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Abstrat

Cluster-based data gathering is widely used in wireless sensor networks,

primarily to overome salability issues. While lustering is not the most e�-

ient means of gathering data, many lustering algorithms have attempted to

provide energy e�ieny as well. In this paper, we �rst demonstrate that the

general problem of optimal lustering with arbitrary luster-head seletion

is NP-hard. Next, we fous on randomized lustering in whih sensor nodes

form lusters in a distributed manner using a probabilisti luster-head sele-

tion proess. In order to �nd tratable and e�ient solutions, we develop a

mathematial framework that arefully aptures the interplay between lus-

tering and data orrelation in the network. We further generalize this model

to allow heterogeneous-sized lusters in di�erent regions of the network. A-

ording to this model, we observe that lusters tend to beome larger further

from the sink. We also present simulation results to quantify the energy

savings of joint lustering and ompression. The results demonstrate that:

1) optimal seletion of luster sizes with respet to the orrelation among

sensor data has a signi�ant impat on energy onsumption of the network,

and 2) while non-uniform lustering slightly improves the energy e�ieny of

the network, simple uniform lustering is remarkably e�ient and provides

omparable results for energy savings.
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1. Introdution

A Wireless Sensor Network (WSN) is formed by a large olletion of

ooperative miro-eletroni sensing devies that are equipped with wire-

less ommuniation apability. These autonomous self-on�gurable networks

have given rise to many types of appliations, from disaster management to

home automation, and from health ontrol to military missions [1℄. Some

WSN appliations require dense deployment of sensor nodes in harsh and

remote environments where human aess is impossible or inadvisable. Suh

networks typially have many nodes, beause of their geographi size, as well

as the need for robustness to node failures. Suh deployments require e�-

ient arhitetures that an easily sale with network size without signi�ant

loss in performane.

Clustering is a well-established tehnique that has primarily been adopted

to address salability issues in WSNs [2℄. With lustering, sensor nodes are

grouped into small disjoint sets that are oordinated by one of the luster

members known as Cluster-Head (CH). The CH is in harge of managing the

internal ativities of the luster, suh as sheduling nodes for intermittent

subjet monitoring and data transmission.

Apart from providing a salable struture, another advantage that lus-

tering an o�er is loal data ompression. Sine in most appliations, sensor

nodes are deployed densely within the environment, signi�ant redundany is

likely to be present among the readings from adjaent sensors. For instane,

in a amera sensor network, the same event may be deteted by multiple

amera sensors in a loal neighborhood [3℄. Likewise, for temperature moni-

toring, measurements reported by proximally-loated sensors are likely to be

very similar. This dependene an be exploited to eliminate redundanies

and redue the volume of data transmitted in a WSN.

In a luster-based sensor network, individual sensors transmit their obser-

vations to their orresponding CH. The CH ompresses the whole luster data

and transmits a representative ondensed message (subjet to some tolerable

distortion level) to the sink (the designated fusion enter). In this sense,

luster-based data gathering shemes an onstrut a hierarhy of nodes in

multiple levels to route the data from soures to the sink. The most trivial

implementation inludes a bi-level struture omprising luster members and

CHs. In a similar fashion, CHs an form tier-2 super-lusters whose members
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are tier-1 CHs and one of them may at as a tier-2 CH as well. Following this

strategy, data ompression an be performed in multiple levels. However, as

we shall see later, with spatial data orrelation, the dependeny between ob-

servations rapidly deays with their geographial distane. As a result, the

amount of redution in message size by applying more levels in the hierarhy

would be negligible. Therefore, in this paper, we fous on a bi-level hierarhy

in whih data ompression is only performed at the CH level. The model we

develop, however, an be extended to multi-level networks as well.

We should emphasize that luster-based data gathering and orrelated

data gathering have both been extensively studied in the past, though sep-

arately. Spei�ally, the joint problem of optimal lustering and orrelated

data gathering is not fully addressed in the existing literature. One again, it

is noteworthy to highlight that lustering is essentially adopted as a means

to ahieve salability in large WSNs and in that sense, is not intended to

serve as the most e�ient method of data gathering in WSNs with orre-

lated data. Besides, as we shall show later, the problem of optimal lustering

for minimizing network energy onsumption is omputationally intratable.

Still, viable frameworks an be onstruted and optimized to generate lus-

ters that provide maximum energy e�ieny while enabling salability, as

well.

There have been a number of works that studied optimal (energy-e�ient)

lustering, but ignored the e�et of data orrelation and ompression on op-

timal luster sizing [4�10℄. A pioneering example of energy-aware lustering

protools is LEACH [4℄ in whih eah node has a pre-determined hane of

beoming CH based on some probability funtion. The basi idea of LEACH

was quikly adopted and extended in many di�erent diretions by the re-

searh ommunity. EEHC [6℄, MOCA [9℄ and GESC [10℄ for instane are

randomized lustering protools whih are based on a similar foundation as

LEACH. In all suh works, although data fusion is performed to redue the

size of ommuniated data in the network, no notion of data ompression is

taken into aount while forming the lusters.

On the other hand, some researhers onsidered optimal data ompres-

sion in WSNs without expliitly fousing on the lustering aspet of the

problem [11�14℄. A seminal analysis of energy-e�ient orrelated data gath-

ering is presented by Cristesu et al. [11℄. In that work, the authors onsider

Slepian-Wolf Coding (SWC) [15℄, a well-known method of distributed soure

oding, for whih establishing the routing tree is easy, yet the data oding is

omplex and requires global network knowledge for optimal implementation.
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The authors prove that joint optimization of rate alloation and transmis-

sion struture in distributed networks is NP-omplete. Aside from energy-

onservation, e�ient data gathering has also been investigated from other

perspetives, suh as minimizing lateny (e.g., GroCoa [16℄) or improving

throughput and salability (e.g., SeletCast [17℄ and DDA [18℄).

There are only a few sporadi works that study optimal lustering in the

presene of data orrelation [19�22℄. For instane, [19℄ and [20℄ model and

analyze various on�gurations of a simple linear network topology and for-

mulate the optimal luster size with respet to the number of loally similar

observations. Due to the omplexities of modeling the joint data ompres-

sion in orrelated data �elds, the authors make some simplifying assumptions,

e.g., trivial network topologies (linear or grid) and �xed rate of data redu-

tion per soure after ompression, that inevitably in�uene the reliability and

auray of the outomes under realisti situations.

Furthermore, a de fato approah sought after by researhers studying

lustering with data ompression (e.g., LEACH [4℄, EEHC [6℄, NOLBC [20℄

and MOCA [9℄ to name a few) attempts to �nd a globally optimal luster size

that minimizes the total network energy onsumption. In all suh works,

for simpliity of model and analysis, the problem has intentionally been re-

strited to �nd a uniform lustering pattern that results in lusters that

ontain, on average, the same number of nodes. However, the fundamental

question being overlooked here is whether uniform lustering is optimal for

total energy onsumption. In fat, although all foregoing proposals result

in some form of energy-e�ient topology, their methodology for takling the

problem inherently laks the �exibility to form independently-sized lusters

in di�erent areas of the network. This paper hallenges the existing belief

by introduing a omprehensive model that olletively onsiders the joint

impat of all important network attributes in forming lusters.

In partiular, in a preursor study [23℄, we demonstrated that for a sim-

ple single-luster network model, the optimal size of the luster is diretly

proportional to its geographial distane from the sink. Suh a proposition

intuitively promotes a non-uniform lustering strategy with larger lusters

at further distanes from the sink. In this work, for the �rst time, we ex-

amine the foregoing hypothesis under more realisti onditions and establish

that although the optimal luster size grows with the distane from the sink,

in pratie, uniform lustering - if arefully done - an perform reasonably

lose to any optimal non-uniform lustering sheme. We verify suh unex-

peted behavior using both mathematial analysis and simulation validation
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throughout this paper.

In short, our ontributions in this paper an be summarized as follows:

• We provide a formal and general de�nition of the problem of optimal

lustering in distributed sensor networks with arbitrary CH seletion

and prove that this problem is NP-hard.

• In an attempt to ontrive e�ient heuristi solutions for this problem,

we fous on randomized lustering and develop a framework to quantify

the energy onsumption of randomized uniform lustering with data

ompression. We further generalize this sheme to allow non-uniform

lusters in the network.

• Using numerial analysis and simulation experiments, we validate our

models and demonstrate that a simple randomized uniform luster-

ing, on average, provides omparable results for energy onsumption

to the more ompliated non-uniform ounterparts, even though the

orresponding optimal luster sizes found in two ases are remarkably

di�erent.

The remainder of the paper is organized as follows. Setion 2 provides

mathematial preliminaries. Setion 3 presents a formal proof that optimal

lustering with data ompression is NP-hard. Setion 4 disusses optimal

uniform lustering, while Setions 5 and 6 explore non-uniform lustering.

Setion 7 provides some numerial simulations and Setion 8 disusses the

results. Finally, Setion 9 onludes the paper.

2. System Model and Assumptions

We assume that individual sensor nodes within the WSN are statistially

idential information soures, whose readings follow a zero-mean normal dis-

tribution with variane σ2
. The set of observations within a luster an thus

be represented by a multi-variate Gaussian distribution. This assumption

makes our analysis easier sine the analytial properties of Gaussian soures

are well-known. Furthermore, Gaussian soures are the worst ase in terms

of the required number of bits for oding [13℄. Thus, the results from Gaus-

sian �elds an be interpreted as a bound for other types of soures. Similar

assumptions have been used in prior related work [11, 24℄.
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2.1. Distributed Randomized Clustering

In many WSN appliations, sensor nodes are randomly dispersed over

the area of interest in an unontrolled manner (e.g., using a heliopter) and

form an ad-ho network. Suh a spontaneous struture requires appropriate

mehanisms to be able to self-organize itself into an e�ient, salable and

fault-tolerant arhiteture in a distributed manner and without reliane upon

any entral administrative entity.

A distributed randomized lustering is able to address all the foregoing

onerns in a WSN as long as ertain elements are observed during its on-

strution. In suh a sheme, nodes beome CHs based on a probability fun-

tion. CHs publily advertise themselves within their proximal neighborhood

and the non-CH nodes join their geographially losest CH member. This ob-

servation is important to ensure ost-e�ient luster assignments and avoid

overlapping lusters. In this sense, with distributed lustering, we essen-

tially perform a Voronoi tessellation of the network with CHs representing

the Voronoi nulei. Cluster members send their readings to their CH and

theneforth, CH is the only node being in harge of olleting and reporting

the luster data to the sink. This proedure relieves individual luster mem-

bers from maintaining and onsistently updating omplex data strutures for

routing purposes, making the network struture more salable and robust.

Several well-known distributed lustering algorithms have been built on

this general framework, eah of whih seeking to optimize the network per-

formane from a partiular perspetive and subjet to di�erent assumptions.

For example, Heinzelman et al. [4℄ onsider a pre-spei�ed probability fun-

tion for CH seletion that is oblivious of the data orrelation degree in the net-

work; Bandyopadhyay and Coyle [6℄ and Younis et al. [7℄ neglet the impat

of data ompression while forming their lusters; whereas Ghiasi et al. [5℄

solve the optimal distributed lustering problem for a pre-spei�ed number

of lusters in the network.

In the present work, we relax all suh assumptions and propose a general

model that allows lusters to form freely in di�erent regions of the network.

To ensure maximum energy e�ieny, we assume that CHs ompress the

olleted data from the luster members and only submit one ondensed

redundany-free message to the sink during eah data olletion yle. The

lusters indued by our model are optimized to enable maximum data om-

pression while minimizing the ost of data olletion and reportage subjet

to the luster size and distane from the sink.
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2.2. Data Correlation Model

In a Gaussian �eld of N soures, the pair-wise data dependeny between

sensor readings an be expressed using a symmetri positive-de�nite ovari-

ane matrix Σ = [σij ]N×N . Depending on the physial properties of the ran-

dom �eld under study, several types of ovariane models an be de�ned [25℄.

The information olleted from physial events often has an exponential au-

toorrelation funtion [24℄. Therefore, in this paper, we use a speial type

of Power Exponential orrelation model with the elements of the ovariane

matrix given by:

σij = σ2 exp(−αd2ij) , (1)

where α is the orrelation exponent and dij denotes the Eulidean distane

between sensor nodes i and j. For brevity, we de�ne W = exp(−α) as the
normalized data orrelation degree. The limiting values, W = 0 and W = 1
represent unorrelated and highly orrelated data �elds, respetively.

2.3. Data Compression Model

In order to disretize the ontinuous-valued sensor readings, the luster

members loally quantize their observations and transmit them to the CH.

Sine the originally transmitted data is quantized, the reonstruted version

of data at the CH is subjet to some distortion D. We assume that sensor

readings, denoted by S, are disretized by a uniform quantizer of step size

∆. To ahieve the target distortion D, we set ∆ =
√
12D [23℄. The entropy

of the quantized soures, denoted by H(SD
N ), is then given by [14℄:

H(SD
N ) ≈

1

2
log2(

πe

6D
)̺(Σ)|Σ|+ , (2)

where |Σ|+ and ̺(Σ) denote the produt of non-zero eigenvalues and the rank
of Σ, respetively. Equation (2) gives the lower-bound for the net size of the

joint luster data after quantization/ompression. For individual soures

(i.e., isolated CHs or individual luster members), Equation (2) redues to:

H(SD
1 ) ≈

σ2

2
log2(

πe

6D
) . (3)

In this paper, for the sake of brevity, we use bn and b1 to respetively

denote number of bits required for enoding the entire luster data after

ompression and that of an individual soure. These quantities are alulated

from Equations (2) and (3), respetively.
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Table 1: Table of notations

Symbol Usage

b1 Size of an individual sensor reading (bits)

bn Size of data from a luster of n nodes after ompression (bits)

C Cost of luster-based data olletion

C̄(n) Amortized energy ost of a luster of size n
D Distortion level (bit/symbol)

D RV for the distane of a luster to the sink

E∗
Optimal network energy onsumption

ext Shorthand for exterior region

int Shorthand for interior region

φ(n) The ompression ratio funtion for a luster of size n
ℓ RV for the distane of a luster member to the CH

L RV for the umulative distane of nodes in a luster to their CH

m Number of regions in the network

N RV for the number of nodes in a luster

pi Probability of CH seletion in region i
〈p∗1, · · · , p∗m〉 Vetor of optimal CH probabilities in regions 1 through m
ρ Node density (nodes/unit area)

ri Width of region i
R The network radius

R Radio range of a node

s RV for the number of lusters in the network

W Normalized data orrelation degree

2.4. Energy Model

Cluster members observe some spatial stohasti proess, quantize their

observations, and transmit them to the CH (or sink), either diretly (single-

hop) or via intermediate sensor nodes (multi-hop). We assume a large-sale

fading hannel between eah transmitter and reeiver, in whih the reeived

power is inversely proportional to the square of the distane between the

transmitter and the reeiver. Therefore, the energy P required to transmit b
bits over distane d is given by [26℄:

P = γ b d2 , (4)
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where γ is a onstant that represents the minimum power level required for

suessful transmission of one bit of data over one unit of distane

1

For

simpliity and without loss of generality, hereafter we assume that γ = 1
J/bit/m

2
. While in real world, transmission energy and sensor ommuni-

ation range follow more ompliated patterns, suh simpli�ed assumptions

enable us to develop tratable models that provide useful insights and ap-

proximate results on the performane of WSNs.

For onvenient referene, Table 1 summarizes the most frequently used

notations introdued above as well as the ones to follow. �RV� is used as an

abbreviation for random variable.

3. Optimal Clustering

There have been many prior works on optimal lustering in a WSN [5, 6,

19�21℄. The problem of Optimal Clustering is to disover a lustering

of the network suh that the total energy required for olleting data from

the whole network is minimized as ompared with other possible lustering

patterns. In this paper, we �rst demonstrate that the general problem of

Optimal Clustering with arbitrary CH seletion is NP-hard. Then we

onstrut a framework to tame the omplexity of the problem and provide

some tratable heuristi solutions for it.

First, let us begin with a formal de�nition of our problem.

De�nition 1. Network Clustering

Given a network of nodes as an undireted graph H = (W,F ), where W
denotes the set of nodes and F is the set of possible onnetions between

node pairs within radio range of eah other, the goal is to selet a subset

of nodes W ′ ⊆ W,W ′ 6= ∅ as CHs that form a Voronoi tessellation of the

network.

Optimization Problem: Given H , the set of rates, and the internode dis-

tanes, determine a lustering of the network that results in the minimum

energy onsumption. We all suh lustering of the network the Optimal

Clustering.

1

We ignore the energy spent on reeiving a message as it is independent of the distane

over whih the message is delivered.
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As a matter of onveniene, in the ourse of our proof, we shall restrit

our attention to the following deision problem.

Deision Problem: Given H , the set of rates, internode distanes, and a

positive real number B, is there a lustering of the network whose energy

onsumption is no more than B?

We observe that, so long as our energy funtion is relatively easy to

evaluate, the foregoing deision problem is no harder than the orresponding

optimization problem. In other words, if we ould solve the optimization

problem in polynomial time, we would readily have an answer for the deision

version, simply by omparing the output of the optimization problem with

the given bound B.

Theorem 1. Optimal Clustering is NP-hard.

Proof. We show that the problem of �nding a p-Median, whih is known

to be NP-omplete [27℄, is polynomial-time reduible to the problem of Op-

timal Clustering.

Given an undireted graph G = (V,E), we assoiate eah node v ∈ V
with a positive number s(v) alled the weight of v, and eah edge e ∈ E with

a positive number l(e) denoting its length. Let Xp ⊆ V be a subset of p
verties. We de�ne the distane between any vertex v ∈ V and the set Xp

as follows:

D(v,Xp) = min
xi∈Xp

{D(v, xi)} ,

where D(v, xi) denotes the length of the shortest path between v and xi. The

distane-sum of the set Xp is given by:

C(Xp) =
∑

v∈V −Xp

s(v) ·D(v,Xp) .

The set X∗
p is alled a p-Median of G if C(X∗

p ) = min
Xp⊆V

{C(Xp)}. The deision
version of the p-Median problem is to determine whether there exists any

Xp ⊆ V suh that C(Xp) ≤ C, where C is a given target bound.

Now, let us onentrate on Optimal Clustering. Consider a network

as an undireted graph H = (W,F ). Eah node w ∈ W enodes its obser-

vations at a rate r(w). A pair of nodes are within radio range of eah other

if there exists an edge f ∈ F that orresponds to them. Let k(f) denote

the length of this edge. To obtain a better understanding of the problem,
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we break it into two subproblems, namely, Intra-Clustering and Inter-

Clustering. For any given set of CHs, the Intra-Clustering refers to

the problem of olleting data from within the lusters and forwarding it to

the orresponding CHs given an energy budget of β1 ∈ R
+
. The Inter-

Clustering problem, likewise, desribes the proess of data forwarding

from CHs to the sink with a budget of β2 ∈ R
+
. The Optimal Cluster-

ing problem involves the joint optimization of these two subproblems suh

that β1 + β2 ≤ B, where B denotes the target energy bound.

First, we fous on the problem of Intra-Clustering. Let Xch be an

arbitrarily hosen subset of p nodes to at as CHs. We de�ne the squared

distane between any node w and a set Xch by

d2(w,Xch) = min
xi∈Xch

{d2(w, xi)} ,

where d2(w, xi) is the square of the Eulidean distane between w and xi ∈
Xch. We de�ne our ost funtion for intra-luster data olletion as

C1(Xch) =
∑

w∈W−Xch

r(w) · d2(w,Xch) .

Similarly, we de�ne the ost funtion for Inter-Clustering problem as

follows:

C2(Xch) =
∑

xi∈Xch

r(xi) · d2(xi, sink) .

Our goal is to �nd an optimal subset X∗
ch suh that C1(X∗

ch) + C2(X∗
ch) ≤ B.

Now onsider an instane of the p-Median problem desribed by an

undireted graph G = (V,E), the set of weights s(v), ∀v ∈ V , the set of

lengths l(e), ∀e ∈ E and the target bound C. We onstrut a polynomial

transformation from suh instane of p-Median to an instane of Optimal

Clustering of H = (W,F ) by letting W := V and F := E. Also, we let

r(w) = s(v), ∀w /∈ Xch; r(w) = 0, ∀w ∈ Xch; k(f) = l2(e), ∀f ∈ F ; and
target bound B = C. This transformation an be done in O(|V | + |E|). It

simply anels out the ost of data olletion from CHs and simpli�es the

Optimal Clustering as an instane of Intra-Clustering. It is now

lear that any solution of the Optimal Clustering provides a solution for

p-Median. Thus, p-Median ≤P Optimal Clustering onluding that

Optimal Clustering annot be solved in polynomial time unless P = NP.

Corollary 1. Optimal Clustering remains NP-hard even if no data

ompression is done in the network.
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Sine Intra-Clustering is hard, regardless of whether or not any data

ompression is performed at the CH level, i.e., CHs merely forward the ag-

gregated data to the sink, �nding the optimal lustering struture remains

NP-hard.

Having shown that the Optimal Clustering is inherently intratable,

we seek to develop a framework that enables forming arbitrary-sized lusters

that provide �good� energy onsumption. In partiular, we fous on a speial

lass of lustering algorithms that are simple and an be implemented in a

distributed manner. Suh algorithms are randomized in the sense that eah

node independently deides to beome a CH aording to some probability

p. The main problem to be addressed is then how to determine the optimal

probability of CH seletion (p) for di�erent nodes, whih is the problem to

be investigated in the remainder of this paper. Heneforth, the onept of

optimality is only disussed in the ontext of solutions that are heuristially

optimal and should not be interpreted in its strit mathematial sense.

4. Randomized Uniform Clustering

In this setion, using the mathematial preliminaries disussed in the

previous setion, we develop a model for the ost of data olletion in a

luster-based sensor network and investigate the e�et of luster size on en-

ergy usage.

We onsider a planar disk-shaped network of radius R and assume that

sensor nodes are sattered over the network area randomly aording to a

Poisson proess of intensity ρ. For simpliity of analysis, let us assume that

the sink is plaed at the enter of the disk. However, the atual plaement

of the sink is immaterial to our results. We study a randomized lustering

model in whih nodes beome CH with some probability p. Therefore, by

thinning of Poisson proesses, non-CH and CH nodes an be onsidered as

two independent Poisson proesses Π0 and Π1 with intensities ρ0 = (1 −
p)ρ and ρ1 = pρ, respetively. One the CHs are spei�ed, eah region is

partitioned into lusters resembling Voronoi ells with CHs representing the

nulei. Non-CH nodes are then assigned to the CH that is geographially

losest to them, forming a Voronoi tessellation of the region.

For a Voronoi proess related to a bivariate Poisson proess, Foss and

Zuyev [28℄ have derived the following losed-forms for N , the number of Π0

partiles in eah Voronoi ell and L, the umulative length of all segments
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onneting Π0 partiles to the Voronoi nuleus in eah ell.

E[N ] =
ρ0
ρ1

, Var(N ) =
ρ0
ρ1

+ 0.280
ρ20
ρ21

,

E[L] = ρ0

2ρ
3/2
1

, Var(L) = ρ0
πρ21

+ 0.147
ρ20
ρ31

.

Adopting their results and onsidering Π0 and Π1 partiles in eah Voronoi

ell as luster members and CHs respetively, we an easily infer the follow-

ing expression for the average distane between a luster member and its

orresponding CH.

E[ℓ] =
E[L]
E[N ]

=
1

2
√
ρ1

=
1

2
√
pρ

.

4.1. Single-Hop Communiation

Diret transmission to the sink is used in some WSN appliations to avoid

the omplexities of routing and Medium Aess Control (MAC) [29℄. In this

sheme, individual sensors quantize their observations into messages of length

b1 (omputed from Equation (3)) and transmit them to their CH. Aording

to Equation (4), energy onsumption is a quadrati funtion of the distane

over whih data transmission ours. We know that L is a random variable

de�ned as the summation of the distanes between all luster members and

their CH. Let random variable ℓi denote the distane between the ith luster
member and the CH. We know that ℓi's are iid. The number of nodes in a

luster, N , is also a random variable. The law of total variane requires that

Var(L) = E[Var(L|N )] + Var(E[L|N ])

= E

[

Var
(

N
∑

i=1

ℓi

∣

∣

∣
N
)]

+Var
(

E

[

N
∑

i=1

ℓi

∣

∣

∣
N
])

= E[NVar(ℓ)] + Var(NE[ℓ])

= Var(ℓ)E[N ] + E[ℓ]2Var(N ) .

(5)

Rearranging Equation (5) and onsidering that Var(ℓ) = E(ℓ2)− E(ℓ)2 gives

E(ℓ2) =
Var(L)
E[N ]

+
(

1− Var(N )

E[N ]

)

E[ℓ]2 . (6)
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Equation (6) gives the average squared distane of nodes to their CH that

omes in handy for estimating the total intra-luster energy ost (between

luster members and the CHs).

One the CH ollets the data from all luster members, it eliminates the

redundanies present in the data using lossless ompression, and transmits

the ompressed data to the sink over the shortest path. The inter-luster data

olletion ost refers to the energy spent by the CHs to perform this task.

In order to estimate the inter-luster ost, we need to measure the average

squared distane from the lusters to the sink, E[D2]. This an easily be

alulated as

E[D2] =

∫ R

0

x2 · 2πx
πR2

dx =
1

2
R2 .

The mean number of nodes in a luster is inversely proportional to the

probability of being a CH in the region to whih the luster belongs. As

disussed in Setion 2.3, the size of the ompressed luster data subjet to

some distortion level D an be quanti�ed by the joint entropy of the luster.

For a luster of size n, let bn denote the size (in bits) of the message that the

CH transmits to the sink (note that bn an be omputed from Equation (2)

for n = 1/p).
The average total network energy onsumption, E[Csh], an be broken

into the energy spent for intra-luster and inter-luster (between CHs and

the sink) data olletion. In symbols,

E[Csh] = E[s]
(

b1E[N ]E[ℓ2] + bnE[D2]
)

, (7)

where, E[s] = ρpπR2
is the expeted number of lusters in the network.

4.2. Multi-Hop Communiation

In this senario, we use a bit-hop metri to quantify the network energy

onsumption. Let R denote the radio range of a sensor node. Sine we

assume that all sensor nodes have the same radio range, the energy required

to transmit one bit of information from a node to any other node in its radio

overage (one hop distane) is �xed and proportional to the square of the

node's radio range, R2
. Although this ommuniation poliy ignores the

energy di�erenes due to transmission over variable-range hops, it is more

pratial for implementation.

In order to ompute the expeted transmission energy, we need to es-

timate the total number of hops taken to ommuniate sensor readings to

14



the CHs or the sink. Within any given luster, the total number of hops

traversed is at least ⌈E[L]/R⌉. Likewise, for inter-luster data transmission,

⌈E[D]/R⌉ gives the minimum number of hops to deliver the luster data to

the sink, where

E[D] =

∫ R

0

x · 2πx
πR2

dx =
2

3
R

gives the average luster distane from the sink. One may argue that the

suggested approah for alulating the number of hops underestimates the

atual steps required to deliver the data to the destination in a real network.

We emphasize that, in this paper, we are interested in dense networks, sine

the data orrelation in the network would be negligible otherwise. In suh

networks, the shortest path between a pair of nodes is losely approximated

by a straight line segment between them. A similar assumption has been

made in other prior work (e.g., [6℄). Furthermore, the good agreement be-

tween our mathematial model and the Monte Carlo simulations in Setion 7

supports this laim.

Using this approximation, the total energy spent on data transmission in

the multi-hop senario is given by

E[Cmh] = E[s]E[N ]b1R2
⌈

E[L]
R

⌉

+ E[s]bnR2
⌈

E[D]

R
⌉

≈ RE[s]
(

b1E[N ]E[L] + bnE[D])
)

.
(8)

4.3. Numerial Analysis

Equations (7) and (8) desribe the average total network energy usage as

funtions of various network properties, suh as node density, data orrelation

degree, and luster size. One important objetive here is to �nd the optimal

luster size that minimizes the average network energy onsumption. To this

end, we numerially analyze the given energy funtions. We onsider a disk-

shaped network of radius 15 on whih nodes are sattered aording to a

Poisson proess with an intensity of either 0.75 or 1.50. We hange the data

orrelation degree from W = 0.15 (low) to W = 0.90 (high) and study the

e�et of hanging the luster size on the total network energy onsumption.

We examine both single-hop and multi-hop ommuniation strategies. In

single-hop ommuniation, nodes adjust their power level appropriately to

reah their destination. In the multi-hop sheme, nodes always transmit at

full power, overing a radio range of 0.75 units in our simulations.
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(a) Single-Hop, ρ = 0.75
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Figure 1: Average total network energy onsumption in uniform lustering with di�erent

orrelation degrees

Fig. 1 illustrates the average network energy onsumption for di�erent

sizes of lusters and orrelation degrees. In both single-hop and multi-hop

senarios, the stronger the data orrelation is, the larger the optimal size of

the luster beomes. This observation is quite intuitive in the sense that by

forming larger lusters, more redundany an be removed (provided that a

reasonable degree of data orrelation exists among the original observations).

The impat of hanging the luster size on total energy onsumption is

more pronouned in single-hop ommuniation than in multi-hop sheme.

This is mainly due to the fat that the energy funtion is proportional to the

square of the distane over whih data transmission is done and this distane
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for the single-hop ommuniation is often longer than that for the multi-hop

ase. When a new node is added to a luster, the luster is able to save some

energy via data ompression. On the other hand, the data provided by the

new node �rst has to be sent to the CH and then from the CH to the sink.

If no data ompression is performed, this transation learly is more energy-

intensive than if the node individually transmits its data to the sink (possibly

over a shorter path). Likewise, even with data ompression, the amount of

redution per message ahieved via making larger lusters should ompensate

for the extra energy spent on data ommuniation on longer distanes. With

multi-hop ommuniation, however, sine all nodes transmit at the same

power level, this issue beomes less ruial. In partiular, when the data

orrelation degree is high, luster sizes show a wider range of values. This is

also the reason why the optimal luster size in multi-hop ommuniation gets

larger than that of single-hop approah as data orrelation degree inreases.

For example, when W = 0.90 and ρ = 0.75, with multi-hop ommuniation,

the energy onsumption of lusters of size 9 to 25 are within 5% of the

optimal, whereas in single-hop ommuniation, suh optimal range is only

from 7 to 12.

5. Randomized Non-Uniform Clustering

Our previous uniform lustering model provides some useful insights as

to how various degrees of data orrelation and di�erent transmission poliies

a�et the optimal luster sizing and energy onsumption. However, the major

downside of suh a uniform lustering model is its inability to form variable

size lusters in di�erent regions of the network. In fat, by foring the lusters

to ontain similar number of nodes, our model neglets any potential impat

that distane an pose on optimal luster sizing.

In previous work [23℄, we demonstrated that in orrelated data �elds,

the optimal size of lusters is diretly proportional to the luster distane

to the sink. Our previous analysis, however, was based on a very simple

single-luster model.

In this setion, we onentrate on the e�et of distane on forming optimal

sized lusters in a realisti network made of possibly many lusters. We

develop an elaborate model that allows lusters of arbitrary size to form

freely in di�erent regions of the network.

To be onsistent with our previous model, we start with the same network

topology as desribed in Setion 4. In order to study the impat of distane
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on the optimal size of the lusters, we split the network into two onentri

ring-shaped areas: namely, the interior and the exterior regions (See Fig. 2a).

By onvention, in this setion, we use subsripts int and ext to denote the
analytial properties of the interior and exterior regions, respetively. The

radius of the interior region, rint, is a fration of the total network radius.

That is to say,

rint = κR , 0 < κ < 1 . (9)

We ontinue with our probabilisti lustering strategy. However, we let

the probability of CH seletion in the interior region (denoted by pint) be
independent of that for the exterior region (denoted by pext). Therefore, in

any of the desribed regions, non-CH and CH nodes an be onsidered as

two independent Poisson proesses Π0 and Π1 with intensities ρ0 = (1− p)ρ
and ρ1 = pρ, respetively (for the interior region, p = pint, while p = pext for
the exterior region).

The expeted number of lusters in the interior region is:

E[Nint] = pint · ρπκ2R2 ,

and likewise, for the exterior region:

E[Next] = pext · ρπ(1− κ2)R2 .

In this analysis, we only onsider the multi-hop ommuniation poliy,

sine it is more general and pratial than the single-hop sheme. In order

to ompute the intra-luster data olletion ost in the interior region, we

at in the same way as our uniform lustering model. The intra-luster data

olletion ost for suh a luster is given by

E[C∗
int] = b1R2⌈E[Lint]

R ⌉ ≈ b1RE[Lint] .

Therefore, the mean total intra-luster data olletion ost for the whole

interior region is given by

E[Cintra
int ] ≈ b1RE[Nint]E[Lint] .

Similarly, for the exterior region, it is obtained that:

E[Cintra
ext ] ≈ b1RE[Next]E[Lext] .
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Figure 2: Non-uniform lustering in a disk-shaped network.

Next, we fous on �nding the inter-luster data olletion ost. In order

to ompute the energy required for this transmission, we only need to know

the distane between the CH and the sink. Similar to our previous model,

the mean distane of nodes in the interior region to the sink (enter of the

network) is omputed as:

E[Dint] =

∫ rint

0

x · 2πx

πr2int
dx =

2

3
κR .

Considering that the mean number of hops to reah the sink from the

interior region is given by ⌈E[Dint]/R⌉, the mean total ost of transmitting

data from all the CHs in the interior region to the sink is readily alulated

as:

E[Cinter
int ] ≈ bnint

RE[Nint]E[Dint] .

Likewise, the expeted ost of inter-luster data olletion for the exterior

region is:

E[Cinter
ext ] ≈ bnext

RE[Next]E[Dext] ,

where,

E[Dext] =

∫ R

rint

x · 2πx

π(R2 − r2int)
dx

=
2

3
R ·

(

1 +
κ2

1 + κ

)

.
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Figure 3: Optimal probability of CH seletion vs. loation of the border

The total ost of olleting data from the WSN is the sum of inter-luster

and intra-luster osts over both regions:

E[Ctotal] = E[Cintra
int ] + E[Cinter

int ] + E[Cintra
ext ] + E[Cinter

ext ] . (10)

While the boundary between the two regions is �xed, E[Ctotal] is a funtion
of pint and pext. We use p∗int and p∗ext to denote the optimal values of pint and
pext that minimize the total network energy onsumption for all possible

plaements of the border.

5.1. Experimental Analysis

We satter sensor nodes on a network of radius 15, one with a density

of 0.75 and one with 1.50 nodes per unit area. By varying κ from 0 to 1, we
gradually move the boundary between the two regions aross its full range.

For any partiular plaement of the border, we then �nd the pair 〈p∗int, p∗ext〉
over the unit square that minimizes Equation (10).

Fig. 3 illustrates the optimal probabilities of CH seletion in interior and

exterior regions for any value of κ between 0 to 1. As evident from this

�gure, p∗int is always greater than p∗ext for all values of κ. This suggests

that, regardless of the position where the interior and exterior regions are

separated, the probability of being CH in the interior region is always greater

than that of the exterior region. That is, lusters in the interior region are

smaller than in the exterior region.

Next, we analyze the e�et of hanging the border loation on the network

energy onsumption. As Fig. 4 shows, the optimal position for the border
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Figure 4: Optimal network energy usage vs. loation of the border

is about 0.5R for ρ = 0.75, and 0.7R for ρ = 1.5. We note that in the

former situation, the network is split into two equal-width regions, while in

the latter, we have equal-area regions.

6. Generalized Non-Uniform Clustering

In this setion, we extend our previous analysis to a general multi-region

network model. The dual-region network analysis showed that splitting the

network into two equal-area regions (κ = 0.7R) provides reasonably good

energy e�ieny. In this situation, nodes are equally divided between both

regions. Therefore, we have a fair balaning of resoure alloation over both

regions. With our multi-region model, we also split the network into m on-

entri ring-shaped equal-area regions making eah region ontain the same

number of nodes (on average). Hene, hanging the luster size throughout

any region fairly a�ets the total energy onsumption sine all regions have

almost the same number of nodes. We emphasize that our analysis is general

and an easily be modi�ed to �t other senarios as well (e.g., equal-width

regions).

We assign eah region with a number i from 1 to m from the innermost

region all the way to the outermost one. The width of region i is denoted by

ri (See Fig. 2b). In region i, nodes beome CH with a probability pi. This

probability is idential and independent of that of other regions.

Going through the same steps as for the dual-region model, the mean

intra-luster energy ost for data gathering from all the lusters of region i
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is obtained as:

E[Cintra
i ] ≈ b1RE[Ni]E[Li] ,

where E[Ni] = piρπr
2
is the mean number of lusters in region i, and Li is

the umulative distane of nodes to the CH in any luster in region i.
Sine the network is evenly divided into m regions all of the same area,

we an easily obtain the following expression for the width of region i:

ri =
(√

i−
√
i− 1

)

r , 1 ≤ i ≤ m . (11)

Sine all the lusters in region i are at a similar distane from the sink, the

approximate luster distanes are:

E[Di] =

∫

√
i r

√
i−1 r

x · 2πx
πr2

dx =
2

3
r
(

i3/2 − (i− 1)3/2
)

.

Similar to the dual-region network model, the mean total ost of transmitting

data from all the CHs in region i to the sink is alulated as:

E[Cinter
i ] ≈ bni

RE[Ni]E[Di] .

The mean total ost of data gathering from the whole network is the sum of

the energy required for intra-luster and inter-luster data olletion over all

the regions. Thus, we obtain:

E[Ctotal] =
m
∑

i=1

E[Cintra
i ] + E[Cinter

i ]

= ρπr2R
m
∑

i=1

pi (b1E[Li] + bni
E[Di]) .

(12)

Equation (12) suggests a losed-form relation for the mean total ost

of data olletion in the network with respet to the probabilities pi, i ∈
{1, 2, . . . , m}. The goal is to determine the set of optimal pi's for whih the

total energy onsumption is minimized. Formally stated,

〈p∗1, · · · , p∗m〉 = argmin
{pi}

E[Ctotal]

s.t. 0 ≤ pi ≤ 1, ∀i ∈ {1, 2, . . . , m},
(13)

where 〈p∗1, . . . , p∗m〉 are the optimal CH probabilities in regions 1 through m.

Sine p∗i 's are independent, Equation (13) an be seen as the minimization of

eah summation term in Equation (12), separately. This an onveniently be

done using existing numerial methods [30℄. Some numerial examples are

provided in the next setion.

22



7. Simulation Experiments

In this setion, we look at the optimization problem introdued in Se-

tion 6, trying to �nd the best on�guration for CH alloation over the network

regions.

7.1. Simulation Environment

We use MATLAB for both our numerial and experimental analyses. The

results reported for the model are the solutions of Equation (13) that are

alulated in MATLAB. The simulation environment used in our experiments

inludes a disk network of radius 15 on whih nodes are Poisson distributed

with a density of 0.75 nodes per unit area (roughly, a total of 530 nodes,

on average). The distortion level is set to 0.01 bits per sample. We assume

multi-hop ommuniation along the shortest path between pairs of nodes.

The radio range of eah node overs a radius of 0.75 units, and sine all

nodes transmit at the same power, the per-hop transmission ost is �xed per

every bit of information sent.

7.2. Impat of Data Compression and Distortion on Energy Usage

In this subsetion, we demonstrate how areful onsideration of data or-

relation/ompression in forming optimal-sized lusters helps redue the total

network energy onsumption. For this experiment, we tentatively ignore the

e�et of distane on optimal luster sizing and simply fous on a single-region

network.
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Figure 5: Analysis of a single-region network (uniform lustering)
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Fig. 5a and 5b depit the network energy onsumption of Optimal Uni-

form Clustering (OUC) in simulation versus the results obtained by the

model. As evident from both �gures, simulation results are fully onsistent

with the proposed model. In Fig. 5a, inreasing the orrelation degree (W )

throughout the �eld improves the network energy onsumption suh that a

highly-orrelated network is almost 42%more energy-e�ient than a network

with the same topology but low data orrelation. Similarly, as Fig. 5b shows,

inreasing the tolerable distortion (D) also results in enhaned energy usage

in the network. In order to ensure the fairness of CH seletion through all

areas of the network throughout our simulation experiments, 1000 random

network on�gurations are generated per eah value per independent variable

(W or D) and the average energy-onsumptions are reported.

7.3. Impat of Data Correlation and Distortion on Optimal Cluster Sizing

For the next experiment, we onsider two senarios:

1. Optimal Uniform Clustering with no Data Compression (OUC/NC):

quantization on loal observations; data aggregation at the CHs with-

out ompression.

2. Optimal UniformClustering with Data Compression (OUC/WC): quan-

tization on loal observations; joint luster data ompression at the

CHs.

In the former senario, CHs aggregate the luster data and transmit it

to the sink without ompression, whereas in the latter, the CHs remove

the redundany present between data samples and transmit a ondensed

version of the luster data to the sink. Our goal is to investigate the e�et of

data orrelation/ompression on optimal luster sizing and also on potential

energy savings when data orrelation is present.

For both ases desribed above, namely, OUC/NC and OUC/WC, Fig. 6a

and 6b respetively illustrate numerial analyses of the impats of data de-

pendene and distortion level on the optimal size of lusters.

As seen from both �gures, when no data ompression is performed at

CH level (aggregation only), the optimal luster size is always 1. This is

reasonable in the sense that without data ompression, no redution in size

of the luster's aggregate data is attained. However, in lustering with data

ompression, as seen in Fig. 6a, inreasing the orrelation degree redues the

optimal probability of beoming CH in the network. In other words, the
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Figure 6: Analysis of a single-region network (uniform lustering)

stronger the orrelations are between the sensor observations, the larger the

lusters beome.

As shown in [11℄, for any rate alloation, the shortest path tree (SPT) is

the optimal routing struture for orrelated data gathering. It is, however,

interesting to note that forming lusters requires some nodes to send their

readings through their pre-spei�ed CH, whih is not neessarily part of the

SPT rooted at the sink. Therefore, luster formation is worthwhile only

if the amount of ompression ultimately ahieved at the CHs ompensates

for the extra energy spent due to the transmission of data over suboptimal

paths. When the orrelation degree is very low (e.g., W = 0.1), no signi�ant
redution in luster data an be attained by forming lusters of multiple

nodes. Rather, similar to lustering without ompression, nodes tend to

form isolated lusters of size 1 and individually transmit their data over the

SPT. With a high orrelation degree (e.g., W = 0.9), however, more nodes

tend to join eah luster, whih provides greater redution in the size of

the luster data after ompression. The optimal luster sizes found in this

experiment are 10 for W = 0.8 and 13 for W = 0.9.
Fig. 6b likewise demonstrates the impat of inreasing the tolerable dis-

tortion level on optimal luster sizing. As seen, when a higher level of distor-

tion is allowed, readings from a broader loal neighborhood an pratially

be ompressed into a single message at the CH level; thus larger lusters

beome more a�ordable.
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7.4. A Comparison of Uniform Clustering Shemes

In this subsetion, we present a omparison of three uniform lustering

shemes, namely Near-Optimal Loation-Based Clustering [20℄ (NOLBC),

Energy-E�ient Hierarhial Clustering [6℄ (EEHC) and Optimal Uniform

Clustering (OUC) whih we presented in this paper, with a partiular fous

on their orresponding energy usages. NOLBC is proposed as a heuristi

sheme for approximating optimal luster sizes as a funtion of number of

sensors in the network. A somewhat di�erent funtional relationship is es-

tablished between optimal probability of CH seletion, network size and node

density in EEHC where a multi-tier hierarhy of lusters is formed.

We believe that these two frameworks are similar to OUC in various

aspets. First, they all are based on a randomized foundation and thus, an

readily be implemented in real networks in a distributed manner. Seondly,

energy-e�ieny is the primary fous of all three shemes when forming the

lusters. Thirdly, they all onsider data orrelation in order for removing

data redundanies and saving energy. Based on all this, we believe that a

side-by-side benhmark of these three shemes an be a fair and meaningful

omparison.

Fig. 7 depits the results of our simulations. For EEHC and OUC, re-

sults of both lustering with data ompression and without data ompression

(identi�ed by /WC and /NC su�xes respetively in the legend of Fig. 7) are

provided. The purpose for inluding the latter is to provide a ompari-

son baseline that highlights how muh bene�t is solely ontributed by data

ompression itself. As seen, OUC generally yields better energy-e�ieny

ompared to the other two. However, as data orrelation degree inreases,

the results of all three shemes beome more omparable.

The fundamental di�erene between the foregoing proposals (and their

orresponding energy usages) lies in the extent to whih they exploit data

orrelation. While all three shemes somehow implement data aggregation

and ompression, NOLBC and EEHC are oblivious of the impat of data

orrelation in forming optimal-sized lusters. In fat, in both shemes a

�xed near-optimal luster size is obtained to minimize the network energy

onsumption aross the entire range of data orrelation degrees. However,

aording to our �ndings in this paper, there exists a strong dependene be-

tween these two onepts. This observation motivates the idea of orrelation-

aware luster sizing. It is interesting to note that in our simulations, NOLBC

and EEHC onstrut lusters with �xed sizes of 32 and 11, respetively; while
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Figure 7: A omparison of energy onsumption between di�erent uniform randomized

lustering shemes.

lusters formed by OUC, omprise a variable average ranging from 1.1 to 13.8
nodes per luster as data orrelation degree inreases.

The energy di�erenes between NOLBC, EEHC/WC and OUC/WC urves,

as seen in Fig. 7, highlight the importane of areful adjustment of luster

sizes based on data orrelation. That the di�erenes between energy usages

beome less evident in presene of high orrelation stems from the fat that

lusters formed by NOLBC and EEHC are inherently large enough to provide

maximum intra-luster savings. In fat, it is in the absene of su�ient data

orrelation where having suh exessively large lusters breaks the optimal

routing struture (SPT) and indues additional transmissions over longer

paths to the sink.

7.5. Non-Uniform Clustering in a Multi-Region Network

In this subsetion, we �rst quantify the energy savings attained by using

non-uniform lusters throughout the network. We also study the e�et of

distane on optimal luster sizing by analyzing the solutions of a multi-region

network.

For the network on�guration desribed previously, Fig. 8 ompares the

optimal network energy onsumption for various degrees of data orrelation

when di�erent number of regions are used. The upper urve orresponds to

a single-region network (uniform lustering), and the lower lines orrespond

to more regions, from 2 to 5, respetively (non-uniform lustering).
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Figure 8: The energy onsumption omparison between uniform lustering (m = 1) vs.

non-uniform lustering (m > 1).

Table 2: Optimal probabilities of CH seletion and their orresponding energy usage

(model vs. simulation)

m E∗
mod E∗

sim 〈p∗1, . . . , p∗n〉
1 8292.96 8415.60 (0.0909)
2 8202.94 8318.63 (0.1000, 0.0556)
3 8196.12 8071.83 (0.1001, 0.0714, 0.0556)
4 8180.63 7890.37 (0.1668, 0.0909, 0.0556, 0.0556)
5 8169.44 7845.75 (0.2002, 0.1001, 0.0715, 0.0556, 0.0556)

Surprisingly, inreasing the number of regions only slightly improves the

network energy onsumption. In order to interpret this unexpeted behavior,

let us have a look at Table 2 to see the optimal probability alloation over

the regions of a ertain realization. As evident from this table, the optimal

CH probabilities derease with the distane to the sink for all on�gura-

tions. For a 5-region network, for example, the lusters of the outermost

region are almost 4 times larger than the ones in the innermost region. How-

ever, the optimal theoretial network energy onsumption for suh a setting

is only 1.5% better than that of uniform lustering in a single-region net-

work. Also, the simulation results demonstrate less than 7% enhanement

under the same onditions. In fat, both data orrelation degree and distane
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(b) Non-uniform lustering (m = 3)

Figure 9: Realizations of two optimal lusterings

make the optimal size of the lusters larger. On the other hand, the larger a

luster beomes, the more energy has to be spent on olleting data from the

luster periphery. These two fators turn out to o�set eah other, yielding

only marginal improvements. More preisely, adding more nodes to a luster

initially helps ahieve higher data ompression rates and better energy e�-

ieny. Gradually, less and less energy savings are made as more nodes are

attahed to the luster. At some point, the luster gets �saturated�. That is

to say, the luster reahes its limit in terms of maximum energy saving. At

this point, additional nodes not only provide no extra savings, but also prove

detrimental to the total energy onsumption. Suh phenomenon is often

referred to as �diminishing returns�. With optimal uniform lustering, not

all lusters are saturated, but most of them are lose to their limits. With

optimal non-uniform lustering, all lusters an reah their apaity limit.

However, the di�erene between the two stages is so small that in pratie,

optimal uniform lustering performs quite lose to any optimal non-uniform

lustering strategy.

Fig. 9 ompares two optimal realizations of uniform lustering (single-

region network) against non-uniform lustering (multi-region network) on

an arbitrary network. As presented by Fig. 9, with non-uniform lustering,
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the optimal luster size grows with distane from the sink. Also, for this

partiular example, the non-uniform lustering saves 8.5% more energy than

the uniform lustering.

8. Further Results and Disussion

In this setion, our objetive is to shed some light on why a basi uniform

lustering provides omparable energy savings to non-uniform shemes, even

though the average luster sizes are remarkably di�erent.

Consider a luster of nodes with radius r at an arbitrary distane d from

the sink (see Fig. 10). We want to see how the per-node data olletion ost

hanges as we expand the luster radius by ∆r. For simpliity, in the fol-

lowing, we onsider diret data transmission; however, as we showed earlier,

sine the relative energy savings for various luster sizes in the multi-hop

sheme is no better than that of the diret ommuniation, we an onsider

the resulting savings as an upper bound for multi-hop ommuniation, as

well.

CH Sink 

d 
r 

∆ r�

Figure 10: A luster of radius r at distane d from the sink.

As explained in Setion 4.1, we an derive the following expressions for

the energy ost of data olletion from an arbitrary luster when it omprises

n and n +∆n nodes, respetively.

C(n) ≈ nb1(
1

2
r2) + bnd

2

C(n+∆n) ≈ (n +∆n)b1

(1

2
(r +∆r)2

)

+ b(n+∆n)d
2 . (14)
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Using Poisson approximation, we know that n ≈ ρπr2 and n+∆n = ρπ(r+
∆r)2. Therefore, we an rewrite Equation (14) as follows.

C(n) ≈ n2εb1 + bnd
2

C(n+∆n) ≈ (n+∆n)2εb1 + b(n+∆n)d
2 , (15)

where ε = 1/(2ρπ) ≈ 0.16ρ is a onstant independent of n.
Now, let C̄(n) denote the amortized energy ost of a luster of size n. We

have that:

C̄(n) =
C(n)
n

. (16)

In fat, C̄(n) an be seen as the average energy usage of an arbitrary node

when it is assigned to a luster of size n. Clearly, by expanding the luster

size we want

C̄(n+∆n) ≤ C̄(n) ⇒

(n+∆n)εb1 +
b(n+∆n)

(n+∆n)
d2 ≤ nεb1 +

bn
n
d2 ⇒

ε∆n

d2
≤ bn

nb1
− b(n+∆n)

(n+∆n)b1
. (17)

In previous work [23℄, we introdued the metri ompression ratio that

is de�ned as φ(n) = bn/(nb1). As mentioned earlier, CHs only forward a

ondensed message representing the entire luster information to the sink

after removing the redundanies. The ompression ratio is a normalized

measure that indiates what fration of the olleted data from the luster

members is transmitted to the sink after ompression, and in this sense, the

less the ompression ratio, the better. The limiting values are 1 when exatly

the same opy is sent (i.e., a luster of size 1 or when no data orrelation

exists) and 0 for a highly orrelated �eld as n → ∞.

Using the notation of ompression ratio and from Equation (17), we an

readily infer that an additional node an be added to a luster of size n as

long as

|∆φ(n)| = |φ(n+1) − φ(n)| ≥
ε

d2
. (18)
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Figure 11: The required threshold for speifying the optimal luster size.

As shown in [23℄, φ(n) : N → [0 1] is a non-inreasing onvex funtion

of n; therefore, ∀n ∈ N : 0 ≤ |∆φ(n)| ≤ 1. However, as Equation (18)

shows, assigning a new member to an existing luster is ost-saving only if

the resulting luster's ompression ratio is at least ε/d2 less than that of the

luster exluding the new member. Knowing their approximate distane to

the sink, CHs an use this riterion to deide whether or not omprising a

new member is bene�ial.

For di�erent degrees of data orrelation, Fig. 11 illustrates that |∆φ(n)|
monotonially dereases with the luster size. The horizontal line shows the

required di�erene of ompression ratios for a luster at d = 3 to expand.

The intersetions of the horizontal line with urves speify the thresholds

for speifying the optimal luster sizes (denoted by n∗
). That is to say, by

expanding the luster size beyond this limit, the per-node ost of data olle-

tion inreases. As the luster gets further from the sink (i.e., d inreases), the
onstraint on the right-hand-side of the inequality (18) beomes looser, set-

ting the horizontal line lower, implying that the optimal luster size inreases

with distane (on�rming our former results).

We next fous on how the amortized ost of the luster hanges with its

size. In partiular, we want to quantify the savings ahieved by adding more

nodes to the luster while the same node density is maintained in the luster.

Expanding Equation (16), we an write

C̄(n) = b1(nε+ φ(n)d
2) . (19)
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Figure 12: The amortized ost of lustering vs. luster size
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The �rst term inside the brakets in Equation (19) (i.e., nε) orresponds

to the intra-luster data olletion ost and is an inreasing funtion of the

luster size (n). On the other hand, the seond term (i.e., φ(n)d
2
) ontributes

to the amount of savings obtained via ompressing the luster data and thus,

is a non-inreasing funtion of the luster size. Analogous to anti-parallel

fores, these two terms pull the luster boundaries in opposite diretions.

The latter is stronger when the luster size is small, but it gradually beomes

weaker as the luster grows. Fig. 12 better explains this interesting behavior.

For a given degree of data orrelation (W ), Fig. 12 depits the amortized

ost (C̄(n)) of a luster at a ertain distane (d) from the sink as a fun-

tion of the luster size (n). As learly evident, expanding the luster size

�rst helps ahieve a lower energy onsumption per node. Suh savings are

more signi�ant for lusters at further distanes from the sink or when the

data orrelation degree is relatively high. By adding more nodes, the luster

eventually omes to its saturation limit. The amortized ost of the luster

begins to slightly inrease by expanding the luster size beyond this point.

In fat, after the luster gets saturated, the extra ost from having additional

nodes in the luster turns out to o�set the savings due to ahieving better

data ompression rates, suh that the di�erene in the amortized ost of the

luster is barely notieable after this point.

The shaded areas in Fig. 12 show the luster sizes whose energy onsump-

tions are within 5% of the optimal. As seen, for lusters further away from

the sink, suh optimal range is wider than for the loser ones. Moreover, for

lusters at various distanes, these optimal ranges are overlapping. In other

words, even though the optimal luster size signi�antly varies with distane,

it is always possible to �nd a globally optimal luster size that performs very

well aross the entire network. This result justi�es why even a simple uniform

lustering an perform reasonably lose to the more ompliated non-uniform

shemes.

9. Conlusions and Future Work

In this paper, we showed that the general problem of Optimal Clus-

tering is NP-hard. We proposed a novel framework for modeling luster-

based data gathering in WSNs and optimized it to produe the best possible

lustering of the network in terms of energy onsumption. We presented

the �rst analysis of non-uniform lustering in WSNs and demonstrated that

heterogeneous-sized lusters are more energy-e�ient in WSNs with spatial
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data orrelation. We further showed that due to the trade-o�s indued by

physial harateristis of lusters, optimal uniform lustering an also per-

form very well ompared to the more ompliated non-uniform ounterparts.

In the spei� network on�gurations onsidered in our simulations, the

improvements ahieved by non-uniform lustering are not signi�ant. An

avenue for further researh is to study the spei� topologies (inluding on-

trived and arbitrary on�gurations) whih might better bene�t from non-

uniform lustering.

Analyzing the network lifetime and investigating potential mehanisms

(e.g., CH rotation) that an help fairly distribute the data olletion load

throughout the network is another interesting area of future study.

Last but not least, it is noteworthy to mention that our proposed frame-

work is originally tailored for stati on�gurations. Nonetheless, mobility is

an ever-growing neessity in most reent trends of appliations. Extension of

the proposed sheme to ope with mobility and its related hallenges is yet

another important problem whih remains for future work.
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