frequency domain is shown in Fig. 1. A time slot
is the duration of one resource block in time. A number of
time slots form a time frame. The resource allocation problem
is solved at the beginning of each time frame for downlink
traffic. The available resources for each RRH are a subset of
the total resource blocks in a frame. As provisioned in LTE
systems, we assume that interference between any two RRHs
is coordinated using techniques such as Inter-Cell Interference

Fig. 3: CRAN architecture and its components.

Coordination (ICIC) and its various extensions [15]. By this
separation of interference management and virtual network
embedding, we can develop a formulation that is a variant
of the Knapsack problem [16]. This way, the problem has less
integer variables and constraints; therefore, small to medium
size problems can be solved optimally using off-the-shelf
optimization algorithms.

C. Notation

The list of notations used throughout the paper is presented
in Table I. Below, we explain some of the notations in more
detail:

• Each virtual network, in each time frame, has an asso-
ciated resource request called a virtual request. Every
virtual request is composed of a number of virtual sub-
requests. The set {vsr1, vsr2, ..., vsrN} represents the
sub-requests that are to be scheduled in one frame.

• Each virtual sub-request contains a number of requested
resource blocks in a specific geographical region for a
group of individual users. That is, for all j, vsrj is a
tuple 〈Bj , wj , tj〉, in which Bj is a set of RRH indices to
which vsrj is assignable. For instance, let Bj be {1, 2, 4};
it means that any of rrh1, rrh2, and rrh4 can be chosen
to serve vsrj . This happens when vsrj is in the coverage
region of these three RRHs.

• The waiting time for vsrj is tj , i.e., vsrj must be
accommodated within tj time frames after entering the
system, otherwise it leaves the system when waiting time
is over.

• For any rrhi, the set Ui contains the index of any vsrj
if i is in Bj . It is, in fact, composed of indices of all
sub-requests that are assignable to rrhi.

D. Problem Formulation

The objective of the spectrum sharing problem is to max-
imize the utilization of the system, i.e., maximizing the total
number of resource blocks allocated to virtual networks.

4

TABLE I: Table of notations used in the paper.

Notation Meaning
B Number of RRHs

rrhi RRH i
ci Capacity of rrhi in terms of available resource blocks
N Total number of sub-requests

vsrj Virtual sub-request j
Bj Set of indices of all RRHs to which vsrj is assignable
Ui Set of indices of all vsrj that i is in Bj

tj Waiting time of vsrj
wj Number of requested resource blocks in sub-request vsrj

The problem is formulated as the following linear integer
optimization problem in each time frame:

maximize
B∑
i=1

∑
j∈Ui

wj · xij (1)

subject to
∑
j∈Ui

wj · xij ≤ ci, 1 ≤ i ≤ B (2)∑
i∈Bj

xij ≤ 1, 1 ≤ j ≤ N (3)

xij ∈ {0, 1}, 1 ≤ i ≤ B, 1 ≤ j ≤ N (4)

In this formulation, xij is an integer variable defined as
follows:

xij =

{
1 if rrhi serves vsrj
0 otherwise

The constraint (2) enforces resource limitation of each RRH,
i.e., the total number of resource blocks allocated to the
sub-requests in rrhi is at most equal to the capacity ci.
The constraint (3) states that each sub-request vsrj must be
accommodated by at most one RRH in Bj .

III. SPECTRUM SHARING ALGORITHMS

A. Complexity of the Problem

The problem, as formulated in the previous section, is a
variant of the Knapsack problem called Multiple Knapsack
with Assignment Restriction (MKAR). It is shown that MKAR
is NP-hard [16]. Therefore, approximation algorithms are the
only choice to solve it at the present time. Although the
Knapsack problem has been studied extensively, to the best of
our knowledge, the only result on MKAR is presented in [17].

The solution presented in [17] is based on successively
solving single Knapsack problems. In this approach, knapsacks
are chosen in an arbitrary order. Once a knapsack is chosen
then a single Knapsack problem is solved with the items
assignable to it. The accommodated items are subsequently
eliminated from the item list of the remaining knapsacks.
The algorithm used to solve each single Knapsack problem
determines the efficiency of the main algorithm. In the best
case, if an optimal single knapsack algorithm is used, the
approximation ratio is 1

2 . This means that the solution value in
the worst-case is half of the optimal solution value. This ratio
is only achieved by optimally solving the single Knapsack
problem, which has exponential running time because the
Knapsack problem is NP-hard [16].

In this section, we present three algorithms to solve the
problem. The first algorithm called Non-balancing Spectrum
Sharing (NSS) is designed based on the framework of [17].
We show that for our specific spectrum sharing problem, under
some natural assumptions that are often true in cellular net-
works, we can approach the approximation ratio of 1

2 without
any need to solve the single Knapsack problem optimally.
Thus, NSS runs in polynomial time. We also demonstrate, by
an example, that the ratio 1

2 is tight. Next, we develop two
other heuristic algorithms called Balancing Spectrum Sharing
1 (BSS1) and Balancing Spectrum Sharing 2 (BSS2), which
balance the load among nearby base stations. We conjecture
that their approximation ratios are better than that of NSS, but
we can currently show this only with simulations.

B. Description of NSS

NSS is summarized in Algorithm 1. It considers the RRHs
sequentially in an arbitrary order. It tries to accommodate
the assignable sub-requests to each considered RRH. For
each rrhi, the assignable sub-requests (sub-requests in Ui)
are sorted in a non-increasing order in terms of wjs. Then,
each sub-request vsrj , in this order, is examined to see if wj
exceeds the current capacity of rrhi. If it does not exceed,
the RRH’s current capacity is decreased by wj . This means
that vsrj is assigned to rrhi in the current time frame. All
assigned sub-requests to rrhi are removed from the list of
assignable sub-requests to the remaining RRHs.

Algorithm 1 Non-balancing Spectrum Sharing (NSS)

1: for each i ∈ {1, ..., B} do
2: Sort the sub-requests in Ui in non-increasing order in

terms of their requested weights (wjs)
3: end for
4: for each i ∈ {1, ..., B} do
5: for each j ∈ sorted Ui do
6: if wj ≤ ci then
7: Assign vsrj to rrhi
8: ci = ci − wj
9: Remove vsrj from U of all RRHs in Bj while

keeping them sorted
10: end if
11: end for
12: end for

C. Analysis of NSS

We prove that with an upper bound on the size of each sub-
request, NSS achieves a 1

2 -approximation ratio in polynomial
time. In particular, we assume that wj ≤ q ·ci for any rrhi and
any vsrj assignable to it, for some 0 < q < 1. This assumption
on the size of sub-requests is reasonable in the cellular network
context as the probability that one virtual network requests a
large fraction of resources for only one time frame is low.
Even if this happens, it is probable that the sub-requests can
be divided into several smaller sub-requests. For instance, if a
virtual network requests a large portion of available resources

5

for its users, it is possible to divide this request into several
sub-requests with fewer users. To be accurate, the assumption
is that for some 0 < q < 1, the following inequalities hold.

wj ≤ q · ci , ∀j ∈ {1, ..., N} ,∀i ∈ Bj (5)

Using this assumption, the following theorem is proved.

Theorem 1. NSS achieves a 1−q
2−q -approximation ratio if the

size of any vsrj is at most q · ci for some 0 < q < 1, and for
any rrhi that vsrj is assignable to.

To prove Theorem 1, we describe and prove a lemma. First,
some definitions are in order. In [17], the half-full property is
defined as a property of some algorithms for MKAR problem.
According to this definition, an algorithm for MKAR is half-
full if for every unassigned item at the end of the execution
of the algorithm, any knapsack i that the item is assignable to
has at least half of its capacity filled.

Here we provide a definition which is a generalization of
the half-full property.

Definition 1. An algorithm for the MKAR problem is β-full
for some 0 < β < 1 if for every unassigned item at the end of
the execution of the algorithm, any knapsack i that the item
is assignable to has at least β · ci of its capacity filled.

Now, we prove the following lemma and use it to prove
Theorem 1.

Lemma 1. Any algorithm with β-full property is β
β+1 -

approximation solution for MKAR problem.

Proof. Take A as any solution with β-full property with UI as
the set of all unassigned items at the end of its execution. Then,
W (UI) denotes the sum of weights of all items in UI. Also,
let Wopt and WA denote the solution values of the optimal
algorithm and algorithm A, respectively. As A has the β-full
property, it follows that:

β · C(UK) ≤W (AU), (6)

where UK denotes the set of all knapsacks with at least one
unassigned item among assignable items related to them, and
AU denotes the set of items assigned to knapsacks in UK in
algorithm A. The sum weight of all items in AU is denoted by
W (AU). Let C(UK) denote the sum capacity of all knapsacks
in UK. As AU is a subset of all assigned items, it follows that,

W (AU) ≤WA . (7)

From (6) and (7), the following is concluded,

β · C(UK) ≤WA . (8)

On the other hand, the following inequality holds,

Wopt ≤ C(UK) +WA . (9)

Combining (8) and (9) yields the following results,

Wopt ≤ (1 +
1

β
) ·WA .

This completes the proof.

Fig. 4: NSS approximation ratio (1− q)/(2− q).

Next, using Lemma 1, we prove Theorem 1.

Proof. The problem is analogous to MKAR problem; sub-
requests and RRHs are analogous to items and knapsacks
respectively. Therefore, it is sufficient to prove the theorem
for MKAR problem. We prove that NSS is (1− q)-full using
contradiction as follows. Suppose the algorithm is not (1−q)-
full. Then, there exists an instance of the problem in which
there is a knapsack i which is not (1 − q)-full and has an
unassigned item j. Then the remaining capacity of knapsack i
is more than q ·ci. However this is not possible, otherwise item
j would have been accommodated as wj ≤ q·ci. Consequently,
the algorithm has (1 − q)-full property, and using Lemma 1,
Theorem 1 is proved.

According to Theorem 1, the approximation ratio of NSS
approaches 1

2 as q decreases. Fig. 4 depicts the relation
between q and the approximation ratio 1−q

2−q .

Tightness of the bound: We describe an example to show
the tightness of the bound. Suppose q = 1

10 ; there are two
RRHs, rrh1 and rrh2 each with M units of resources, and
there are 20 sub-requests. Each of the first ten sub-requests
needs M

10 units of resources, and each of the remaining sub-
requests needs M

10 − ε units of resources for some small
ε > 0 arbitrarily close to zero. Assume that the first ten sub-
requests can be assigned to both RRHs. Also assume that the
remaining sub-requests can only be assigned to rrh1. In this
case, if the algorithm starts with rrh1, the first ten sub-requests
will be chosen to be assigned to rrh1. When the algorithm
proceeds to assign the remaining sub-requests to rrh2, it
finds no assignable sub-requests. The value of this solution
is 10 · M10 =M . However, the optimal solution accommodates
the first ten sub-requests on rrh2 and the remaining sub-
requests on rrh1. The value of the optimal solution is thus
M +M − 10ε = 2M − 10ε. As ε approaches zero, the ratio
of the optimal value to the value of NSS approaches 1

2 .

Running Time of NSS: Consider Algorithm 1. The first
loop is executed B times. The number of sub-requests for each
RRH is upper-bounded by N . Therefore, sorting sub-requests
for all RRHs takes O(BN log(N)) time. The second loop is
executed B times. As the number of sub-requests in Ui of any

6

rrhi is upper-bounded by N , the inner loop is executed at most
N times. Finding vsrj in the Ui of any rrhi and removing
it while keeping Ui sorted can be done in O(log(N)) if an
appropriate data structure such as a binary search tree is used
to keep the sub-requests for any rrhi. Overall, the running
time of the second loop is O(BN log(N)). Combining the
running time of the first and the second loop yields the total
running time of the algorithm as O(BN log(N)).

D. Two Additional Heuristic Algorithms

Consider the example described to show the tightness of the
bound for NSS in the previous sub-section. It is clear that the
order of RRHs is what prevents NSS from obtaining a better
performance. Based on this observation, we propose two other
algorithms which consider RRHs in some specific order with
the aim of avoiding such cases.

Description of BSS1:
BSS1 is a load balancing algorithm. It tries to distribute sub-
requests among adjacent RRHs. To do so, all sub-requests
are sorted in a non-increasing order at the beginning of the
algorithm. Sub-requests are chosen for assignment according
to this order. Consider the following definitions:
• Current Load (cli): For rrhi, define the current load cli

as the sum of the sizes of all sub-requests in Ui that have
not been accommodated by rrhi yet.

• Remaining Capacity (rci): For rrhi, the remaining ca-
pacity rci indicates the available capacity of rrhi which
decreases by wj each time a sub-request vsrj is assigned
to it.

When choosing vsrj , the RRHs in Bj are compared with each
other. Among them, rrhi with wj ≤ rci and the least ratio of
cli
rci

is selected, and vsrj is assigned to it. That is,

rrhi = argmin
rrhk:wj≤rck

clk
rck

. (10)

Once some rrhi is selected, cli and rci are updated ac-
cordingly. Then, the current loads of all other RRHs in Bj
are updated as well. The operation of BSS1 is described in
Algorithm 2.

Algorithm 2 Balancing Spectrum Sharing 1 (BSS1)

1: Key step: Sort sub-requests in a non-increasing order in
terms of their requested weights (wjs)

2: for each vsrj in sorted order do

3: rrhi ← argmin
rrhk:wj≤rck

clk
rck

4: Assign vsrj to rrhi
5: rci ← rci − wj
6: for each rrhk ∈ Bj do
7: clk = clk − wj
8: end for
9: end for

Running Time of BSS1: Sorting the sub-requests is done
in O(N log(N)). The outer for loop is executed N times. As

the number of RRHs in B of each sub-request is a constant
number, the loop body is executed in constant time. Overall,
the running time of the outer for loop is O(N). Therefore, the
total running time of the algorithm is O(N log(N)).

Description of BSS2:
In BSS2, at the beginning of the algorithm, the RRHs are
sorted based on their ratio of the current load over the
remaining capacity (clirci). Each time an RRH is selected in this
order, the corresponding single knapsack problem is solved
with the remaining assignable sub-requests. The steps of the
algorithm are presented in Algorithm 3.

Algorithm 3 Balancing Spectrum Sharing 2 (BSS2)

1: Key step: Sort RRHs in a non-decreasing order in terms
of the ratio of their current load and remaining capacity

2: for each rrhi in the sorted order do
3: Solve the single knapsack problem for rrhi with items

in Ui
4: Update rci
5: Update remaining capacity and U of all RRHs in B of

any assigned sub-request
6: end for

Running Time of BSS2: Sorting RRHs is done in
O(B log(B)). The for loop is executed B times. To solve
a single knapsack problem for each RRH, sub-requests of
each RRH are sorted in a non-increasing order in terms of
their requested weights. Then, the sub-requests are chosen in
this order until no more sub-requests can be accommodated
by the RRH. The sorting process for each RRH, in step 3,
takes O(N log(N)) time, while the allocation process for each
RRH is done in O(N). Step 5 in the algorithm is executed
in O(N2) time because the total number of assigned sub-
requests is upper bounded by N . Also, the size of U of each
RRH is upper bounded by N . The number of RRHs in B
of any sub-request is constant. Other steps in the loop body
have a constant running time. Overall, the running time of the
algorithm is O(BN2 +B log(B)).

IV. SIMULATION RESULTS

A. Simulation Setup

In this section, we present simulation results comparing
the performances of our proposed algorithms and the optimal
algorithm. In order to simulate the optimal algorithm, Gurobi
solver [18] in CVX [19], which is a Matlab based optimization
system is used. It is not possible to simulate the optimal
algorithm for several time frames as it has exponential running
time (recall that it is an NP-hard problem). Therefore, we
simulate the optimal algorithm for only one time frame.

Our results are presented in two parts. In the first part, we
compare the optimal algorithm and the proposed algorithms
for one time frame. Once we establish the relative perfor-
mances of our algorithms with respect to that of the optimal
solution, in the second part, we focus on the performances of
our algorithms over 500 time frames.

7

(a) Uniform scenario (b) Non-uniform scenario

Fig. 5: Single time frame: Resource utilization of the optimal and proposed algorithms.

(a) Uniform scenario (b) Non-uniform scenario

Fig. 6: Single time frame: Rejection rate of the optimal and proposed algorithms.

We use the utilization of the resource blocks and the
rejection rate of sub-requests as the performance metrics.
These performance metrics are defined as follows:

Utilization =
number of allocated resource blocks
number of available resource blocks

.

Rejection rate =
number of rejected sub-requests

total number of sub-requests
.

B. Network Configuration

The simulated cellular network has a regular layout. That is,
RRHs are placed on a grid. There are 40 RRHs connected to
the centralized processing pool in the Cloud-RAN. The arrival
of sub-requests from virtual networks is simulated as a Poisson
process. Note that our algorithms have no dependency on the
arrival process or the distribution of resource requests in the
network. These are used only to generate sample scenarios in
simulations.

The average arrival rate changes from 40 to 400 sub-requests
per time frame. We use the “load factor” to present our results,
where the load factor for a time frame is defined as

Load Factor =
number of requested resource blocks
number of available resource blocks

.

The total number of resource blocks in each RRH is assumed
to be 75. The size of each sub-request is uniformly distributed
from 5 to 10 resource blocks. We consider two scenarios for
the distribution of the sub-requests over the RRHs.
• Uniform Scenario: In this scenario, sub-requests are

distributed uniformly over the RRHs.
• Non-Uniform Scenario: In this scenario, there are a few

hot spots in the network. Hot spots are crowded areas
such as down town area in working hours. To be concrete,
9 RRHs are selected as hot spots in the simulation.

In the non-uniform scenario, the hot spot RRHs have the
highest load in the network. Therefore, the system perfor-
mance is mostly affected by these areas, and we use the load

8

(a) Uniform scenario (b) Non-uniform scenario

Fig. 7: Multiple time frames: Resource utilization of the proposed algorithms.

(a) Uniform scenario (b) Non-uniform scenario

Fig. 8: Multiple time frames: Rejection rate of the proposed algorithms.

factor of the hot spots for the X-axis. Each point in the figures
is the average of 20 simulation runs with different seeds.

Part I: All Algorithms over a Single Time Frame

As mentioned earlier, in this part, the optimal algorithm is
simulated and compared with the three proposed algorithms
for one time frame.

The results are shown in Figs. 5(a), 5(b), 6(a), and 6(b). It
is observed that for light system loads, all algorithms achieve
similar performances as available resources are sufficient to ac-
commodate most sub-requests. The difference in performances
emerges when the load factor is high. Even in this case, the
performances of BSS1 and BSS2 are close to the performance
of the optimal algorithm.

However, there is more noticeable difference between the
performance of NSS and that of the optimal algorithm. The
reason is that NSS does not distribute the load among adjacent
RRHs evenly, which results in heavy load for some RRHs.

Consequently, some RRHs suffer from high rejection rate,
while some suffer from low resource utilization.

Another observation is that the resource utilization is lower
in non-uniform scenario compared to the uniform scenario.
This is true even for the optimal algorithm. The reason is that
the load of some RRHs is very low in non-uniform scenario.

Part II: Heuristic Algorithms over Multiple Time Frames

In this part, we run NSS, BSS1 and BSS2 over 500 time
frames. The objective is to study their performances over a
long period of time. All simulation parameters are the same
as in Part I.

Figs. 7(a) and 7(b) compare the resource utilization achieved
by the three algorithms. As observed, BSS1 and BSS2 have
better utilization than NSS. The difference between them is not
significant because of the continuous arrival of sub-requests.
In fact, different from Part I, in this set of simulations that are
over several time frames, any sub-request vsrj that enters the
system waits in the queue for some time tj . As a result, after

9

a few time frames from the start of the simulation, often there
is enough load to utilize the available resources. Therefore,
to compare them more accurately, one should compare the
rejection rates of the algorithms as well. Figs. 8(a) and 8(b)
compare the rejection rate of the three algorithms. As ob-
served, the rejection rates of BSS1 and BSS2 are significantly
lower than rejection rate of NSS because of the load balancing
property of these two algorithms.

V. CONCLUSION

In this paper, we studied the problem of spectrum sharing in
virtual radio access networks in a Cloud-RAN type network.
The problem was formulated as an instance of the Multiple
Knapsack with Assignment Restriction problem. We then
developed a 1

2 -approximation algorithm for the problem called
NSS. Two additional heuristic algorithms called BSS1 and
BSS2 were also proposed to improve the worst-case perfor-
mance of NSS by enabling load balancing among adjacent
base stations. We simulated our proposed algorithms as well as
the optimal algorithm under different network configurations.
The simulation results confirmed that the performances of the
proposed algorithms are close to that of the optimal algorithm.
Moreover, BSS1 and BSS2 achieved a lower rejection rate than
NSS because of their load balancing property.

An interesting extension of this work is to consider the
problem of joint virtual network embedding and interference
management.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update, 2014-2019,” Cisco, Tech. Rep., 2015. [Online]. Available:
www.cisco.com

[2] “Report of the spectrum efciency working group,” Federal Communica-
tions Commission Spectrum Policy Task Force, Tech. Rep., 2002.

[3] C. Liang and F. R. Yu, “Wireless network virtualization: A survey,
some research issues and challenges,” IEEE Communications Surveys
and Tutorials, vol. 17, no. 1, pp. 358–380, 2015.

[4] K. M. Park and C. K. Kim, “A framework for virtual network embedding
in wireless networks,” in Proc. 4th International Conference on Future
Internet Technologies, 2009.

[5] J. van de Belt, H. Ahmadi, and L. E. Doyle, “A dynamic embedding
algorithm for wireless network virtualization,” in Proc. IEEE VTC, 2014,
pp. 1–6.

[6] M. Yang, Y. Li, L. Zeng, D. Jin, and L. Su, “Karnaugh-map like online
embedding algorithm of wireless virtualization,” in Proc. 15th Interna-
tional Symposium on Wireless Personal Multimedia Communications,
2012, pp. 594–598.

[7] R. Kokku, R. Mahindra, Z. Honghai, and S. Rangarajan, “Cellslice:
Cellular wireless resource slicing for active ran sharing,” in Proc.
COMSNETS, 2013, pp. 1–10.

[8] M. Yang, Y. Li, J. Liu, D. Jin, J. Yuan, and L. Zeng, “Opportunistic
spectrum sharing for wireless virtualization,” in Proc. IEEE WCNC,
2014, pp. 1803–1808.

[9] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel, “Lte mobile network
virtualization,” Mobile Networks and Applications, vol. 16, no. 4, pp.
424–432, 2011.

[10] H. Z. R. Kokku, R. Mahindra and S. Rangarajan, “Nvs: A substrate
for virtualizing wireless resources in cellular networks,” IEEE/ACM
Transactions on Networking, vol. 20, no. 5, pp. 1333–1346, 2012.

[11] “Network sharing: Architecture and functional description, v. 13.2.0,”
3GPP TS 23.251, Tech. Rep., 2016.

[12] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud ran for mobile networks: A technology
overview,” IEEE Communications Surveys and Tutorials, vol. 17, no. 1,
pp. 405–426, 2015.

[13] A. Fischer, J. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
and Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[14] R. Mahindra, M. A. Khojastepour, H. Zhang, and S. Rangarajan, “Radio
access network sharing in cellular networks,” in Proc. IEEE ICNP, 2013,
pp. 1–10.

[15] D. Lopez-Perez, I. Guvenc, G. D. L. Roche, M. Kountouris, T. Q. S.
Quek, and J. Zhang, “Enhanced intercell interference coordination
challenges in heterogeneous networks,” IEEE Wireless Communication,
vol. 18, no. 3, pp. 22–30, 2011.

[16] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer,
2004.

[17] M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi, and F. Salman,
“Approximation algorithms for the multiple knapsack problem with
assignment restrictions,” Journal of Combinatorial Optimization, vol. 4,
no. 2, pp. 171–186, 2000.

[18] [Online]. Available: www.gurobi.com/
[19] [Online]. Available: http://cvxr.com/cvx/

www.cisco.com
www.gurobi.com/
http://cvxr.com/cvx/

	Introduction
	Motivation
	Our Work
	Related Work
	Paper Organization

	System Model
	System Architecture
	Resource Model
	Notation
	Problem Formulation

	Spectrum Sharing Algorithms
	Complexity of the Problem
	Description of NSS
	Analysis of NSS
	Two Additional Heuristic Algorithms

	Simulation Results
	Simulation Setup
	Network Configuration

	Conclusion
	References

