
On the Complexity of Wireless Uplink Scheduling
with Successive Interference Cancellation

Mohsen Mollanoori and Majid Ghaderi
Department of Computer Science

University of Calgary
{mmollano, mghaderi}@ucalgary.ca

Abstract—In this paper, we study the problem of uplink
scheduling in wireless networks with successive interfer-
ence cancellation (SIC). With SIC, concurrent transmis-
sions, if properly scheduled, can be successfully decoded
at a receiver. The scheduler decides: (i) in which time-
slot, and (ii) in what order in a time-slot to decode
each transmission in order to maximize the system utility.
These two scheduling decisions effectively determine the
rates allocated to concurrent transmissions, which in turn
determine the throughput and fairness of the system. We
consider two scheduling problems, namely the Maximum
Throughput Scheduling and Proportional Fair Scheduling.
We prove the first problem is NP-hard, while the second
seemingly harder problem can be solved in polynomial
time.

I. INTRODUCTION

Interference and noise are both limiting factors
in wireless networks. However, their effects on the
performance of wireless networks are not identical.
In a multi-user wireless network, increasing the
transmission power can reduce the noise effect.
Nevertheless, an increase in the transmission power,
if not carefully controlled, may even worsen the
interference effect. In addition, interference is a
structured signal since it is caused by other trans-
missions in the network, while noise is structureless.

Successive interference cancellation (SIC) is a
multi-user detection technique that uses the struc-
tured nature of interference to decode multiple con-
current transmissions. Assume a composite signal
S = S1 + · · · + Sn + Z of n overlapping signals
S1, . . . , Sn plus the noise signal Z is received at a
receiver. Employing SIC, one of the signals, say Si,
is decoded first considering the rest of the signals as
noise. After Si is decoded, the decoder reconstructs
the corresponding analog signal and subtracts it
from the original composite signal S. At this stage,

the remaining signal is free from the interference of
signal Si. The same technique is applied repeatedly
to decode the remaining n−1 signals. Since at every
stage, the remaining signals are treated as noise, the
maximum rate achievable by a user depends not
only on its received signal power but also on the
order at which its signal is decoded.

With conventional decoders, transmission
scheduling mechanisms are commonly used to
avoid multiple simultaneous transmissions. That is
because in conventional receivers, interference is
treated as random noise. However, to increase the
throughput with SIC, the scheduling mechanism
should allow multiple concurrent transmissions
in the network while controlling their rate and
decoding order so that the composite signal can
be decoded at the receiver [1]. SIC receivers
are architecturally similar to traditional non-SIC
receivers in terms of hardware complexity and
cost [2] as they use the same decoder to decode the
composite received signal at different stages. As a
result, neither a complicated decoder nor multiple
antennas is required to increase the throughput of
the network [1]. It also makes SIC more practical
than other multi-user detection techniques such
as joint detection [3]. Furthermore, it is known
that other multiple access techniques such as
CDMA and OFDMA are no more efficient than
SIC [4, Ch. 6]. As such, SIC has been recently
considered in commercial wireless systems as a
way to increase system throughput [5].

SIC can be employed for uplink [6] as well
as downlink [7] transmissions. However, SIC can
achieve a higher throughput on the uplink of a wire-
less network since the total received power is higher
due to concurrent transmissions from multiple users.

2

In this paper, we consider two uplink scheduling
problems assuming that SIC is implemented at the
physical layer of the network. In the first prob-
lem, we consider maximizing the throughput of
the network, where the throughput of the network
is given by the summation of the throughput of
individual users. In the second problem, we consider
proportional fair scheduling [8]. The proportional
fairness among users is achieved by maximizing
the summation of the logarithm of individual users
throughput. Hence, the only difference between the
two scheduling problems is the additional “log”
function in the objective function of the second
problem. We prove that the first problem is NP-hard
while interestingly the second, intuitively harder,
problem can be solved in polynomial time. To this
end, we propose an O(n log n) algorithm for the
proportional fair scheduling problem and prove its
correctness.

From the theoretical point of view, NP-hardness
of the maximum throughput scheduling problem
means that there is no efficient polynomial time
algorithm to compute the optimal schedule (unless,
P = NP). From the practical point of view, it means
that there is no optimal real-time scheduler that
maximizes the system throughput. Note that in real
world wireless systems, scheduling is performed
every few milliseconds. This makes a brute-force
search to find the optimal schedule impractical (even
for a few tens of users, the size of the search space
becomes exponentially large).

Although, scheduling is extensively studied in
traditional wireless networks [9], only a few works
have explicitly considered interference cancellation.

In the broader context of multi-packet reception,
there are several works on scheduling and MAC
protocols [10]–[12], yet non of them is applicable
to SIC-enabled networks. As an example, Zhao and
Tong [10] developed a MAC protocol with multi-
packet reception capability considering a reception
matrix as the underlying model. A reception matrix
specifies the probability of k successful receptions
when there are n concurrent transmissions in the
network. While the reception matrix model is a
clever abstraction of a general multi-packet recep-
tion network, it does not accurately model the
underlying dynamics of a SIC-based network such
as the selection of transmission rates or the order of

decoding. Other works on multi-packet reception,
such as [11] and [12], consider a simpler model in
which a receiver is capable of receiving up to k
simultaneous packets regardless of the transmission
rates and channel conditions of users.

The closest work to ours is due to Kumaran and
Qian [13] in which the authors consider the uplink
scheduling problem with SIC. Nevertheless, their
work differs in that they only consider the case of
scheduling multiple transmissions in a single time-
slot in order to maximize the network throughput. In
this work, we consider scheduling multiple users in
multiple time-slots in order to maximize the network
throughput with and without fairness among users.
In our previous work [14], we primarily focused on
heuristic algorithms for fair and efficient scheduling
with SIC. Our simulation results indicated that while
the maximum throughput scheduling problem is NP-
hard, close to optimal heuristic algorithms exist for
the problem. In this paper, we mainly focus on the
computational complexity of SIC scheduling.

The rest of the paper is organized as follows. In
the next section, we describe our system model and
assumptions. The maximum throughput scheduling
and the proportional fair scheduling problems are
considered in Sections III and IV respectively. Sec-
tion V concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a network consisting of a set of
wireless users communicating with a single receiver
(e.g., an access point in a wireless LAN or a base
station in a cellular network). Time is divided into
scheduling frames, where each scheduling frame is
divided into k time slots. Scheduling is done once
every scheduling frame, at the beginning of the
frame (this is similar to the scheduling structure of
WiMAX networks [15]).

In every scheduling frame, a set of n users
denoted by N = {u1, u2, . . . , un} is scheduled
for uplink transmission. We assume that the users
report their channel state information at the start of
every scheduling frame and that channel fluctuations
during a frame are negligible. Without loss of gen-
erality, we ignore power control and assume that the
users transmit at full power so that the scheduler is
able to estimate the received power from each user.
Let Pi denote the received power of the user ui at

3

the receiver and ri denote the throughput of the user
ui. Given the set of received powers P1, P2, . . . , Pn,
the aim of the scheduler is to schedule the set of
users N in the k time slots so that a system utility
function is maximized.

In this work, we consider two utility functions,
namely the sum of the user throughputs (i.e.,

∑
i ri)

and the sum of the logarithm of the user throughputs
(i.e.,

∑
i log (ri)). A detailed description of these

utility functions and the justification for considering
them is presented in Sections III and IV.

We only consider the case of |N | = n > k, since
the solution for the case of n ≤ k is trivial. We
assume that each node is scheduled exactly once in
a scheduling frame, thus more than one node might
be scheduled in a time-slot (recall that scheduling
simultaneous transmissions is allowed with SIC).
While this restriction can be relaxed, its consider-
ation here imposes some implicit fairness among
users and has important practical implications where
each user requires some minimum throughput in
each scheduling frame (e.g., voice calls in a cellular
system [5])

In an ideal world, to maximize the system
throughput, all the users have to be scheduled in
every time slot [4], [13]. However, due to practical
limitations, only a few overlapping signals can be
decoded successfully [1]. One reason is that the de-
coding time in SIC linearly increases in the number
of overlapping signals. The linear decoding time
causes practical difficulties with large number of
users [4]. Another reason is that, in practice, the de-
coded signals cannot be perfectly removed from the
composite signal. Thus, some residual interference
remains after each decoding stage which propagates
during the proceeding decoding stages [5]. The ac-
cumulated residual interference results in a decoding
error after a few users are decoded, limiting the
number of simultaneous transmissions in a time
slot. In our model, such limitations can be readily
captured by controlling k and n.

Finally, to model the throughput of the users, we
use the Shannon capacity function as follows

ri = log
(

1 +
Pi

Ni

)
, (1)

where Pi is the received power of the user ui and Ni

is the noise plus interference power at the receiver

that affects the decoding of the user ui’s signal.

III. MAXIMUM THROUGHPUT SCHEDULING

The objective of the maximum throughput
scheduling problem is to maximize the sum of
the throughput of the users. In the following we
formally state the problem.

Problem 1 (Maximum Throughput Scheduling).
Given a set of received powers P1 ≤ P2 ≤ · · · ≤
Pn, and some initial noise power N0, schedule the
corresponding n users in k time slots so that the
following objective function is maximized,

n∑
i=1

log
(

1 +
Pi

Ni

)
, (2)

where Ni is the amount of noise plus interference
power that affects the decoding of user ui’s signal
(see Fig. 1).

Theorem 1. The Maximum Throughput Scheduling
problem is NP-hard.

Proof: The proof is by reduction from the
partition problem. In the partition problem, given
a set S of integers, we are asked to find a subset
S ′ ⊆ S such that,∣∣∣∣∣∣

∑
x∈S′

x−
∑

y∈(S−S′)

y

∣∣∣∣∣∣ (3)

is minimized. The Partition problem is known to
be NP-complete [16]. We show that the partition
problem can be reduced (in polynomial time) to a
special case of Problem 1 for k = 2. Since a special
case of the problem is NP-hard, the general case is
NP-hard as well.

Let π1 and π2 denote the partition of the received
powers for the two time slots. That is, the users
corresponding to π1 will be scheduled in time slot
1 and the users corresponding to π2 will be sched-
uled in time slot 2. We can rewrite the objective
function (2) as follows

log

((
1 +

∑
p∈π1

p

N0

)(
1 +

∑
p∈π2

p

N0

))
. (4)

4

N0

P1

P5

P9

N0

P3

P8

P6

N0

P2

P4

P7

N9

Fig. 1. Logical representation of the scheduling frame with 3 time
slots and 9 powers. N0 is the initial noise power. Ni specifies the
sum of noise plus interference from other nodes, e.g., in the above
figure N9 = N0 +P1 +P5. Note that Ni is a function of the location
of Pi in the scheduling frame, i.e., relocation may change Ni. Figure
is drawn such that in each time slot Pi’s are decoded from top to
bottom.

Let X =
(

1 +
P

p∈π1
p

N0

)
and Y =

(
1 +

P
p∈π2

p

N0

)
.

We know that

X + Y = 2 +
P1 + . . .+ Pn

N0

(5)

which is constant regardless of how the set of re-
ceived powers is partitioned. Note that our objective
is to maximize X · Y . Since, X + Y is constant,
X ·Y is maximized when |X−Y | is minimized. This
is similar to the objective function of the partition
problem. Therefore, to solve an instance of the
partition problem for a given set S, we first sort the
numbers in S in an increasing order. Then, we solve
the Maximum Throughput Scheduling problem with
k = 2 time slots for the sorted numbers as the
set of powers and an arbitrary positive initial noise
power N0. The reduction is obviously polynomial.
Therefore, Problem 1 is NP-hard.

IV. PROPORTIONAL FAIR SCHEDULING

In addition to the system throughput, fairness
is an important factor in wireless networks. In
this paper, we consider proportional fairness [8],
which is widely implemented in existing wireless
systems [9]. In general, the system throughput is
affected by the fairness definition. However, while
some fairness criteria, such as min-max fairness,
may sacrifice the system throughput for fairness, the
proportional fairness achieves a reasonable trade-off
between fairness and throughput [9].

NL NH

P1

P2

P3

P4

P5

P6

P7

πL

πH

Fig. 2. The proportional fair algorithm (Algorithm 1) splits the
powers into two piles πL and πH . πL contains 1st, 3rd, 5th,
. . . smallest powers while πH contains 2nd, 4th, 6th, . . . smallest
powers. In each pile the powers are sorted from bottom to top in
a non-decreasing order.

Definition 1 (Proportional Fairness). Assume that
schedule Π gives the throughput vector r =
〈r1, . . . , rn〉, where ri denotes the throughput of
user ui. A schedule Π∗ with throughput vector
r∗ = 〈r∗1, . . . , r∗n〉 is proportionally fair if and only if
the following condition holds for any other schedule
Π with throughput vector r,

n∑
i=1

ri − r∗i
r∗i

≤ 0 . (6)

It has been shown that a proportionally fair
schedule maximizes the sum of logarithm of users’
utilities [8]. Based on this property, we define the
proportional fair scheduling problem as follows.

Problem 2 (Proportional Fair Scheduling). Given
a set of received powers P1 ≤ P2 ≤ . . . ≤ Pn,
and some initial noise power N0, schedule the
corresponding n users in k time slots so that the
following objective function is maximized,

n∑
i=1

log

(
log
(

1 +
Pi

Ni

))
, (7)

where Ni is the amount of noise plus interference
power that affects the decoding of user ui’s signal.

Theorem 2. The Proportional Fair Scheduling
problem can be solved in polynomial time.

5

Algorithm 1 Proportional Fair Scheduling
Require: P1 ≤ P2 ≤ . . . ≤ Pn

1: procedure PF(〈P1, P2, . . . , Pn〉, N0, k)
2: for i := 1 to n do
3: πm = argmin

π

(∑
p∈π p

)
4: Schedule Pi on top of πm

5: end for
6: end procedure

We prove that the following polynomial algorithm
gives the optimal solution to Problem 2: Starting
from i = 1 up to n assign Pi to the time slot that
minimizes Ni (see Algorithm 1). Since the assign-
ment of the powers to the time slots takes linear
time and sorting can be done in O(n log n), the time
complexity of the algorithm is in O(n log n).

Assume C (Pi) shows the time slot that Pi is
assigned to by the above algorithm (i.e., column
number in Fig. 2) and R (Pi) shows the index
of Pi in the scheduled time slot. That is, by the
above algorithm, C (Pi) = ((i − 1) mod k) + 1
and if R (Pi) < R (Pj) then Pi ≤ Pj . To complete
the proof, we need the results stated in Lemma 1
and Lemma 2. For the proof of Lemma 1 see
Appendix 1. The proof of Lemma 2 is simple and
left to the reader.

Lemma 1. Let X ≥ Y > 0 and A ≥ B > 0. The
following inequality holds for any C ≥ 0,

log

(
log
(

1 +
X

A+ C

))
+ log

(
log
(

1 +
Y

B

))
≥

log

(
log
(

1 +
X

A

))
+ log

(
log
(

1 +
Y

B + C

))
.

(8)

Lemma 2. Let |π| denote the number of powers
in pile π (see Fig. 2) and S(π) denote the sum of
the powers in pile π (i.e., S(π) =

∑
Pi∈π Pi). We

always have |πL| = |πH | or |πL| = |πH | + 1. In
addition,{
S(πL) ≤ S(πH), if |πL| = |πH |,
S(πL) ≥ S(πH), if |πL| = |πH |+ 1 .

(9)

Proof of Theorem 2: The proof is by induction
and is divided into 4 steps. Given n received powers
and k time slots, in Step 1, we prove the theorem

is correct for k = 1 and a general n. In Step 2, the
theorem is proved for k = 2 and n = 2. In Step
3, we establish the correctness of the theorem for
k = 2 and a general n. In Step 4, we prove the
theorem is correct for general k and n.

Step 1 (k = 1, general n): For k = 1 we
show Algorithm 1 solves the Proportional Fair
Scheduling problem. In other words, we show for
a single time slot, the optimal order of decoding is
Pn, Pn−1, . . . , P1, i.e., decode Pn first, then Pn−1,
and so on.

The proof is by contradiction. Assume PL and
PH are two subsequent powers in the optimal order
of decoding so that PL < PH and PH is decoded
just after PL. We show that swapping the order
of decoding PL and PH will indeed increase the
objective function (7).

Since PL and PH are decoded consequently,
swapping their decoding order will only affect their
individual rates, while the rates of the remaining
users will remain intact. Therefore, we only need to
show,

log

(
log
(

1 +
PL

N + PH

))
+ log

(
log
(

1 +
PH

N

))
<

log

(
log
(

1 +
PH

N + PL

))
+ log

(
log
(

1 +
PL

N

))
,

(10)
where N denotes the noise power N0 plus the sum
of the signal powers that are decoded after PL and
PH . Using logarithm function properties we can
rewrite (10) as,

log
(

1 +
PL

N + PH

)
log
(

1 +
PH

N

)
< (11)

log
(

1 +
PH

N + PL

)
log
(

1 +
PL

N

)
.

It is clear that the sum of the two terms at each
side of the inequality is constant,

log
(

1 +
PL

N + PH

)
+ log

(
1 +

PH

N

)
= log

(
1 +

PH

N + PL

)
+ log

(
1 +

PL

N

)
= log

(
1 +

PL + PH

N

)
. (12)

6

In addition, we know that the product of two
terms with a constant sum is an increasing function
of their difference. Thus, the product of the terms
is maximized when their difference is minimized. It
can be shown that,∣∣∣∣log

(
1 +

PH

N + PL

)
− log

(
1 +

PL

N

)∣∣∣∣ < (13)∣∣∣∣log
(

1 +
PL

N + PH

)
− log

(
1 +

PH

N

)∣∣∣∣ ,
which completes the proof.

Step 2 (k = 2, n = 2): We show for PH ≥ PL > 0
and NH ≥ NL > 0 we have,

log

(
log
(

1 +
PH

NH

))
+ log

(
log
(

1 +
PL

NL

))
≥

log

(
log
(

1 +
PH

NL

))
+ log

(
log
(

1 +
PL

NH

))
(15)

That is, scheduling the greater power on top of the
higher noise and smaller power on top of the lower
noise will result in a greater value for (7) in compare
to the other way around. This can simply be shown
using Lemma 1 by substituting X = PH , Y = PL,
A = NL, B = NL, and C = NH −NL.

Step 3 (k = 2, general n): In this step, we show
the correctness of the theorem for k = 2. Fig. 2
shows the solution of the problem for n = 7. The
algorithm splits the powers into two piles πL and
πH . πL contains 1st, 3rd, 5th, . . . smallest powers,
while πH contains 2nd, 4th, 6th . . . smallest powers.
In each pile the powers are sorted from bottom to
top in a non-decreasing order. Additionally, πL is
always placed on top of NL while πH is placed on
top of NH .

Because of the recursive nature of the induction,
we use a recursive version of Theorem 2 in this step.
Algorithm 2 shows the steps of the recursive version
of Algorithm 1. Given Lemma 2, it can be verified
that Algorithm 2 produces the same schedule as the
one given by Algorithm 1. Clearly, the theorem is
correct for n = 1. In addition, by step 2, we know
that the theorem is also correct for n = 2. We
assume the algorithm works for n = M powers and

Algorithm 2 Recursive Proportional Fair Schedul-
ing for k = 2

Require: NL + P0 ≥ NH

1: procedure RPF(〈P0, . . . , Pn〉, NL, NH)
2: if n > 0 then
3: Schedule P0 on top of NL

4: RPF(〈P1, . . . , Pn〉, NH , NL + P0) . The
requirement P1 +NH ≥ P0 +NL holds

5: end if
6: end procedure

show the correctness of the algorithm for n = M+1
powers.

Given two initial noise-plus-interference powers
NL, NH , and M + 1 received powers, by the result
of Step 1, we know that the smallest power is
scheduled either on top of NL or on top of NH . Let
P0 denote the smallest power while P1, P2, . . . , Pk

denote the rest of the powers.
Having the induction assumptions, we only need

to compare two cases,
I. P0 is scheduled on top of NH :

In this case, since NH+P0 ≥ NL, it is obtained
that P1, P3, . . . are scheduled on top of NL and
P2, P4, . . . are scheduled on top of NH + P0.

II. P0 is scheduled on top of NL:
In this case, since NL + P0 ≥ NH (using
Lemma 2), it is obtained that P1, P3, . . . are
scheduled on top of NH and P2, P4, . . . are
scheduled on top of NL + P0.

We show the second case is always the optimal
one. To that end, we construct an inequality that
shows,

value of (7) for case I ≤ value of (7) for case II .
(16)

Let πi,<j denote the sum of powers in pile i that
are placed below power Pj (i.e., the amount of
interference but not the noise that affects Pj). For
instance, in Fig. 2, πH,<2 = 0 and πL,<5 = P3 +P1.
Let m = M if n is even, and M − 1 otherwise.

For n even, we obtain the optimality of the second
case by splitting (16) into m

2
smaller inequalities

(see (16)). We show the correctness of each small
inequality. Then we combine the inequalities to
construct the main inequality. The correctness of
(16a) is established using the result of Step 2. The

7

log
(

1 +
P0

NL

)
log
(

1 +
P1

NH

)
≥ log

(
1 +

P0

NH

)
log
(

1 +
P1

NL

)
(16a)

log
(

1 +
P2

πL,<2 +NL

)
log
(

1 +
P3

πH,<3 +NH

)
≥ log

(
1 +

P2

πL,<2 +NH

)
log
(

1 +
P3

πH,<3 +NL

)
(16b)

. . . ≥ . . . (
...)

log
(

1 +
Pm−1

πL,<m−1 +NL

)
log
(

1 +
Pm

πH,<m +NH

)
≥ log

(
1 +

Pm−1

πL,<m−1 +NH

)
log
(

1 +
Pm

πH,<m +NL

)
(16c)

L11 L12 L13 Lpq Lrs
. . .

(a) By Lemma 2, the sequence of Lpq’s shown in the figure must be a non-decreasing
sequence of powers.

L11 L12 L13 Lpq Lrs
. . .

(b) If Lpq’s are not sorted in a non-decreasing order, it cannot be an optimal schedule
because it contradicts the result of Step 1 and/or Step 4.

Fig. 3. The optimal scheduling sorts the received powers in a non-decreasing order.

correctness of (16b) to (16c) is verified by the
result of Lemma 1. For instance, (16b) is proven
by substitution M = P3, Y = P2, A = πH,<3 +NL,
B = πL,<2 + NL, and C = NH − NL. The
correctness of (16) can be obtained by multiplying
the sides of (16a) to (16c).

In the case that n is odd, the following extra
inequality is also required,

log
(

1+
PM

πH,<M +NL

)
≥ log

(
1+

PM

πH,<M +NH

)
,

(17)
which can be verified by noting that log(1 +

PM

πH,<M+u
) is a decreasing function of u, and NH ≥

NL. This completes the proof of Step 3.

Step 4 (general k, general n): In this step, we show
that the algorithm works correctly for a general
k > 2. Note that a schedule is essentially a two-
dimensional matrix of powers, where the columns
of the matrix denote the time slots and the rows
denote the decoding order of the received powers.

Let Lpq denote the power Pi that is assigned to the
row p and column q of the schedule, i.e., R (Pi) = p
and C (Pi) = q. By the above algorithm, Lpq’s are
sorted in a non-decreasing order (see Fig. 3 (top)).
That is, if p < r or p = r and q < s then Lpq ≤
Lrs. Assume for some Lpq and Lrs the condition
does not hold, i.e., Lpq > Lrs while p < r or p =
r and q < s (see Fig. 3 (bottom)). It cannot be
the optimal scheduling since the fairness index (7)
can be improved by swapping Lpq and Lrs in the
schedule. For q = s, it contradicts the result of Step
1. Otherwise, it contradicts the result of Step 3.

V. CONCLUSION

In this paper, we considered the problem of
uplink scheduling in wireless networks supporting
SIC at the physical layer. We proved that the
maximum throughput scheduling problem is NP-
hard, while the proportional fair scheduling prob-
lem can be solved in polynomial time. We pro-

8

posed an O(n log n) algorithm for the proportional
fair scheduling problem and proved its correctness
mathematically.

APPENDIX 1

Proof of Lemma 1: Rewrite (8) as follows

log
(

1 + X
A

)
log
(

1 + Y
B

) ≤ log
(

1 + X
A+C

)
log
(

1 + Y
B+C

) . (18)

Define function f(u) as,

f(u) =
log
(

1 + X
A+u

)
log
(

1 + Y
B+u

) , (19)

and show f(u) is an increasing function of u ≥ 0.
We have,

d

du
f(u) =

Y log(1+ X
A+u)

(B+u)(B+u+Y)
− X log(1+ Y

B+u)
(A+u)(A+u+X)

log2
(
1 + Y

B+u

) . (20)

To show that f(u) is an increasing function of u,
we need to show d

du
f(u) ≥ 0. Since the denominator

is positive, it suffices to show that the numerator is
non-negative. More formally, we need to show,

Y log
(
1 + X

A+u

)
(B + u)(B + u+ Y)

≥
X log

(
1 + Y

B+u

)
(A+ u)(A+ u+X)

,

(21)
or, equivalently,

(A+ u)(A+ u+X) log
(
1 + X

A+u

)
X

≥ (22)

(B + u)(B + u+ Y) log
(
1 + Y

B+u

)
Y

.

Nest, define the function g(s, t) as follows

g(s, t) =
t(s+ t)

s
log
(

1 +
s

t

)
. (23)

To establish the Lemma, we show that the function
g(s, t) is non-decreasing in s and t. It can be shown
that the partial derivatives of the function are non-
negative. That is,

∂

∂s
g(s, t) =

t
(
s− t log

(
1 + s

t

))
s2

≥ 0, (24)

which follows from the fact that z ≥ log (1 + z).
Moreover,

∂

∂t
g(s, t) =

(s+ 2t) log
(

1 + s
t

)
− s

s
≥ 0, (25)

which follows from the fact that log (1 + z) ≥ z
z+2

.

REFERENCES

[1] D. Halperin, J. Ammer, T. Anderson, and D. Wetherall, “Inter-
ference cancellation: Better receivers for a new wireless MAC,”
in Proc. ACM HotNets, Atlanta, Georgia, Nov 2007.

[2] J. Andrews, “Interference cancellation for cellular systems: A
contemporary overview,” vol. 12, no. 2, Apr. 2005.

[3] J. Blomer and N. Jindal, “Transmission capacity of wireless
ad hoc networks: Successive interference cancellation vs. joint
detection,” in Proc. IEEE ICC, Dresden, Germany, Jun. 2009.

[4] D. Tse and P. Viswanath, Fundamentals of Wireless Communi-
cation. Cambridge University Press, 2005.

[5] S. Sambhwani, W. Zhang, W. Zeng et al., “Uplink interference
cancellation in hspa: Principles and practice,” QUALCOMM
Inc.

[6] A. Zubow, M. Grauel, M. Kurth, and J. Redlich, “On uplink
superposition coding and multi-user diversity for wireless mesh
networks,” in Proc. Mobile Ad-hoc and Sensor Networks, China,
Dec. 2009.

[7] L. Li et al., “Superposition coding for wireless mesh networks,”
in Proc. ACM MobiCom, Montréal, Canada, Sep. 2007.

[8] F. Kelly, “Charging and rate control for elastic traffic,” Eu-
ropean Trans. on Telecommunications, vol. 8, no. 1, Jan-Feb
1997.

[9] T. Bu, L. Li, and R. Ramjee, “Generalized proportional fair
scheduling in third generation wireless data networks,” in Proc.
IEEE INFOCOM, Barcelona, Spain, Apr. 2006.

[10] Q. Zhao and L. Tong, “A dynamic queue protocol for multi-
access wireless networks with multipacket reception,” vol. 3,
no. 6, Nov. 2004.

[11] M. Ghanbarinejad, C. Schlegel, and P. Gburzynski, “Adaptive
probabilistic medium access in MPR-capable ad-hoc wireless
networks,” in Proc. IEEE GLOBECOM, Honolulu, USA, Dec.
2009.

[12] S. Nagaraj, D. Truhachev, and C. Schlegel, “Analysis of a
random channel access scheme with multi-packet reception,”
in Proc. IEEE GLOBECOM, New Orleans, USA, Nov. 2008.

[13] K. Kumaran and L. Qian, “Scheduling on uplink of CDMA
packet data network with successive interference cancellation,”
in Proc. IEEE WCNC, New Orleans, USA, Mar. 2003.

[14] M. Mollanoori and M. Ghaderi, “Fair and efficient scheduling
in wireless networks with successive interference cancellation,”
in Proc. IEEE WCNC, Cancun, Mexico, Mar 2011.

[15] S. Deb, S. Jaiswal, and K. Nagaraj, “Real-time video multicast
in wimax networks,” in Proc. IEEE INFOCOM, Phoenix, USA,
Apr. 2008.

[16] M. Garey and D. Johnson, Computers and intractability: A
guide to the theory of NP-completeness. W. H. Freeman &
Co., 1979.

