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Abstract

Network virtualization enables multiple virtual networks to co-exist on the same physical network.

Each virtual network requires specific amounts of physical network resources such as node processing

and link bandwidth. The problem of mapping virtual resource requirements to physical resources is

extensively studied in the literature under the assumption that resource demands of virtual networks are

known deterministically. In real deployments though, resource demands include significant uncertainty

and fluctuate over time. This paper considers the problem of mapping virtual links to physical network

paths subject to a constraint on each virtual link congestion probability under the assumption that

bandwidth demands of virtual links are uncertain. A general uncertainty model is considered, where

bandwidth demands are described by random variables for which only the mean and variance (or a

range) are known. We formulate the problem as a nonlinear optimization problem, which is shown

to be non-convex. Consequently, we develop an approximate formulation that results in a second-order

cone program (SOCP) that can be solved efficiently even for large networks. We then provide simulation

as well as Mininet experimental results to show the utility and efficiency of our exact and approximate

models in various network scenarios. We apply our models to commonly studied USA and EON networks

as well as randomly generated large networks. Our results show that both models are able to satisfy the

link congestion constraint, and that the approximate model is very close to the exact model.

Index Terms

Virtual networks, Uncertain demands, Bandwidth allocation.
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Congestion-Constrained Virtual Link

Embedding with Uncertain Demands

I. INTRODUCTION

A. Background and Motivation

Network virtualization has emerged as one of the key technologies of future networks. In

its general form, network virtualization enables multiple virtual networks (VNs) to co-exist on

the same physical or substrate network through specific abstraction and isolation mechanisms.

To operate efficiently and reliably, each virtual network demands specific amounts of physical

network resources, e.g., link bandwidth. This requires resource allocation algorithms that can

efficiently share physical network resources among virtual networks. Specifically, the virtual

nodes and virtual links that interconnect them have to be mapped to physical resources in the

substrate network.

The problem of mapping virtual resource requirements to physical resources is known as the

virtual network embedding (VNE) problem. The VNE problem is NP-hard and has been the

subject of extensive research (see [1] for an extensive survey on the topic). A VN is represented

by a set of virtual nodes and virtual links. Virtual nodes and links require some amount of

resources, i.e., processing power and bandwidth, which depend on the services provided by the

corresponding VNs. The VNE problem is then to find a virtual to physical node-to-node and

link-to-path mapping that does not exceed the node and link capacities of the physical network.

Often a measure is defined to assess the quality of a mapping, e.g., the cost or revenue of the

mapping. The goal of VNE is to find a feasible mapping that is optimal with respect to the

defined measure.

Most of the existing works on VNE assume that the resource demands of VNs are known

deterministically [1], i.e., the resource demands are fixed and known a priori by the mapping

algorithm. In a real deployment though, the node and link demands (i.e., processing power and

bandwidth) include significant uncertainty (e.g., because of estimation errors or variability over

time) [2]–[5]. As such, when employing deterministic embedding algorithms, one has to consider

either the “worst-case” or “average” resource demands for each VN. Both approaches, however,
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lead to inefficient use of network resources. The worst-case approach results in significant under-

utilization of physical resources, while the average approach results in under or over utilization

depending on whether the actual demands are higher or lower than their presumed averages.

There are recently a few works on VNE that consider uncertainty in resource demands (e.g.,

see [3]–[7]). These works either assume that the full statistical distributions of resource demands

are known (e.g., demands follow a Normal distribution with known parameters) [5], [6], or

resort to robust optimization models where only limited information about resource demands is

assumed (e.g., demands fall within a given range) [3], [4], [7]. Their objective is to find a virtual-

to-physical mapping that is feasible even when resource demands deviate from their nominal

values, without sacrificing the utilization of physical resources. In either case, the embedding

algorithm computes a mapping that satisfies virtual resource demands probabilistically. In other

words, the computed mapping may not be feasible in certain scenarios, e.g., when all resource

demands deviate significantly from their nominal values. Consequently, a “congestion” happens

at a node or link where the allocated physical resources are insufficient to meet the virtual

resource demands. Congestions are detrimental to the performance of VNs, and hence it is

critical to take them into consideration when computing a virtual-to-physical resource mapping

under demand uncertainty.

In this paper, we consider the VNE problem under demand uncertainty with guaranteed

congestion probability. Specifically, we focus on mapping virtual links to physical paths, where

a pre-specified target on congestion probability is guaranteed for each virtual link. In the context

of link-to-path mapping, guaranteeing a congestion probability for a virtual link reduces to

guaranteeing the end-to-end congestion probability on the corresponding path. We show that

under this constraint, the VNE problem becomes considerably different and more challenging

compared to existing formulations without end-to-end congestion guarantee. Our objective is to

design a bandwidth allocation algorithm that considers uncertainty in resource demands, provides

guaranteed end-to-end congestion probability, and is fast enough to be applied to large-scale

network virtualization.

B. Related Work

In the following, we briefly review several related works focusing on those that consider

demand uncertainty.
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Deterministic VNE. This category includes works that assume the resource demands of VNs are

fixed and known in advance. This version of the problem, i.e., the deterministic VNE problem, is

extensively studied in the literature (see [1] for a survey on this topic). Generally, there are two

approaches in dealing with the VNE problem in this setting. First approach is based on modeling

the problem as an Integer Linear Program (see, among others, [8], [9]). Solving the resulting

integer program, which is NP-hard in general, for large networks is very time consuming. Thus,

the second approach focuses on heuristic solutions (see, among others, [10], [11]) that can tackle

large networks and yet provide solutions that are reasonably efficient.

Stochastic VNE. This category includes works that assume the distribution of bandwidth de-

mands is fully known. Their roots can be traced back to the literature on the effective bandwidth

concept [12]. For instance, [6] and [5] assume that demands follow a Normal distribution and de-

vise algorithms to solve the VNE problem accordingly. The congestion probability of each phys-

ical link can be computed using the tail probability of the Normal distribution. Wang et al. [13]

also assume Normally distributed demands, but consider an online setting for the VNE problem

in which VN requests arrive one-by-one over time. The work presented in [14] adopts a different

approach by employing a seasonal ARMA model to estimate the unknown future demands. Then,

to compute the link congestion probability, the authors assume that the prediction errors follow

a zero-mean Normal distribution for which the variance can be estimated from past demand

observations.

Robust VNE. This category includes works that apply robust optimization techniques to solve

the VNE problem by assuming that, while the distribution of demands is unknown, some

uncertainty model can be used to describe their variability. Heckmann et al. [15] consider a

model where the demand uncertainty is described by a number of scenarios. Each scenario

corresponds with a specific set of resource demands. By considering different scenarios, the

authors can account for various bandwidth allocation strategies ranging from average to worst-

case allocation. Lee et al. [7] formulated the VNE problem as a robust optimization problem,

where demand uncertainty is described by a range (the so-called Box Uncertainty model [16]).

Their objective is to guarantee a congestion level for each physical link independently of other

links. They convert the problem to a chance constrained optimization problem [16], which can be

solved efficiently. Coniglio et al. [3], [4] also model the VNE problem as a robust optimization

problem following the framework of Γ-Robustness [17]. In this approach, the level of uncertainty
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Fig. 1. Virtual link to physical path mapping.

in demands can be controlled by the parameter Γ, which determines how many demands can

deviate from their nominal values simultaneously.

As mentioned earlier, none of the above works can guarantee the congestion probability

experienced by a virtual link, as they consider congestion on each physical link independently

from other links on the end-to-end path that maps to the virtual link.

C. Our Work

Recall that a virtual link is mapped to a physical path. Thus, to guarantee a given congestion

level for a virtual link, the end-to-end congestion on the corresponding physical path must

be bounded. The stochastic and robust works described above, however, only guarantee that the

probability of congestion on each physical link is bounded. Therefore, the congestion probability

achieved for the corresponding virtual link depends on the structure of the underlying path, and

hence is not guaranteed.

Consider the simple example depicted in Fig. 1, in which the virtual link ` between virtual

nodes v1 and v2 is mapped to path P = 〈e1, e2, e3, e4〉 in the physical network (i.e., v1 and v2

are placed on n1 and n2). Suppose that the pre-specified target congestion probability for the

virtual link ` is given by ε. Let εk denote the congestion probability on physical link ek. In order

to satisfy the virtual link congestion requirement ε, the following constraint should be satisfied,

1−
∏

ek∈P (1− εk) ≤ ε . (1)

Notice that εk is a function of the total resource demand on link ek, and should be (optimally)

determined by the embedding algorithm. The complexity of the problem arises from the fact

that 1) the optimal path connecting the physical nodes n1 and n2 is not known in advance,

and 2) the bandwidth demand on each link, and consequently the link congestion probabilities
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are functions of the unknown paths. In other words, the problem is a joint optimization of

path selection and link congestion allocation, which we show results in a non-convex nonlinear

optimization problem that is computationally intractable. The above mentioned works assume

that it is sufficient to guarantee a fixed congestion probability ε for every physical link ek. As

such, the actual end-to-end congestion probability achieved by these works depends on the length

of the physical path, and hence cannot be guaranteed.

Our contributions in this work can be summarized as follows:

• We consider demand uncertainty in a flexible and general model, where only limited

information about resource demands, namely mean and variance, is needed.

• We formulate the link mapping problem with constrained end-to-end congestion probability

as a non-linear optimization problem that can be solved using global optimization solvers

for small network instances.

• We propose an approximate link mapping solution for the problem, which is formulated as

a second-order cone program (SOCP) that can be solved efficiently even for large network

instances.

• We present simulation as well as Mininet [18] experimental results to show the efficiency

and utility of our solutions in both small and large network scenarios.

D. Paper Organization

The remainder of this paper is organized as follows. We discuss our model and assumptions in

Section II. Exact and approximate problem formulations are presented in Section III. Performance

evaluation results are presented in Section IV. Section V provides some concluding remarks.

II. SYSTEM MODEL AND ASSUMPTIONS

To cope with the complexity of the problem, most existing works on VNE decompose the

problem into two sub-problems in which node and link mappings are performed sequentially [1],

[3]. In this work, we focus on link mapping in VNE to avoid cluttering our model and algo-

rithms. Thus, we assume that the placement of virtual nodes in the substrate network is already

determined and focus on mapping virtual links to physical paths, which we refer to as the virtual

link embedding (VLE) problem. Our framework, however, can be included in any node placement

algorithm (such as the ones proposed in [5], [19] for datacenters, or [11] for general networks)

for a complete VNE solution. Table I lists the principal notation used throughout the paper.
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TABLE I
PRINCIPAL NOTATION USED IN THE PAPER.

Symbol Definition
Input parameters

N Set of physical nodes in the substrate network
E Set of physical links in the substrate network
L Set of virtual links from all virtual networks
`i Virtual link i (`i ∈ L)
ek Physical link k (ek ∈ E)

O(`i) Physical origin node of `i
D(`i) Physical destination node of `i
Ck Capacity of physical link ek
Bi Bandwidth demand of virtual link `i
Pi Set of candidate physical paths for `i ∈ L
P Set of all candidate paths in substrate network
|Pj | Length of path Pj ∈ P
ε Required congestion probability on virtual links

Decision variables
0 ≤ xij ≤ 1 Fraction of demand Bi on path Pj ∈ Pi

0 ≤ yik ≤ 1 Total fraction of demand Bi on link ek ∈ E
0 ≤ εk ≤ 1 Congestion probability on link ek ∈ E
α ≥ 0 Utilization of the most congested physical link

A. Physical Network

There is a single physical network specified by an undirected graph G = (N , E), where N

denotes the set of physical nodes and E denotes the set of physical links (or edges) between the

nodes. Each physical link ek has a fixed capacity denoted by Ck > 0.

B. Virtual Network Requests

Setting up virtual networks takes time. Therefore, we assume that virtual network (VN)

requests are processed in batches. Each batch corresponds to requests that have arrived during

the previous time interval. Our link mapping algorithm is run over each batch in an offline

manner. Each virtual network request is represented as a weighted undirected graph with a given

set of nodes and links. The weight of each link indicates the (uncertain) bandwidth demand of

that link. Each virtual link requires its congestion probability to be bounded by some target ε,

for 0 ≤ ε ≤ 1.

C. Virtual Link Embedding

Let L denote the set of the virtual links of all VNs in a batch. Let O(`i) ∈ N and D(`i) ∈ N ,

for virtual link `i, denote the physical nodes embedding the origin and destination of virtual link
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`i, respectively. The VLE problem is to map every virtual link `i ∈ L to a set of physical paths

connecting O(`i) to D(`i) in the substrate network (i.e., we allow multi-path routing) so that

the virtual link `i satisfies the target congestion probability ε.

D. Bandwidth Demand Uncertainty Model

Let Bi denote the (uncertain) bandwidth demand of virtual link `i ∈ L. We assume that

only limited statistical information about Bi is available. Specifically, we assume that the mean

and variance of Bi, denoted by E [Bi] = µi and Var [Bi] = σ2
i , are known. It is relatively

straightforward to estimate the mean and variance based on historical traffic data [20]. In fact,

as long as σ2
i provides an upper bound on the actual variance of Bi, our formulation holds.

We emphasize that the considered uncertainty model is quite general. For example, in the

literature on Robust Optimization (RO), a common uncertainty model is the so-called Box

Uncertainty model [16]. In this model, each uncertain variable Bi is allowed to deviate from its

nominal value by a maximum deviation ∆i. That is, Bi ∈ [µi − ∆i, µi + ∆i]. Our uncertainty

model can easily accommodate the Box Uncertainty model by computing an upper bound on

the variance of an arbitrary random variable that is confined to interval [µi−∆i, µi+∆i]. In this

case, it can be shown that σ2
i = ∆2

i , which is attained when all the probability mass is assigned

to the extreme points of the interval. Alternatively, a less conservative approach is to assume Bi

is uniformly distributed over the interval, which leads to σ2
i = ∆2

i /3.

E. Congestion Probability

Let Wik denote the bandwidth demand of virtual link `i ∈ L on physical link ek ∈ E , where

E [Wik] = µik and Var [Wik] = σ2
ik. Note that Wik has to be determined by our embedding

algorithm based on bandwidth demands of all virtual links (i.e., Bi’s) and capacities of all

physical links (i.e., Ck’s). The congestion probability on physical link ek is then given by,

P {congestion on ek} = P

{∑
`i∈L

Wik ≥ Ck

}
,∀ek ∈ E . (2)

For simplicity of notation, in the following derivation, we abbreviate the summation index and use

i in place of `i ∈ L. To avoid making any assumptions about the distribution of the uncertain
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bandwidth demands, we use a concentration bound to estimate (2). Specifically, we use the

Chernoff bound [21], as follows:

P

{∑
i

Wik ≥ Ck

}
≤ inf

θ≥0

E
[
eθ

∑
iWik

]
eθCk

. (3)

If Var [Wik] is bounded, i.e., Var [Wik] ≤ σ2
ik, then we have [22],

E
[
eθWik

]
≤ eµikθ+

1
2
σ2
ikθ

2

. (4)

By minimizing over θ, and noting that Wik’s are independent from each other, it is obtained

that,

P

{∑
i

Wik ≥ Ck

}
≤ exp

(
−(
∑

iWik −
∑

i µik)
2

2
∑

i σ
2
ik

)
. (5)

III. EXACT AND APPROXIMATE VLE

We assume that each virtual link `i ∈ L can be mapped to multiple paths from the set of

candidate physical paths Pi. In other words, Pi consists of multiple paths, e.g., first K shortest

paths, between origin and destination nodes O(`i) and D(`i). Denote the set of all candidate

paths in the substrate network by P , that is P = ∪`i∈LPi. Let xij , for 0 ≤ xij ≤ 1, denote the

fraction of bandwidth demand Bi that is allocated on path Pj ∈ Pi for virtual link `i. Our goal

is to find the routing variables xij that minimize the utilization of the most congested link in

the substrate network subject to a constraint on the congestion probability on `i. Let α denote

the utilization of the most congested link. The virtual link embedding problem is feasible only

if α ≤ 1.

A. Congestion on Physical Links

Let yik, for 0 ≤ yik ≤ 1, denote the total fraction of bandwidth demand Bi for virtual link

`i ∈ L that is allocated on physical link ek ∈ E . We have,

yik =
∑

Pj∈Pi
xij · Iek∈Pj

, (6)

where Iek∈Pj
denotes the indicator function, which is 1 if ek ∈ Pj , and 0 otherwise. Notice that

Wik = yikBi, and thus, E [Wik] = yikµi and Var [Wik] = y2ikσ
2
i . Next, applying (5), for a desired
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link utilization α, it is obtained that,

P

{∑
`i∈L

yikBi ≥ αCk

}
≤ exp

(
−

(αCk −
∑

`i∈L yikµi)
2

2
∑

`i∈L y
2
ikσ

2
i

)
. (7)

Therefore, to restrict the congestion probability on physical link ek by εk, the following inequality

should be satisfied,

exp

(
−

(αCk −
∑

`i
yikµi)

2

2
∑

`i
y2ikσ

2
i

)
≤ εk, (8)

which leads to the following inequality,

(
2 ln

1

εk

)∑
`i∈L

σ2
i y

2
ik ≤

(
αCk −

∑
`i∈L

µiyik

)2
. (9)

B. Congestion on Physical Paths

A path is a sequence of links, thus, we have,

P {congestion on path Pj} = 1−
∏

ek∈Pj
(1− εk) . (10)

In practice, we have εk � 1, and thus using the union bound, we obtain the following approxi-

mation for the path congestion probability,

P {congestion on path Pj} ≈
∑

ek∈Pj
εk . (11)

Therefore, to restrict the congestion probability on path Pj by ε, the following inequality should

be satisfied, ∑
ek∈Pj

εk ≤ ε . (12)

C. Exact VLE Formulation

The VLE problem can be formulated as a non-linear optimization problem, as presented in

Problem 1, where,

• Constraint (13a) enforces bandwidth embedding over all possible candidate paths.

• Constraint (13c) enforces end-to-end congestion probability ε on every path.

• Constraint (13d) enforces link congestion probability εk on link ek, so as to satisfy Con-

straint (13c).
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Problem 1 Exact VLE.

minimize α

subject to:∑
Pj∈Pi

xij = 1, ∀`i ∈ L (13a)

yik =
∑
Pj∈Pi

xijIek∈Pj
, ∀`i ∈ L,∀ek ∈ E (13b)

∑
ek∈Pj

εk ≤ ε, ∀Pj ∈ P (13c)

(
2 ln

1

εk

)∑
`i∈L

σ2
i y

2
ik ≤

(
αCk −

∑
`i∈L

µiyik
)2
,∀ek ∈ E (13d)

xij, yij, zij ∈ [0, 1], (13e)

α ≥ 0 . (13f)

All the constraints in Problem 1 are linear except (13d), which is non-linear and non-convex. To

show the non-convexity of this constraint, we transform it to an equivalent system of inequalities,

as follows. Let θk = 2 ln 1
εk

. Define the following auxiliary constraint,

θky
2
ik ≤ z2ik . (14)

The Constraint (13d) is then equivalent to the following constraints,

∑
`i∈L σ

2
i z

2
ik ≤ u2ik, (15a)

uik = αCk −
∑

`i∈L µiyik, (15b)

θky
2
ik ≤ z2ik, (15c)

θk ≥ 0 . (15d)

It is clear that (15a) is a second-order cone (SOC) constraint, (15b) and (15d) are linear, but (15c)

is non-convex.

To solve Problem 1, one approach is to use a global nonlinear solver such as Knitro [23]. We

have implemented this approach and experimented with various network configurations. While

it is possible to solve the problem for small network instances, it takes prohibitively long time to

solve the problem for any realistic network size. Moreover, since the problem is not convex, the
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computed solutions may not even be the global optimal ones. Therefore, to solve the problem for

large network instances, we design an approximate solution, as presented in the next sub-section.

We show that the approximation results in a second-order cone program (SOCP) [24] that can

be solved efficiently (in polynomial time) using conventional solvers such as Gurobi [25].

D. Approximate VLE Formulation

The complication in Constraint (13d) is due to the fact that the program tries to optimally

assign congestion probabilities to each link on a given path. If we could pre-compute εk for

each link ek, then Problem 1 could be converted to a SOCP, as demonstrated by (15a)-(15d).

Specifically, Constraint (13d) is equivalent to the following constraints,

∑
`i
σ2
i z

2
ik ≤ u2ik (16a)

uik =
1√
−2 ln εk

(
αCk −

∑
`i
µiyik

)
(16b)

which are SOC for a given εk.

Our approximate formulation is based on the simplification that all links in a path achieve the

same congestion probability. Clearly, this results in a sub-optimal solution because the optimal

solution may assign different congestion probabilities to different links on the same path. Let εj

denote the link congestion probability for each link in path Pj , that is εk = εj , for all ek ∈ Pj .

Let |Pj| denote the length of path Pj , we have,

P {congestion on path Pj} = 1− (1− εj)|Pj | . (17)

Therefore, to satisfy the end-to-end path congestion probability, we obtain that,

1− (1− εj)|Pj | ≤ ε⇔ εj ≤ 1− |Pj |

√
1− ε . (18)

One problem arising from the above congestion probability allocation policy is that a link may

be common among multiple paths of different lengths. In such cases, the longest path determines

the required congestion probability on the common links, as it requires lower congestion on each

link. As a result, the congestion probability assignment for the uncommon links must be updated

(i.e., increased) to satisfy the end-to-end path congestion constraint, as described next. Consider

some path Pj . Let P̂j denote the set of links in this path whose congestion probabilities are not

assigned yet. For the remaining links in the path, i.e., ek ∈ Pj \ P̂j , their congestion probabilities
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have already been assigned as they are common with some longer paths. Let ε̂j denote the

congestion probability that should be assigned to every link in P̂j . The following relation should

be satisfied:

1− (1− ε̂j)|P̂j |∏
ek∈Pj\P̂j

(1− εk) ≤ ε, (19)

which yields the following relation,

ε̂j ≤ 1− |P̂j |

√
1− ε∏

ek∈Pj\P̂j
(1− εk)

. (20)

The congestion assignment process is described in Algorithm 1.
Algorithm 1 Link Congestion Assignment.

1: ~P ← sort P from longest to shortest path
2: εk ← 0, ∀ek ∈ E
3: for j = 1 to | ~P| do
4: π ← 1
5: Pj ← ~P [j]
6: P̂j ← {ek ∈ Pj|εk = 0}
7: for all ek ∈ Pj \ P̂j do
8: π ← π × (1− εk)
9: end for

10: for all ek ∈ P̂j do
11: εk = 1− |P̂j |

√
1−ε
π

12: end for
13: end for

The optimization problem is then reduced to the SOCP problem presented in Problem 2.

Once the routing variables xij are computed, we may find that some paths are not used by

any virtual network. Thus, we can adjust link congestion probabilities accordingly. To adjust

link congestion probabilities, we simply remove the unused paths, re-assign link congestion

probabilities and solve the optimization problem again.

IV. PERFORMANCE EVALUATION

We have conducted extensive simulations and Mininet experiments in order to assess the

performance of our exact and approximate models. Knitro [23], an advanced solver for nonlinear

optimization, is used to solve the exact VLE problem. Moreover, AMPL [26] modeling language

is employed to enhance the accuracy of the local optimal solution. The approximate VLE model

is a SOCP, which is solved using Gurobi [25]. Computations are carried out on a single machine
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Problem 2 Approximate VLE.

minimize α

subject to:∑
Pj∈Pi

xij = 1, ∀`i ∈ L (21a)

yik =
∑
Pj∈Pi

xijIek∈Pj
, ∀`i ∈ L,∀ek ∈ E (21b)

(
2 ln

1

εk

)∑
`i∈L

σ2
i y

2
ik ≤

(
αCk −

∑
`i∈L

µiyik
)2
,∀ek ∈ E (21c)

xij, yik ∈ [0, 1], (21d)

α ≥ 0 . (21e)

with an Intel(R) Core(TM) i7-4770 CPU@3.40 GHz, 4 Cores and 8 Logical Processors, with

16 GB RAM.

Two sets of evaluations are conducted: 1) small-scale evaluations, 2) large-scale evaluations.

Small-scale evaluations consider small network topologies and are used to compare the exact

and approximate VLE solutions. Recall that solving the exact problem for large networks is

computationally intractable. Large-scale evaluations consider randomly generated large network

topologies and are used to study the effect of various system parameters on the utility and

scalability of the approximate VLE solution.

A. Simulation Parameters

For small-scale evaluations, the USA (24 nodes and 43 links) and European Optical Network

(EON) (19 nodes and 37 links) topologies are used (see Fig. 2). These topologies are widely used

in the literature for similar evaluation purposes (e.g., see [7], [27]). For large-scale evaluations,

random topologies are generated, as discussed in sub-section IV-D.

We assume that all virtual links have the same mean bandwidth demand of µ. Physical link

capacities are also assumed to be equal and given by C, where C is scaled with respect to

the mean bandwidth demand µ (i.e., C = ρ means that the link capacity is ρµ in bps). In

our evaluations, C varies between 10 and 100, but is set to 20 by default. We note that using

unscaled values for link capacities (e.g., 10 Gbps) actually slows down the optimization solver

considerably. We also set the variance of bandwidth demand to σ2 for all virtual links. In this
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             USA network 

(a) USA network topology.

 

EON network 

 

 

 

 

  

(b) EON network topology.

Fig. 2. Small-scale network topologies.

section, we use the Coefficient of Variation, denoted by CoV and defined as CoV = σ/µ,

to describe the variability of bandwidth demands. A high CoV indicates high uncertainty in

bandwidth demands, and vice versa.

TABLE II
DEFAULT SIMULAITON PARAMETERS.

Parameter Value
C 20
µ 1
K 3

CoV 1.0
ε 0.1

Network Topology USA

The optimization programs take as input the set of virtual links that need to be embedded in

the network. Each virtual link is assigned to a randomly chosen origin-destination pair in the

physical network. Then, a K-shortest-path algorithm [28] is run to compute K candidate paths

between the chosen origin-destination nodes for each virtual link. Next, the optimization models

are solved based on the computed candidate paths and network parameters. The default values

for the parameters are presented in Table II. The value of a parameter changes only when its

impact is investigated. Each point in the plots (for simulations) is the average of four simulation

runs. The error bars (showing the min and max values) are not presented in cases where the

deviation from the average was very small.
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B. Performance Measures

We use the following measures to compare the performance of the models: 1) the number

of admitted virtual links, 2) the achieved congestion probability, and 3) the utilization of the

most congested link (denoted by α). To compute the number of admitted virtual links, we solve

the problems starting with a small set of virtual link requests. Then, we iteratively increase the

number of virtual link requests until the problems become infeasible. While this linear search

can be improved, e.g., by a binary search, it takes only seconds to find the maximum number of

admitted links for the approximate model. For the exact model, however, it is a time-consuming

process and the starting point matters significantly due to local optimality of solutions returned

by the nonlinear solver. Therefore, we have used starting points based on the approximate model

solution to speedup the search process.

C. Exact and Approximate Models

In this subsection, we compare the performance of the exact and approximate models in terms

of the average number of admitted virtual links and achieved congestion probability. Our results

show that the approximate model produces results that are very close to those of the exact model.

Number of Admitted Links. Fig. 3 shows the the number of admitted virtual links by each

model for different coefficients of variation (CoV = 0, 0.5, 1, 1.5). By increasing CoV, demand

uncertainty increases and more bandwidth is reserved per virtual link, which causes a sharp

decline in the number of admitted virtual link requests. We observe that the results achieved by

the approximate and exact model are very close to each other. The reason for slightly higher

number of admitted links under the approximate model can be explained by looking at Fig 4. We

can see that the approximate model generally achieves higher congestion probabilities, which

translates to more admitted virtual link requests.

Congestion Probability. Fig. 4 depicts the achieved end-to-end congestion probabilities for exact

and approximate algorithm. For both models, the objective is to satisfy a maximum congestion

probability of ε = 0.1. We observe that: 1) both models generally satisfy the target congestion

probability, with the approximate model missing the target occasionally, and 2) the exact model

generally achieves lower congestion probabilities compared to the approximate one. This means

that, in some cases, the approximate model admits more virtual links than can be handled by

the physical link capacities. The reason is that the approximate model is forced to achieve a
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Fig. 3. Average number of admitted virtual links with exact and approximate models for different uncertainty levels.

specific congestion level at each physical link (as discussed in subsection III-D), which may not

be optimal, but the exact model is free to decide about the optimal level of congestion for each

link.
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(b) Approximate model.

Fig. 4. Congestion probability of exact and approximate models.

D. Effect of Network Parameters

In this section, we focus on the approximate model, as it is computationally fast and is

reasonably accurate compared to the exact model.

Number of Candidate Paths. Fig. 5 shows the effect of increasing the number of candidate

paths K on the performance of the approximate model. As can be seen in Fig. 5a, the maximum
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Fig. 5. Effect of the number of paths (K).

number of admitted links increases drastically by increasing the number of candidate paths from

1 to 3. However, the gain diminishes as the number of paths increases beyond 3. Therefore, we

set the default number of candidates paths to 3 in the rest of the simulations in this section.

Fig. 5b illustrates the impact of K on the most congested link, i.e., the link with the highest

utilization α. In this figure, the number of virtual links is fixed at |L| = 30. As expected, the

highest link utilization drops as we increase the number of candidate paths. Again, there is no

considerable reduction after K = 3.

Physical Link Capacity. Figs. 6a and 6b show the effect of the physical link capacity on the

number of admitted virtual links and most congested link utilization. In this scenario, CoV and

µ are set to their default values, and the scaled link capacity C varies between C = 10 to

C = 100. As expected, the maximum number of accepted links increases linearly with respect

to the link capacity. In Fig. 6b, the number of virtual links is fixed at |L| = 30. We observe that

the utilization α drops by almost 87% when C increases from 10 to 100. Also, the reduction in

link utilization diminishes as the link capacity increases beyond C = 30.

Number of Virtual Link Requests. Fig. 7 shows the CDF of the maximum link utilization

when the number of virtual link requests is set to 50 and 100. All other parameters are set to

their default values. For 50 virtual link requests, the network achieves at most 50% utilization,

which increases to 90% by doubling the number of virtual link requests to 100.

Network Topology. Fig. 8 shows the number of admitted links for different network topologies.
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Fig. 6. Effect of the physical link capacity (C).
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Fig. 8. Effect of the networktopology on admitted links.

Besides the USA and EON topologies, we have generated two large random networks with 50

(141 links) and 100 (291 links) nodes. Barabasi-Albert model [29] is used to generate random

scale-free networks. The objective of this experiment is to show that the approximate model can

be used to handle large networks with ease. Four different random sets of origin-destination pairs

are generated for each topology. The average number of admitted virtual links along with bars

showing the min and max values are plotted in the figure. As expected, the number of admitted

links increases by increasing the size of the network.
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Fig. 9. Mininet experimental results on the USA topology.

E. Mininet Experiments

In this subsection, our goal is to determine whether the results obtained via simulations can

qualitatively match the results measured on Mininet. In these experiments, we use the USA

topology, origin-destinations corresponding to virtual links are randomly picked from physical

nodes, and candidate paths between origin-destination pairs are based on K-shortest paths, as

in the simulations. To implement multi-path routing in Mininet, we use the routing variables xij

computed in the optimization problem to split bandwidth demands statically among the candidate

paths.

Implemented Algorithms. We implemented three VLE algorithms, as described below:

• Approx VLE: This is the approximate VLE model developed in this paper (see Problem 2).

• Average: This algorithm ignores demand variability and bases its bandwidth allocation
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decisions on the mean bandwidth demand only. Specifically, it allocates µ bps bandwidth

to each virtual link.

• 95-Percentile: This algorithm actually considers demand variability when mapping virtual

links. Specifically, it assumes that the bandwidth demands follow a Normal distribution with

mean µ and variance σ2 (which are assumed to be known). It then computes an effective

demand for each virtual link, which is equal to the 95-percentile of the bandwidth demand

given by µ+ 1.65σ. We chose the 95-percentile so that if a virtual link is mapped to a path

of length 2, and no other link uses that path, then the end-to-end congestion probability of

the link remains below ε = 0.1.

Notice that Average and 95-Percentile are deterministic mapping algorithms, which were solved

exactly by modifying our exact VLE formulation in Problem 1.

Experiment Setup. In Mininet, we generate traffic for each virtual link at a rate that is distributed

Normally with parameters µ and σ. We set µ to 1 Mbps, CoV to 1, and C to 10 (i.e., link capacity

is 10 Mbps). We note that CoV = 1 represents a scenario with high level of uncertainty. However,

it is chosen here to show that even in such a extreme scenario, the proposed model achieves

reasonable performance. Even though 1 Gbps network links are very common, these small values

are used to decrease the Mininet experimentation time, as every operation (e.g., switching with

Open vSwitch) is performed in software. To emulate demand variability, the traffic rates are

changed over time. Specifically, for each virtual link, its rate of traffic is sampled from the

Normal distribution every second during the course of the experiment. Each experiment is run

for 15 minutes to achieve stable results.

Measurements. In each experiment, we measure the utilization of every physical link and

compute the packet drop probability for each virtual link. To compute the packet drop probability,

we count the number of packets transmitted and received at the origin and destination nodes of a

link. The ratio of dropped packets to the transmitted packets gives us the packet drop probability.

To compute link utilization, we keep track of every packet transmitted over each link throughout

the experiment by creating a trace file. Given the size of packets (1066 bytes including link layer

headers), we then compute the utilization of each link over 10 second intervals and use them

to compute the overall average utilization of each link. Congestion events are the primary cause

of packet drops in our experiments. However, during each congestion event, multiple packets

could be dropped. Thus, while there is a strong correlation between packet drop probability and
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congestion probability, their values do not necessarily match.

Results and Discussion. Mininet results are summarized in Fig. 9. Specifically, Fig. 9a depicts

the average number of admitted virtual links with each algorithm. As expected, Approx VLE

admits significantly fewer links compared to the very optimistic Average. It, however manages

to admit more links compared to 95-Percentile as it takes advantage of statistical multiplexing

of multiple demands on each link. We see a similar relation between average physical link

utilizations in Fig. 9b, where Average achieves much higher utilization compared to the other

algorithms. However, the price to be paid for such a high utilization is the unacceptably high

packet drop probability achieved by Average, as depicted in Fig. 9c. As can be seen, while

Approx VLE and 95-Percentile achieve less than 10% drop probability, the drop probability of

Average can go as high as 60%, which would render the network unusable for any network ser-

vices relying on TCP. Another interesting observation is that, 95-Percentile is very conservative

and achieves almost 0% drop probability at the cost of admitting fewer virtual link requests.

V. CONCLUSION

In this paper, we considered the problem of congestion-constraint virtual link embedding

with uncertain demands. We showed that the problem can be well approximated by a second

order cone program, which can be solved efficiently even for large networks. Our simulations

and Mininet experiments show that considering uncertainty in demands results in more efficient

usage of network resources. An interesting extension of this work is to consider online virtual

network embedding with uncertain demands subject to congestion constraints.
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