
CloudPAD: Managed Anomaly Detection for ICS
Sanjeev Rao

sanjeev.rao@ucalgary.ca
Department of Computer Science

University of Calgary
Calgary, AB, Canada

Majid Ghaderi
mghaderi@ucalgary.ca

Department of Computer Science
University of Calgary
Calgary, AB, Canada

Hongwen Zhang
hongwen.zhang@wedgenetworks.com

Wedge Networks, Inc.
Calgary, AB, Canada

ABSTRACT
Modern attacks on Industrial Control Systems (ICSs) are the re-
sult of several colliding circumstances: historically insecure com-
munication protocols, increased ICS connectivity, and the rise of
state-sponsored attackers. Extensive research has been conducted
on using anomaly detection (AD) to counter this; here, deviations
from an ICS’s normal operation are monitored to indicate poten-
tially dangerous situations. However, most works either assume
an on-site deployment, or focus only on the neural architecture
and disregard the deployment environment altogether. For the for-
mer, failure to update local AD can result in otherwise preventable
attacks going undetected; as for the latter, directly porting these
architectures to a cloud deployment can result in stale predictions
due to communication delays, timeout-induced gaps in predictions,
and surcharges due to bandwidth costs.

In this work, we present CloudPAD, an ICS anomaly detection
pipeline that accounts for the issues introduced by an off-premises
deployment, which uses the ClozeLSTM—a neural network based
on the Long Short-Term Memory (LSTM) architecture—to detect
anomalies. We train and test the ClozeLSTM on the Secure Water
Treatment (SWaT) dataset, and show that it outperforms an ad-
vanced attention baseline, with a precision-recall AUC of 0.797 vs.
0.717. We also discuss measures to minimize CloudPAD’s bandwidth
consumption, and show that performance remains competitive with
a maximum decrease in PR AUC by 0.01when running in this mode.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Com-
puter systems organization→ Sensors and actuators; •Networks
→ Cloud computing.

KEYWORDS
ICS, anomaly detection, cloud computing, deep learning

ACM Reference Format:
Sanjeev Rao, Majid Ghaderi, and Hongwen Zhang. 2022. CloudPAD: Man-
aged Anomaly Detection for ICS. In Proceedings of Workshop on CPS&IoT
Security and Privacy (CPSIoTSec 2022). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CPSIoTSec 2022, November 7, 2022, Los Angeles, CA, U.S.A
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Industrial Control Systems (ICSs) have historically run on insecure
protocols [1]. At the same time, their increasing connectivity to
the Internet makes them a prime target for attackers, such as state-
sponsored Advanced Persistent Threat (APT) groups [19]. This is
reflected in the steadily increasing [16] rate of security incidents
since Stuxnet [6] was discovered. Extensive research has been car-
ried out into using anomaly detection (AD) as a defence against
novel attacks, which operates on the basis that anomalies inher-
ently follow a different distribution than an ICS’s normal operation.

The widespread success of machine learning methods in areas
such as computer vision and natural language processing (NLP) has
led to its adoption in anomaly detection aswell [4]. Suchmethods do
not require domain experts to manually specify ICS behaviour, and
can therefore generalize across various ICSs in a rapid manner. Re-
cent trends indicate the use of larger, stronger neural networks [15],
which promise better accuracy and fewer false alarms. However,
such models can be difficult to train, requiring dedicated staff for
this purpose; as network sizes increase, so do hardware require-
ments and training times [10]. Similar logistical, operational and
bureaucratic constraints may also prevent the use of newer models,
resulting in otherwise preventable attacks remaining undetected.

Cloud computing is a potential panacea: here, economies of scale
can be exploited by teams of experts to deliver efficient, up-to-date
AD as amanaged service, promising reduced operational complexity,
improved performance, faster turnaround times and the standard-
ization of AD across several classes of ICS. However, existing works
on AD for ICS (e.g. [18], [28]) either ignore the deployment model,
or focus on a locally-running neural network. A direct cloud de-
ployment of the former (which ignores the challenges introduced
by such a deployment) can cause growing pains for the customer:
ICS-AD communication delays can result in predictions being stale
upon arrival, especially for high-frequency ICSs operating on scales
faster than a request round-trip time (RTT). Timeouts due to lost
packets can cause unexpected gaps in prediction results. Lastly,
constantly querying the AD system can result in unexpectedly high
operational costs due to excessive network bandwidth usage.

To address these issues, we propose a Cloud Pipeline for Anom-
aly Detection (CloudPAD) in ICS. CloudPAD relies on an anomaly
detection engine controlled by a third-party provider. This is a deep
neural network which predicts future ICS states, and compensates
for network-induced delays by using lookahead prediction. Any
neural architecture can be used in CloudPAD’s detection engine;
due to inadequacies with conventional neural architectures for the
aforementioned issues, we develop the ClozeLSTM , which predicts
future ICS behaviour to detect anomalies at the physical process
level [11]. By operating as a denoiser on feature-masked input data
(in a process we refer to as clozing), we show that it outperforms

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CPSIoTSec 2022, November 7, 2022, Los Angeles, CA, U.S.A Sanjeev Rao, Majid Ghaderi, and Hongwen Zhang

an advanced attention baseline model [20]. To reduce operational
costs, we also discuss different bandwidth minimization measures
for CloudPAD. Since there is a trade-off between network costs and
detection accuracy, we also quantify the performance impact when
running CloudPAD in reduced-bandwidth mode.

Our main contributions in this paper are as follows:

• We present CloudPAD, a partially remote AD pipeline for
ICS, and the ClozeLSTM , a deep neural network that detects
anomalies therein. We train and evaluate the ClozeLSTM on
the Secure Water Treatment dataset [12], and compare it
with a recently-proposed attention baseline [20].

• We discuss how CloudPAD compensates for communication
delays arising from a cloud deployment, and examine differ-
ent means of reducing bandwidth consumption to minimize
operational costs.

• We show that the ClozeLSTM outperforms the baseline when
compensating for end-to-end delays, with a precision-recall
AUC score of 0.797 vs 0.717; we show that the ClozeLSTM’s
predictive power in reduced-bandwidth mode remains com-
petitive, with ROC and PR AUCs decreasing by a maximum
of 0.02 and 0.01 points respectively.

We cover related works in Section 2, and present both Cloud-
PAD and the ClozeLSTM in Section 3. Network effects and coun-
termeasures are detailed in Section 4. Experiments to determine
the ClozeLSTM’s performance are detailed in Section 5, with their
results being presented in Section 6. Section 7 concludes the paper.

2 RELATEDWORKS
We focus mainly on works using semi-supervised learning, since
supervised learning methods (e.g. [9]) can have trouble detecting
novel attacks [25]. Of these, reconstruction-based methods involve
a neural network lossily compressing ICS state data into a low-
dimensional subspace [30] and reconstructing it; a poor reconstruc-
tion implies an anomaly. A common architecture, as done in [21]
and [23], involves using undercomplete autoencoders as they are
naturally suited to this task [14]. However, such methods can only
be used to detect anomalies that have already occurred, and hence
are unsuitable for realtime detection in remote deployments, where
communication delays need to be accounted for.

Prediction-based methods address this need by predicting an
ICS’s future state based on its past behaviour; anomalies are de-
tected when the ICS’s state deviates from that predicted by the
network. Typically, Recurrent Neural Networks (RNNs) such as
Long Short-TermMemory (LSTM) [17] networks are used, as in [18]
and [13]. Having found success in the field of NLP, RNNs are well-
suited to handle ordered data; with LSTMs being resistant to van-
ishing gradients [17], they are adept at learning the long, complex
patterns representing an ICS’s physical processes.

Prediction accuracy, and thus the anomaly detection ability of an
LSTM, can be improved in several ways: a stacked LSTM uses mul-
tiple LSTM layers; this is done in [7]. Another is to use a sequence-
to-sequence (seq2seq) architecture; here, two LSTMs are chained to
generate predictions. This is done in [8] as well as in [20], which also
uses a modified attention layer [2] to increase prediction accuracy
on the SWaT dataset [12].

OT Network

SCADAHistorian

ICS
ClozeLSTM

receive67 compare

predict5

2 store

1 collect
send4

window

3 form

Figure 1: Control flow of CloudPAD.

The aforementioned works in the literature largely focus on an
on-premises setup, or ignore the deployment model. Thus, next-
step prediction is typically used, since it offers the best prediction
accuracy. Here, only the immediately upcoming state is generated;
this contrasts with lookahead prediction, where a distant future state
is predicted. A notable exception is the LSTM architecture in [29],
wherein an improvement is claimed when predicting the 150th state
in the future, indicating that certain architectures are potentially
more suited to lookahead prediction than others.

By focusing on the impact of network effects (such as delay and
bandwidth costs) arising from a cloud deployment, CloudPAD can
be used as a template for deploying the aforementionedworks to the
cloud. However, as we will show in the following sections, an ideal
cloud deployment would use a neural network that is optimized for
lookahead prediction (i.e. the ClozeLSTM).

3 CLOUDPAD DESIGN
This section describes both CloudPAD and the ClozeLSTM , which
is the neural network used by CloudPAD to detect anomalies.

3.1 CloudPAD Architecture
We define an ICS AD pipeline as containing a detection engine, a
state comparator and a threshold. Given a set of real ICS states,
the detection engine produces a synthetic ICS state reflecting the
system dynamics learned during training. The state comparator
determines the difference between this synthetic state and the actual
ICS state at a given point in time as an anomaly score; finally, this
is compared with a threshold, above which an anomaly is detected.

Control Flow. A control flow diagram is depicted in Figure 1.
First, the ICS’s state is collected from the Operational Technology
(OT) network by the historian software on the SCADA (step 1), and
stored in the historian database (step 2). The most recent states are
retrieved (step 3), compressed and sent as a JSON REST request to
the detection engine (step 4) along with the desired timestep (i.e. a
discrete time point). Inference is performed on these states by the
detection engine (step 5). The resulting prediction is returned as a
response (step 6), and is compared with the ICS state at the corre-
sponding timestep (step 7) by the state comparator on the SCADA;
an anomaly is detected if the difference exceeds a threshold.

CloudPAD: Managed Anomaly Detection for ICS CPSIoTSec 2022, November 7, 2022, Los Angeles, CA, U.S.A

(B, N)

(W, B, C = N - K)

(W, B, N)
ENC

(W, B, H)

EncoderInput + Cloze

DECD

DEC3

DEC2

DEC1

DecoderExtract Hiddens Concatenate
(B, H) x D

Linear
(W, B, C) x D

+

+

Train?
Yes

Noise
(1,)

Linear
(B, H x D)

(B, N)
Output

(W, B, N)

D 2 3

Cloze

1

(W, B, H)

Figure 2: ClozeLSTM architecture. Clozing (in red) involves selectively masking input to each decoder LSTM (𝐷𝐸𝐶𝑖). Corruption
(in yellow) involves adding noise to the input and hidden states, which makes the ClozeLSTM more resilient to false positives.

Detection Engine. The detection engine of CloudPAD is situated
off-premises, unlike its state comparator and threshold. While
CloudPAD is agnostic of the detection engine used, we use the
ClozeLSTM , which is based on the LSTM architecture.

State Comparator. In CloudPAD, the metric used to compare ICS
states is themean squared error (MSE) loss function. TheClozeLSTM
is trained to return predictions with a lookahead; therefore, states
are compared by matching predictions with the actual system state
at the prediction’s intended (future) timestep. By using a local
buffer to store predictions until their intended timestep, there are
no transmission-related delays, thereby allowing anomaly scores
to be calculated in real-time.

Thresholding. In CloudPAD, anomaly scores are compared with
a static threshold, since more complex thresholds assume anomaly
scores follow certain behaviours—thereby potentially leading to
anomalies passing undetected by subverting these assumptions.

3.2 ClozeLSTM Architecture
The ClozeLSTM is a neural network based on the stateless sequence-
to-sequence (seq2seq) LSTM architecture. Unlike a regular seq2seq
LSTM—where 1 encoder is connected to 1 decoder—a single en-
coder here is connected to multiple LSTMs in the decoder. The
number of decoders (𝐷) depends on the number of features (i.e.
sensors/actuators) 𝑁 in the input and the number of features per
decoder (𝐾), such that 𝐷 = ⌊𝑁

𝐾
⌋. The encoder and decoders both

take as input a window, which is a set of𝑊 samples corresponding
to the past𝑊 consecutive ICS states. Since the ClozeLSTM is state-
less,𝑊 depends on an ICS’s frequency, being sufficiently large to
capture system dynamics and yet small enough to allow for quick
training.

Furthermore, the 𝑖th feature for the 𝑖th decoder is masked in a
process we refer to as clozing. The feature is thus deduced based
on other features, diminishing the impact of autocorrelations on
the output; hence, attacks on a sensor/actuator require modifying
others to remain hidden. Overall, each decoder takes as input a
tensor of size (𝑊, 𝐵,𝐶 = 𝑁 − 𝐾), and the encoder a tensor of size
(𝑊, 𝐵, 𝑁), in the (time, batch, feature) dimensions respectively; the
output is a single state which is 𝐿 steps ahead in the future, with size

(𝐵, 𝑁). To better illustrate this, an architecture diagram is shown
in Figure 2.

Corruption. This mechanic increases the ClozeLSTM’s resilience
to false positives; it consists of two parts: encoder initialization,
and pre-conditioning corruption. In the former, the overall standard
deviation 𝜎 of the input is calculated, and an 𝑋 ∼ N(0, 𝜎2) noise
is passed as input to the encoder’s hidden layers. The input is also
averaged over the batch dimension, and the standard deviation
across the time dimension (𝜎𝑡) is calculated. The final hidden and
cell states (𝐻𝐸 and 𝐶𝐸) of the encoder’s last layers are used as
the initial states of each decoder; during training only, an 𝑋𝑖 ∼
N(0, 𝜎2) noise is added to 𝐻𝐸 and set as the 𝑖th decoder’s hidden
state.

Preconditioning corruption involves adding an 𝑋𝑖 ∼ N(0, 𝜎2𝑡)
noise to the 𝑖th decoder’s input during training. In effect, the ClozeL-
STM operates like a denoiser: by corrupting decoder inputs during
training only, the neural network learns to ignore small fluctuations
in the input during inference. As a result, noise is less likely to be
treated as anomalous during inference, reducing the likelihood of
false positives.

4 NETWORK EFFECTS
In this section, we discuss pertinent network effects encountered
due to the detection engine of CloudPAD being located off-premises,
and detail the respective countermeasures used in the context of
the ClozeLSTM .

4.1 Delay Compensation
One of the main ways that CloudPAD handles end-to-end delays
introduced by moving the server outside the bounds of the ICS is by
operating the detection engine with a lookahead. Here, predictions
occur multiple timesteps after the most recent input timestep. By
using multiple (fallback) ClozeLSTMs with decreasing lookaheads,
CloudPAD also becomes resilient to fluctuations in delay due to
jitter and timeouts. For example, consider the scenario shown in
Table 1. Here, an input window of the past 3 timesteps is sent to the
detection engine every timestep, and the response has a lookahead
of 2. A ✗ in the “Received?” row indicates the server could not

CPSIoTSec 2022, November 7, 2022, Los Angeles, CA, U.S.A Sanjeev Rao, Majid Ghaderi, and Hongwen Zhang

Table 1: Correcting for packet loss by varying lookaheads.

Timestep 1 2 3 4 5 6 7 8 9
Received? - - ✓ ✓ ✗ ✓ ✗ ✗ ✓

Without correction - - - - 5 6 ✗ 8 ✗

With correction - - - - 5 6 7 8 9

receive the request at that time; thus, when not corrected for, the
response that would normally arrive for 2 timesteps in the future
will instead be missing.

Correction thus involves using a neural network model with a
lower lookahead when a packet is lost. Here, a model with a looka-
head of 1 (i.e. next-step prediction) is used to ensure the response
arrives on time; concurrently, an inference is performed for the
model with a lookahead of 2, so that responses for timesteps 7 and
8 arrive in time, and the client can switch back to requesting the
larger lookahead. Otherwise, any packet losses would result in a
slow shift to lower lookaheads over time.

4.2 Bandwidth Reduction
In CloudPAD, the detection engine uses the most bandwidth be-
cause it requires several system states to make a prediction, unlike
other components which only require the system state at a specific
point in time. Since it is located outside the ICS perimeter and is
controlled by a third party provider, ingress and egress costs can
apply; depending on the data format, monitoring frequency and
number of monitored sensors and actuators present, bandwidth
consumption can quickly rise.

As a result, reducing the bandwidth consumed may be worth
the impact in performance, depending on the intended use case.
Different methods of bandwidth reduction are discussed below; all
of them reduce the amount of data transmitted, but the way they
go about doing so differs. A major caveat of such methods is that
they cannot be used when substantial damage can be inflicted in
the interim period between transmissions, since anomaly scores
are not updated during such periods.

Periodic sampling. Here, samples are collected every 𝑆 timesteps
(where 𝑆 is the subsampling rate) when forming an input window.
The end result is a system that behaves in real-time for the new,
reduced frequency; because the neural network has to be trained
on this new sample rate, prediction accuracy can decrease due to
the limited data available for training (e.g. from 300, 000 samples at
1 s/sample to 60, 000 at 5 s/sample). This is balanced by the longer
context present in the input window; periodic sampling may even
be necessary when dealing with high frequency inputs which would
otherwise require a very large input window. This is shown in Fig-
ure 3; compared to the “Discarding” scenario, the effective window
size for periodic sampling is much larger, and contains data points
at regular intervals, thereby reducing the likelihood of an attack
occurring in the time between samples.

Aggregation. Here, system states for the past 𝐴 timesteps are
collected, compressed and sent in a single batch, rather than send-
ing an entire window each timestep; the detection engine, rather
than the client, forms windows from the input, and predictions are
returned for each timestep in 𝐴. To ensure predictions from the

None

Aggregation (A)

Discarding (G)

Time

1 5 10 15 20 3025

Periodic Sampling (S)

Figure 3: Different reduction methods (𝐴 = 9, 𝑆 = 5, 𝐺 = 30).
Each box represents 1 s, with a window size of 6 s used here.

beginning of the batch are not empty, past samples are collected
as well. For example, at time 𝑇 = 21, with 𝑊 = 6 and 𝐴 = 9,
the samples from [7, 21] will be collected, before waiting another
9 timesteps to send samples from [16, 30] (pictured in Figure 3).
However, as 𝐴 increases, so does the time to detect an anomaly;
furthermore, reductions hit diminishing returns as compression
ratios slowly increase.

Discarding. This can be considered a special case of aggregation,
where the main difference is that intermediate states are not col-
lected; only the last window in a given time period𝐺 is transmitted
here. Like aggregation, this method is simple to implement and can
be started and stopped on-the-fly; however, it is only applicable in
cases where the detection engine is stateless (i.e. it does not carry
forward its internal state).

5 EXPERIMENTAL SETUP
In this section, we describe the experiments conducted to show the
end-to-end performance of CloudPAD. We discuss the experimental
setup, including the metrics, dataset and test environment used, as
well as the baseline to compare against the ClozeLSTM .

Dataset. Weuse the SWaT dataset [12] to evaluate our work. This
is a publicly available dataset for ICS anomaly detection, comprised
of operational traces of a miniaturized water treatment testbed [24]
when operating both normally and under attack. Pandas [26] was
used to carry out the preprocessing steps recommended in [28] on
the historian data. We also removed features P102, P204, P206, P403
and P603, as their variance was 0 in the training set. After prepro-
cessing, the dataset contains 24 features, with 496, 800 samples in
the training set and 449, 919 in the test set.

Baseline. We use the neural network from [20] as a baseline,
which is a seq2seq LSTM with a modified attention layer, for the
following reasons: with a publicly available implementation, verifi-
cation of the architecture is easy; also, it is a newer work (compared
to e.g. [29]) that uses seq2seq LSTMs, thus allowing for amore direct
comparison. Finally, since the attention layer is designed to improve
the prediction accuracy of the LSTM, an equivalent or better result
without using it indicates a viable alternative architecture.

Parameters. We used a fixed window size of𝑊 = 120 samples
for the input and a maximum batch size of 𝐵 = 1208, resulting in
an input shape of (120, 1208, 24) in the (time, batch, feature) dimen-
sions respectively. The hidden size (𝐻) was set to 64. Each decoder
consisted of 2 layers; the encoder contained 6, with the last 2 used
to initialize each decoder’s hidden states. The Adam optimizer [22]
was used with a learning rate of 0.002, with the features per decoder

CloudPAD: Managed Anomaly Detection for ICS CPSIoTSec 2022, November 7, 2022, Los Angeles, CA, U.S.A

Table 2: Number of compensatory lookaheads (i.e. 𝐿 < 10)
used in a 24 h time period for a given link loss %.

Lookahead
(L)

Link Loss (%)
0.5 1 2 5 10

1 0 0 0 0 9
2 0 0 1 5 22
4 1 1 1 3 44
8 5 15 65 378 1889

(𝐾) set to 1 to isolate individual features. Testing was done using
the same lookahead (𝐿) during training, with 120 timesteps as input
and the (120 + 𝐿)th timestep as an output. Finally, the parameters
for the baseline in [20] were retained: a hidden size of 64, and an
input window and hint of size 90 and 9 respectively. To compare
the two directly, a single attention network (rather than 1 per stage)
was trained on the same preprocessed dataset and lookahead(s).

Environment and metrics. We used PyTorch [27] and PyTorch
Lightning [5] to implement and train the neural networks on a
CentOS 8 machine with an NVIDIA V100 GPU, for 80 and 240
epochs on the full and subsampled datasets respectively; Weights &
Biases [3] was used to track experiments. To compare performance
with the baseline, we used the area under the curve (AUC) of the
precision-recall (PR) and the receiver operating characteristic (ROC)
curves; these metrics were chosen as they characterize the model’s
performance across all possible thresholds. We also implemented
CloudPAD’s topology (a connection between an ICS and a detection
server) in Mininet with varying link parameters to quantify the
impact of network effects. The following tests were conducted:

Delay compensation. Links between the SCADA and the re-
mote server were simulated in Mininet with losses of 0.5%,
1%, 2%, 5% and 10%. Timeout-induced delays resulted in
lower lookaheads being selected to compensate; the number
of such lookaheads used in a 24 h period was measured.

Per-lookahead performance. The ClozeLSTM and the base-
line were trained with lookaheads of 𝐿 = 1, 2, 4, 8, 10 and 20,
and their performance for each 𝐿 was measured.

Ablation. The ClozeLSTM’s performance was measured for
increasing values of 𝐾 . Since 𝐷 = ⌊𝑁

𝐾
⌋ and each decoder

sees 𝑁 − 𝐾 features, performance is expected to reduce as
𝐾 increases, both due to fewer decoders being present, and
due to the reduced context available to each decoder.

Bandwidth reduction. The performance of the ClozeLSTM
was gauged when operated under each of the bandwidth
reduction schemes discussed in Section 4.2.

6 PERFORMANCE EVALUATION
In this section, we present and discuss the results for the experi-
ments listed in Section 5.

6.1 Regular Operation
Delay compensation. With poorer connections, lookaheads lower

than the default need to be used to prevent “gaps” in the predictions
from appearing, even in lower-frequency datasets such as SWaT.
This is evident in Table 2; here, the default is 𝐿 = 10, and the number

20 21 22 23 24
0.9

0.91

0.92

0.93

Lookahead

Mean ROC AUC

20 21 22 23 24
0.64
0.68
0.72
0.76
0.8
0.84

Lookahead

Mean PR AUC

ClozeLSTM Baseline

Figure 4: Mean AUC scores for the ClozeLSTM and the base-
line across various lookaheads (𝐿). The ClozeLSTM’s PR AUC
degrades slower than the baseline as 𝐿 increases.

of compensatory (i.e. where 𝐿 < 10) lookaheads used is inversely
proportional to the link quality. While it is worth noting that loss
percentages greater than 2% are unlikely to be encountered for such
services in practice, avoiding any and all compensatory lookaheads
is not possible even at lower levels.

Per-lookahead performance. The ROC and PR AUCs for the base-
line and the ClozeLSTM are shown in Figure 4. While the baseline’s
ROC AUC is better than the ClozeLSTM for lookaheads of 8 or
more, the ClozeLSTM’s PR AUC remains consistently higher than
the baseline, indicating a better ability to detect anomalies.

20 21 22 23 24 25
0.86
0.88
0.9
0.92
0.94

Features per Decoder

ROC AUC

20 21 22 23 24 25
0.76
0.78
0.8
0.82
0.84

Features per Decoder

PR AUC

Figure 5: Effect of increasing the features per decoder (𝐾) on
the ClozeLSTM’s performance. As decoder context decreases
with increasing 𝐾 , ROC and PR AUCs drop accordingly.

Ablation. As shown in Figure 5, the PR AUC reduces with in-
creasing 𝐾 , as available context to each decoder decreases; on the
other hand, the ROC AUC remains relatively independent of 𝐾 .
However, both PR and ROC AUCs plummet to 0.757 and 0.859 re-
spectively when 𝐾 = 𝑁 , since every feature is clozed at this point,
resulting in each decoder receiving only a tensor of noise as input.

6.2 Reduced Bandwidth
Use of the following methods impacts performance in different
ways: they introduce a delay in the time to detection for an anomaly

CPSIoTSec 2022, November 7, 2022, Los Angeles, CA, U.S.A Sanjeev Rao, Majid Ghaderi, and Hongwen Zhang

0 30 60 90 120 150 180 210 240
101

102

103

Reduction Factor

Ba
nd

w
id
th

Us
ed

(M
B) Periodic Sampling (𝑆)

Discarding (𝐺)
Aggregation (𝐴)

Figure 6: Total bandwidth consumed with various reduction
methods. Since discarding and periodic sampling are both
lossy, these achieve larger reductions than lossless aggrega-
tion.

and (with the exception of aggregation) also result in “reporting
gaps”, wherein successive predictions are separated by a period
longer than that of the original dataset. Thus, when considering
whether an anomaly has occurred during this period or not, a
retroactive detection is considered; in effect, anomaly scores are
applied from the time the last result was obtained.

Overall Reduction. Reductions in bandwidth due to the afore-
mentioned methods are shown in Figure 6. Periodic sampling and
discarding both transmit the same number of samples (see Figure 3)
and thus achieve similar reductions, with differences arising primar-
ily due to compression efficiency. Aggregation also achieves large
reductions initially as groups of samples, rather than windows, are
sent; however, this eventually levels off once the number of samples
in a window exceeds𝑊 .

Periodic Sampling. The AUC of the ClozeLSTM under various
subsampling schemes is shown in Figure 7. Unlike regular operation
where the ClozeLSTM runs with a lookahead, next-step prediction
is used here instead, as it is equivalent to a lookahead of 𝑆 . As 𝑆
increases, so does the time taken to form the first window; as a
result, any attacks that occur within this period are disregarded.

Aggregation. Results for this method are similar to those for
the ClozeLSTM in Figure 4, since all the predictions generated by
the detection engine are returned for the samples collected during
the period 𝐴. The main difference between regular and aggregated
prediction is the time to detect an attack. On average, the latter
will be delayed by 𝐴−𝐿

2 timesteps more than the former, since all
samples in 𝐴 must be collected before it can be sent for analysis;
only attacks within the lookahead period 𝐿 are detected instantly.
In contrast, a window is sent every timestep in regular operation,
thus allowing for immediate detection.

Discarding. The ClozeLSTM’s AUC for various discard periods
𝐺 is shown in Figure 8; a performance increase is noted, unlike
previous methods. This is because applying the same anomaly score
for the entire discard period is equivalent to adding a processing
step such as a rolling sum to the state comparator, which increases
the effective contrast between anomalous and normal operation.
This effect starts to wear off for longer periods of 𝐺 > 240 (not

1 30 60 120 240

0.86
0.88
0.9
0.92
0.94

Subsampling Rate

ROC AUC

1 30 60 120 240

0.76
0.78
0.8
0.82
0.84

Subsampling Rate

PR AUC

Figure 7: Effect of different subsampling rates (𝑆) on the
ClozeLSTM’s performance. ROC and PR AUCs decrease as 𝑆
increases, due to fewer training samples being present and
correlations across time becoming increasingly sparse.

shown here), as the likelihood of false positives and false negatives
increase due to anomaly scores for normal and anomalous operation
increasingly overlapping.

1 30 60 120 240
0.9

0.91

0.92

0.93

Discard Period

ROC AUC

1 30 60 120 240
0.8

0.81

0.82

0.83

Discard Period

PR AUC

Figure 8: Effect of different discard periods (𝐺) on the ClozeL-
STM’s performance. AUCs increase since the impact of erro-
neous predictions are diminished.

7 CONCLUSION
A swath of benefits can be realized by taking advantage of the
cloud for ICS anomaly detection, such as quick turnaround times,
improved prediction accuracy from state-of-the-art solutions, and
its standardization across several types of ICS. To this end, we spec-
ify a means for cloud AD in CloudPAD, and develop the ClozeLSTM ,
a neural network that outperforms an advanced attention baseline,
with a precision-recall (PR) AUC of 0.797 vs. 0.717 in this environ-
ment. We also show how CloudPAD can minimize its bandwidth
consumption; performance remains competitive in this mode, with
a maximum decrease in PR AUC by 0.011 points.

ACKNOWLEDGMENTS
This work was supported by Wedge Networks Inc., Alberta Inno-
vates and the Natural Sciences and Engineering Research Council
of Canada.

CloudPAD: Managed Anomaly Detection for ICS CPSIoTSec 2022, November 7, 2022, Los Angeles, CA, U.S.A

REFERENCES
[1] Simon Duque Anton, Daniel Fraunholz, Christoph Lipps, Frederic Pohl, Marc

Zimmermann, and Hans D Schotten. 2017. Two decades of SCADA exploitation:
A brief history. In 2017 IEEE Conf. Appl. Inf. Netw. Secur. (AINS). IEEE, 98–104.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate. (2014). arXiv:arXiv:1409.0473

[3] Lukas Biewald. 2020. Experiment Tracking with Weights and Biases. https:
//www.wandb.com/

[4] Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. 2021. Deep Learning
for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines.
IEEE Access 9 (2021), 120043–120065. https://doi.org/10.1109/ACCESS.2021.
3107975

[5] William Falcon and The PyTorch Lightning team. 2019. PyTorch Lightning. https:
//doi.org/10.5281/zenodo.3828935

[6] Nicolas Falliere, Liam O Murchu, and Eric Chien. 2011. W32. stuxnet dossier.
White paper, symantec corp., security response 5, 6 (2011), 29.

[7] Cheng Feng, Tingting Li, and Deeph Chana. 2017. Multi-level anomaly detection
in industrial control systems via package signatures and LSTM networks. In 2017
47th Annu. IEEE/IFIP Int. Conf. on Dependable Syst. Netw. (DSN). IEEE, 261–272.

[8] Pavel Filonov, Andrey Lavrentyev, and Artem Vorontsov. 2016. Multivariate
industrial time series with cyber-attack simulation: Fault detection using an
lstm-based predictive data model. (2016). arXiv:arXiv:1612.06676

[9] MR Gauthama Raman, Nivethitha Somu, and Aditya P Mathur. 2019. Anomaly
detection in critical infrastructure using probabilistic neural network. In Int. Conf.
Appl. and Techn. in Inf. Secur. Springer, 129–141.

[10] Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W Mahoney, and Kurt Keutzer.
2021. AI and Memory Wall. https://medium.com/riselab/ai-and-memory-wall-
2cb4265cb0b8

[11] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal,
Justin Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell. 2018.
A Survey of Physics-Based Attack Detection in Cyber-Physical Systems. ACM
Comput. Surv. 51, 4, Article 76 (jul 2018), 36 pages. https://doi.org/10.1145/
3203245

[12] Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. 2016.
A dataset to support research in the design of secure water treatment systems.
In Int. Conf. on Crit. Inf. Infrastructures Secur. Springer, 88–99.

[13] Jonathan Goh, Sridhar Adepu, Marcus Tan, and Zi Shan Lee. 2017. Anomaly
Detection in Cyber Physical Systems Using Recurrent Neural Networks. In 2017
IEEE 18th Int. Symp. High Assurance Syst. Eng. (HASE). 140–145. https://doi.org/
10.1109/HASE.2017.36

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[15] Will Douglas Heaven. 2021. 2021 was the year of monster AI mod-
els. https://www.technologyreview.com/2021/12/21/1042835/2021-was-the-year-
of-monster-ai-models/

[16] Kevin E Hemsley, E Fisher, et al. 2018. History of industrial control system cyber
incidents. Technical Report. Idaho National Lab.(INL), Idaho Falls, ID (United

States).
[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.
[18] Jun Inoue, Yoriyuki Yamagata, Yuqi Chen, Christopher M Poskitt, and Jun Sun.

2017. Anomaly detection for a water treatment system using unsupervised
machine learning. In 2017 IEEE Int. Conf. Data Mining Workshops (ICDMW). IEEE,
1058–1065.

[19] Anastasis Keliris and Michail Maniatakos. 2017. Demystifying advanced persis-
tent threats for industrial control systems. Mech. Eng. 139, 03 (2017), S13–S17.

[20] Jonguk Kim, Jeong-Han Yun, and Hyoung Chun Kim. 2019. Anomaly detection
for industrial control systems using sequence-to-sequence neural networks. In
Comput. Secur. Springer, 3–18.

[21] SungJin Kim, WooYeon Jo, and Taeshik Shon. 2020. APAD: Autoencoder-based
payload anomaly detection for industrial IoE. J. Appl. Soft Comput. 88 (2020),
106017.

[22] Diederik P. Kingma and JimmyBa. 2014. Adam: AMethod for Stochastic Optimiza-
tion. (2014). https://doi.org/10.48550/ARXIV.1412.6980 arXiv:arXiv:1412.6980

[23] Moshe Kravchik, Battista Biggio, and Asaf Shabtai. 2021. Poisoning attacks on
cyber attack detectors for industrial control systems. In Proc. 36th Annu. ACM
Symp. Appl. Comput. 116–125.

[24] Aditya P. Mathur and Nils Ole Tippenhauer. 2016. SWaT: a water treatment
testbed for research and training on ICS security. In 2016 Int. Workshop Cyber-
physical Syst. Smart Water Netw. (CySWater). 31–36. https://doi.org/10.1109/
CySWater.2016.7469060

[25] Gauthama Raman MR, Chuadhry Mujeeb Ahmed, and Aditya Mathur. 2021.
Machine learning for intrusion detection in industrial control systems: challenges
and lessons from experimental evaluation. J. Cybersecur. 4, 1 (2021), 1–12.

[26] The pandas development team. 2020. pandas-dev/pandas: Pandas. https://doi.
org/10.5281/zenodo.3509134

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Inf. Process. Syst. 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,
Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

[28] Ángel Luis Perales Gómez, Lorenzo Fernández Maimó, Alberto Huertas Celdrán,
and Félix J García Clemente. 2020. MADICS: A Methodology for Anomaly
Detection in Industrial Control Systems. J. Symmetry 12, 10 (2020), 1583.

[29] Dmitry Shalyga, Pavel Filonov, and Andrey Lavrentyev. 2018. Anomaly detection
for water treatment system based on neural network with automatic architecture
optimization. (2018). arXiv:arXiv:1807.07282

[30] Riccardo Taormina and Stefano Galelli. 2018. Deep-learning approach to the
detection and localization of cyber-physical attacks on water distribution systems.
J. Water Resour. Planning and Manage. 144, 10 (2018), 04018065.

https://arxiv.org/abs/arXiv:1409.0473
https://www.wandb.com/
https://www.wandb.com/
https://doi.org/10.1109/ACCESS.2021.3107975
https://doi.org/10.1109/ACCESS.2021.3107975
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://arxiv.org/abs/arXiv:1612.06676
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://doi.org/10.1145/3203245
https://doi.org/10.1145/3203245
https://doi.org/10.1109/HASE.2017.36
https://doi.org/10.1109/HASE.2017.36
http://www.deeplearningbook.org
https://www.technologyreview.com/2021/12/21/1042835/2021-was-the-year-of-monster-ai-models/
https://www.technologyreview.com/2021/12/21/1042835/2021-was-the-year-of-monster-ai-models/
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1109/CySWater.2016.7469060
https://doi.org/10.1109/CySWater.2016.7469060
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/arXiv:1807.07282

	Abstract
	1 Introduction
	2 Related Works
	3 CloudPAD Design
	3.1 CloudPAD Architecture
	3.2 ClozeLSTM Architecture

	4 Network Effects
	4.1 Delay Compensation
	4.2 Bandwidth Reduction

	5 Experimental Setup
	6 Performance Evaluation
	6.1 Regular Operation
	6.2 Reduced Bandwidth

	7 Conclusion
	Acknowledgments
	References

