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ABSTRACT

In this thesis I examine the problem of modeling and visualizing large groups of plants.

The extreme visual complexity of such scenes can be captured using multilevel models,

which combine a hierarchy of models at different levels of abstraction. The modeling of

plant communities is done by two-level models, where the higher-level model describes

the spatial distribution of plants, and the lower-level model describes individual plants’

shapes.

Models of plant communities can be divided based on the direction of information

flow: local-to-global models are rooted in individual-based ecosystem simulations, while

the properties of individuals in global-to-local models are inferred from a given distri-

bution of plant densities. Multiset L-systems are introduced as a formalism for local-

to-global models of the spatial distribution of plants. A new global-to-local model is

developed which uses the idea of iterative deformation of a probability density.

Examples of both local-to-global and global-to-local models of the spatial distribution

of plants are demonstrated which exhibit various ecological properties, including succes-

sion, clustering, and self-thinning. These examples are coupled to a low-level model of

individual plants to create realistic visualizations of the plant community.
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CHAPTER 1

I NTRODUCTION

1.1 Statement of problem

One of the dominant threads in computer graphics is the recreation of natural phenomena.

Some early work [Gar85, MWC80, Max81] recreated theappearanceof nature by artifi-

cial mechanisms. Other authors [FR86, Rey87] attempted to recreate the actualprocesses

behind the phenomena. Both approaches are still used, modeling many types of natural

phenomena, from social [PM01] to meteorological [DKY+00, Fea00].

These efforts, especially the ones based on reproducing the processes behind the phe-

nomena, are made difficult by the extreme complexity of nature. Not only do natural

systems have many components, but these components interact in a complex manner,

sometimes with substantial effect. For instance, the quality of light received by a plant

greatly affects its amount, direction, and type of growth [MP96, GMPVG00]. Yet each of

the thousands of leaves on a tree reflects light on each of the other leaves. If the modeller is

trying to faithfully recreate the processes present in nature, the interactions between all of

these leaves must be taken into account. In a forest of a thousand trees, there are millions

of leaves, and a million times as many possible interactions to consider.

This thesis is concerned with the particular problem of modeling and visualizing scenes

of large numbers of plants. There are many reasons we might want to create a realistic

visualization of a plant community. For the purposes of education, a visualization of im-

portant phenomena in ecology or of an extinct ecosystem may be created. In the realm of

forestry, the models used to predict the results of a decision to cut or replant a patch of

1



CHAPTER 1: I NTRODUCTION 2

forest can be visualized to provide more comprehensible data for policy makers. In urban

planning or architectural design, the interaction of a surrounding ecosystem with human

habitation can be predicted and previewed. Finally, for the purposes of art or entertain-

ment, the visualization of an ecosystem based on an underlying ecological model will look

realistic, and can be produced with less effort on the artist’s part.

Leaves, flowers, and other plant organs are important in the visualization of plants.

However, a direct simulation of an entire plant community with these organs as basic

modules is, as noted above, extremely complex and requires a great deal of computation.

The model cannot be naı̈vely simplified by taking collections of organs as basic modules,

as the organs themselves are important, at least for visualization. Multilevel modeling

deals with this problem by replacing a single complex model with a hierarchy of models

at a sequence of scales [GGCC97].

A paper from SIGGRAPH 1998 by Deussen et al. [DHL+98] describes an application

of the multilevel modeling idea to a two-level model of plant ecosystems. A high-level

model determines the spatial distribution of the plants, and lower-level models determine

the plants’ shapes and the positions of the plant organs. The models are coupled so that

information created at a higher level can affect the outcome of the model at the lower

level. The SIGGRAPH 1998 paper represents the starting point of the work described in

this thesis.

1.2 Contributions of this research

The contributions of this research to computer graphics and the ecological modeling of

plant communities are as follows. First, it extends to the modeling of plant communi-
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ties the systemization of individual-based models described in [PMKL01], dividing such

models into two categories based on the direction of information flow:local-to-globalor

global-to-local. In local-to-global models, global features emerge from the local inter-

actions of individuals. In global-to-local models, on the other hand, global features are

decomposed to instantiate local properties. These two types of models also differ in the

type of control the modeler has over the model. In local-to-global models, the parameters

are local and thus fitting the model to a global boundary condition is difficult. In global-

to-local models, the parameters are global, and fitting to global boundary conditions is

considerably simpler.

New methodologies for modeling the spatial distribution of plants are described. The

formalism ofmultiset L-systemsis introduced as a framework for local-to-global individual-

based models of the spatial distributions of plant communities. This extension allows L-

systems to model populations of individual organisms which reproduce, interact, and die.

The idea of thedeformation kernelis introduced, and used in a global-to-local method

which decomposes an initial density distribution into individual plant positions.

Improved methods for joining higher-level spatial distribution models and lower-level

individual plant models are described. Using a global-to-local model of individual plants

described by Prusinkiewicz et al. [PMKL01], the plants created by the lower-level model

can be of a species, shape, and size defined by the higher-level model.

These modeling methodologies are illustrated using ecologically relevant examples.

Local-to-global models are described which display the phenomena ofself-thinning, suc-

cession, and clustering. The deformation kernel method is shown to allow control of

clustering as well as the interaction of multiple species. Finally, the methodologies are

applied to image synthesis, creating realistic visualization of these models.
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1.3 Organization of the thesis

In Chapter 2 I give general background in the ecological phenomena which are relevant to

this thesis. In Chapter 3 I discuss previous work in the area of individual-based modeling

of plant distributions.

In Chapter 4 I introduce the formalism of L-systems (Section 4.1) and multiset L-

systems (Section 4.2), then use this formalism to present three local-to-global models of

plant spatial distributions. These models capture the essence of the ecological phenomena

of self-thinning (Section 4.3), plant succession (Section 4.4), and clustering through local

propagation (Section 4.5). In Chapter 5 I describe the global-to-local deformation kernel

method for modeling the spatial distribution of plants, which allows control over both

local density and clustering. In Chapter 6 I show how the high-level models of the spatial

distribution of plant communities can be coupled to low-level models of individual plants

to produce realistic renderings of the communities.

Finally, in Chapter 7 I analyze the running time and space requirements of the algo-

rithms discussed in the text, present further research directions, and conclude the thesis.



CHAPTER 2

ECOLOGICAL PHENOMENA OF PLANT COMMUNITIES

In this chapter, I discuss some ecological phenomena which are particularly pertinent to

the spatial distribution of plant communities.Succession(Section 2.1) is a process in

which the species makeup of plant communities changes. Competition between individual

plants lead to the process ofthinning(Section 2.2), during which the plants form a marked

hierarchy of sizes(Section 2.3). Thinning leads to a spatialoverdispersionof plants; other

processes, such as propagation, lead toclustering(Section 2.4).

Plants and their environment

The structure and composition of plant communities is a function of their environment.

What kinds of plants are present, where they are located, and how they grow is largely

dependent on what environment they find themselves in. This environment, in turn, can

be decomposed into two parts: thephysicalenvironment, principally meteorological and

geological; and thebiologicalenvironment, predominantly the plants themselves [Per94].

The physical environment includes the amount and quality of sunlight; the speed and

prevailing direction of winds; the rainfall and moisture content of the air; the type of soil

and its quality; and various landforms such as hills or rivers. All of these qualities affect

what plants will grow in the environment: some plant species require direct sunlight,

while others need only indirect light; some species thrive only in high-moisture areas,

while others will not survive if there is too much moisture. Heterogeneities of this type in

the physical environment will affect the structure and composition of the community.

The biological environment also has direct effects on the structure and composition of

5



CHAPTER 2: ECOLOGICAL PHENOMENA OF PLANT COMMUNITIES 6

the plant community. A tree dropping seeds which grow into new trees clearly changes the

community’s structure. However, many effects of the biological environment are indirect,

and occur because the biological environment changes the physical environment. For

instance, plants shade the sun and block the wind, draw moisture and nutrients from the

soil, and release oxygen and water vapour into the atmosphere [Har77].

2.1 Succession

The physical and biological environments at any location affect the sorts of plants which

will grow there. It is possible for a community with one species composition to create an

environment which is more favourable to a different composition of species. This is at the

heart of the phenomenon of succession.

Suppose two species of trees are growing in a field. The first grows quickly, but re-

quires direct sunlight; the second tolerates shade, but grows relatively slowly. If there are

initially only saplings of both species present, then the first species, because of its faster

growth, will come to dominate the field, effectively turning it into a forest largely consist-

ing of the trees of the first species. However, turning the field into a forest creates a shady

environment, which is not favourable to the first species. The second species, however,

can survive in a shady environment, and it performs better in this environment than the

first species. Eventually, the forest consists primarily of trees of the second species.

This is a classic illustration of the phenomenon of succession [Per94]. It can be ob-

served at many scales, with many different sets of species, across all environments capable

of supporting life [Per94]. The final stage of succession, which is self-supporting, is called

theclimax. In the two-trees example given above, the forest primarily consisting of trees
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of the second species is the climax stage. The properties of the climax stage of succession

are largely determined by the physical environment and by what species are available in

the area. For instance, the climax stage of a tropical ecosystem is quite different from that

of a temperate ecosystem, due largely to differences such as rainfall and temperature.

Once a climax state has become established, it is self-supporting; in this sense, it is

the ‘final’ stage of the ecosystem. In any real ecosystem, however, catastrophic events

will eventually change the composition even of climax states. Thesedisturbancescan be

either internal to the ecosystem or come from outside it. External disturbances include

human clearcuts or forest fires; internal disturbances include pest infestations or even the

death of one particularly dominant tree [Per94]. After a disturbance, the climax state has

been disrupted and a new succession process begins.

2.2 Thinning and self-thinning

As a plant grows, so do the effects it has on the environment. It consumes more resources,

so that less light and fewer nutrients are available for neighbouring plants. Eventually, as

all plants in a community grow and consume more resources, some plants will not have

enough resources to survive, and will die. This mortality is defined asdensity-dependent,

as it increases as the density of the community increases. Such density-dependent mor-

tality is calledthinning, and occurs in most plant communities. A plant thinned by plants

of a different species isalien-thinned; a plant thinned by plants of its own species isself-

thinned[Har77].

An interesting practical example of a plant community is the even-aged monoculture,

a community of a single species of plants all seeded at the same time. Such communities
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Figure 2.1: The self-thinning curve. The solid line represents the trajectory of the com-
munity in state space; the dotted line has a slope of−3/2. After [Per94], figure 12.1.

are common in forests raised for cultivation. As these monocultures undergo the process

of self-thinning, an interesting phenomenon can be observed [YKOH63]. If the average

mass of a plant is plotted against the number of plants per unit of area, theself-thinning

curveis obtained (Figure 2.1).

In stage 1, the plants grow without interacting; the number of plants, and thus the

number of plants per unit of area, does not change. In stage 2, the plants begin to interact;

many of the plants die off in competition for resources. Finally, in stage 3, the community

reaches theself-thinning line, which has a slope of−3/2. The state of the community

moves along this line until all of the mature plants die. This self-thinning line is found in

monocultures of many plant species, both woody and herbaceous [Per94, Har77].
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Figure 2.2: Size distribution in a size hierarchy.

2.3 Size hierarchies

Thinning also results in another interesting pattern in the community distribution. If the

size distribution of natural plant communities is recorded, asize hierarchy[Har77] is ob-

served (Figure 2.2(a)). This size hierarchy shows vastly more small, dominated plants than

large, dominating plants. In fact, the hierarchy shows alog-normaldistribution of plants;

the logarithm of the mass of the plants is distributed normally (Figure 2.2(b)). Log-normal

size hierarchies are observed in a number of cultivated and natural populations, including

even-aged monocultures [Har77].

2.4 Overdispersion and clustering

A plant’s spatial location is not independent of the spatial locations of other plants. Under

a thinning process, plants which are too close to other plants die off, causing the average

distance between plants to increase. This causesoverdispersionof plants within the envi-

ronment.Clustereddistributions can also occur; in these distributions, the presence of one

plant increases the probability of finding another plant in its vicinity. This clustering can
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have several causes, such as environmental heterogeneity (plants of the same type clus-

tering in an environment favourable to them) or propagation (seeds falling close to their

parent plants).

As plants are largely discrete entities, they can be analyzed by abstracting them to

points. Many of the properties of the spatial distribution of a plant community can then be

drawn from the study of spatial point patterns [Dig83].

A spatial point pattern is a set ofpoints in a two dimensional space [GBS02]. The

simplest statistical model for point patterns is thecompletely randompattern, also called

thePoissonpattern. In this pattern, the number of points in an areaA has expected value

λ|A|. If N(A) denotes the number of points in the setA, then

〈N(A)〉A = λ|A|

This equation also serves as a definition for thedensityλ.

The density only describes an aggregate property of a set of points, not the relation-

ships between them. When the points represent plants, these relationships are quite im-

portant. Indeed, the most common deviation from complete randomness is clustering

[GBS02], in which points have a relatively greater tendency to be found near each other.

The degree of clustering can be quantified using several statistical measures [CE54,

Hop54, Sin85]. For example, theHopkins index[Hop54] is defined as the average distance

from a randomly chosen point in the plane (which is not necessarily a member of the point

pattern) to its nearest point in the pattern, divided by the average distance from a randomly

chosen point in the pattern to its nearest other point in the pattern:
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random point x

random plant p

closest plant to p

closest plant to x

b

a

Figure 2.3: How the Hopkins index is calculated.a is the distance from a point in the
plane to its nearest point in the pattern andb is the distance from a point in the pattern to
the nearest other point in the pattern; the Hopkins index is thenH = 〈a〉

〈b〉

H =
〈a〉
〈b〉

=
〈mini(‖x− pi‖)〉x
〈mini(‖pj − pi‖)〉j

(See also Figure 2.3).

Distributions which are completely random have anH value of 1. Distributions that

are more dispersed than random (‘regular’) have anH value less than 1, and distributions

that are clustered have anH value greater than 1. For example, Figure 2.4(a) shows an
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(a) Overdispersed distribution,
H = 0.4

(b) Random distribution,
H = 1.0

(c) Clustered distribution,
H = 2.4

Figure 2.4: The effect of clustering on plant distribution.

overdispersed distribution of points with a Hopkins index of 0.4, Figure 2.4(b) shows a

random distribution of points with a Hopkins index of 1.0, and Figure 2.4(c) shows a

clustered distribution with a Hopkins index of 2.4.



CHAPTER 3

I NDIVIDUAL -BASED MODELS OF PLANT COMMUNITIES :

A REVIEW

Two modeling paradigms

In this thesis I make use of a classification of individual-based models based on the direc-

tion of information flow. The first class is oflocal-to-globalmodels, in which global struc-

ture emerges from local interactions among individuals. The second class is ofglobal-to-

local models, in which global structure is decomposed to instantiate individuals.

The global-to-local paradigm arises because of a limitation of simulation-based, local-

to-global models. The amount of control a modeler has over the final outcome — the

global structure — is limited. The modeler can control the model by setting bound-

ary conditions — specifying the average protein concentration, or the crown shape of a

tree. In very simple models with very few parameters, setting the parameters to achieve

the specified boundary conditions may be as simple as solving a linear equation. As the

model becomes more complex, however, finding the correct parameter settings becomes

more difficult. The relation between parameters and boundary conditions becomes less

tractable, and direct solution becomes infeasible. It is even possible that there are no

parameter settings which produce the required boundary conditions.

One way to solve this problem is toinvert the model, turning boundary conditions

into parameters. A simple way to do this is to marginally alter the original model to

fit the boundary conditions. For example, if the density of trees in one area of a forest

simulation must be increased, a single extra tree can be added at each simulation step, in

13
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addition to the trees added by the simulation. A more complete way to invert a model is

to reformulate it in order to completely reverse the direction of information flow, creating

a global-to-local model.

The division between local-to-global and global-to-local models has arisen in areas

other than the modeling of plant communities. In [PMKL01], the distinction is discussed

in the modeling of individual plants. In that paper, individual plant organs are instantiated

to fit user-specified global organ distributions.

Multilevel modeling

A second drawback to the simulation-based approach is that as the number of individuals

and their complexity grows, the number of possible interactions, and hence the amount of

computation required to reproduce a scene, increases. One way to handle this drawback is

to usemultilevel modeling[GGCC97]. Multilevel modeling involves coupling models of a

system at successively lower levels of abstraction. The higher-level, more abstract models

are created first; then, the information from them is used to parameterize the lower-level

models. The models of plant communities described in [DHL+98] are two-level models:

the top level describes the community’s spatial structure, while the lower level is of the

geometry of individual plants.

Multilevel models are a useful way to handle the complexity of a simulation because of

the multiscale nature of natural phenomena. A forest as a whole has a far greater influence

on an individual tree than that tree has on the forest; a tree as a whole has far more influence

on an individual leaf than that leaf has on the tree. Thus, while describing higher-level

phenomena with a model appropriate to that scale loses some information which would be

taken into account in a single-level model at a finer scale, it gains tremendously because
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the individual interactions between low-level components is not considered; for instance,

two leaves on different plants do not have to interact at all. This savings in the number

of interactions allows more complex scenes to be modeled than would be computationally

feasible in the single-scale approach.

In this chapter, I discuss previous work in the individual-based modeling of plant com-

munities: local-to-global (Section 3.1) and global-to-local (Section 3.2) models of spatial

distributions, and multilevel models (Section 3.3) of entire plant communities.

3.1 Local-to-global models

Local-to-global individual-based models of plant communities have been extensively stud-

ied in the field of ecology. Aikman and Watkinson [AW80] and, later, Firbank and Watkin-

son [FW85] and Lep̌s and Kindlmann [LK87], created models to explain the emergence

of the3/2 power law in self-thinning monocultures (Section 2.2). Aikman and Watkinson

derive a differential equation for the mass of a plant from “quasi-logical postulates”; the

equation they use to calculate the massmi of an isolated planti is

dmi

dt
= aiqi − bim2

i .

Hereqi is the area of the plant’secological neighbourhood, the area from which it can

extract resources, and is related to the area of the plant. The parametersai and bi are

growth constants which vary from plant to plant. The termaiqi can be interpreted as the

total resources extracted from the plant’s environment, while the termbim
2
i is an amount

which must be spent to maintain the plant’s structures.ai andbi are set so that the plant

grows logistically to some maximum sizeM .
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The plants interact through competition. The equation for the growth of a competing

plant is

dmi

dt
= aiqif(qi)− bim2

i ,

wheref is a function which relates to the amount of competition experienced by the plant.

If dmi/dt becomes negative, the plant does not have enough material to maintain itself,

and it dies. This happens when it experiences too much competition. The competition

function f is not based on the size of the plant’s neighbours, however, but only on the

average size of all plants in comparison to the area of the plot. Computer simulations do,

however, show a fit to the self-thinning curve. As well, the size hierarchy formed fits well

to a log-normal distribution.

In Firbank and Watkinson’s model, the size of a plantis dependent on the sizes of

neighbouring plants. The mass of a plantmt is given by

mt = mIt

(
zt
qt

)r
,

wheremIt is the mass of an isolated plant at timet, q is the size of the plant’s ecological

neighbourhood,r is the plant’s efficiency of resource use, andzt is thezone of influence

of the plant. When the zone of influence is the same as the ecological neighbourhood, the

plant is the same size as it would be if it were not competing for resources. In this case,m

increases logistically to some maximumM .

If the plant is competing for resources, then the zone of influence will not be the

entire ecological neighbourhood. The ecological neighbourhood is a circle of areaqt, and

intersections of two or more circles imply competition between the plants so represented.
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A plant’s zone of influence includes the portions of its ecological neighbourhood to which

it has exclusive access, as well as a fraction of the shared area. The overlapping area is

divided between the plants sharing it, with the tallest plant getting a fractiond of the area,

the next tallest getting a fractiond of the remainder, and so on. A value ofd = 1 represents

completely one-sided competition, in which the tallest plant gets all of the resources of the

shared areas.

The heighth, which determines the resource allocation in overlapping areas, is related

tom through a power function:

ht = umv
t .

If a plant’s mass decreases, it is counted as dead and removed from the simulation. Firbank

and Watkinson examine the effect of changing the parametersr (the efficiency of resource

utilization), d (the competition factor), andu andv (the allometric parameters relating

height to mass) on the model. They found good fit to the self thinning curve and a log-

normal distribution, with the allometric parameterv having the greatest effect: values ofv

around1/3 (that is, plants whose height is proportional to the cube root of the mass) create

self-thinning lines with slopes of around−3/2, while higher and lower values steepen and

flatten the curve, respectively.

Lep̌s and Kindlmann [LK87] use a similar model to examine the results of different

initial configurations on the development of a stand of trees. Their model computes the

heighth at timet+ 1 as

hi(t+ 1) = hi(t)

[
1 + a

(
1− hi(t)

H

)
fi(t)

]



CHAPTER 3: IB MODELS OF PLANT COMMUNITIES : A REVIEW 18

wherea is the growth rate,H is the maximum possible height of the tree, andfi is a term

expressing the competitive influence of neighbouring trees. In the absence of competition

(fi = 1), a tree will grow logistically to the maximum heightH.

The plant’s ecological neighbourhood is a circle with radiusri = khi and areaqi =

πr2
i . The competition factorfi gives the proportion of the ecological neighbourhood which

is available for use. If̀ij is the area of overlap between individualsi andj, then

fi = 1−

∑
j 6=i

`ij
hj
hi

Qqi
.

HereQ is a parameter which describes the intensity of neighbours’ influence — for large

values ofQ, the neighbours have very little competitive influence on the plant. The area of

overlap`ij is weighted by the ratio of the heights of influencing and influenced plants. An

individual is more influenced by taller neighbours than shorter neighbours. For very tall

competitors or large areas of overlap,fi may drop below 0; it is thus explicitly bounded to

be nonnegative. Iffi is zero, the plant will experience no growth.

The competition factor also affects the survival probability of the plant. If very low, the

plant has a high probability of dying. Plants are randomly chosen to die each simulation

step.

Lep̌s and Kindlmann used their model to examine how plant distributions with various

initial configurations evolved differently under a self-thinning process. They found that, no

matter what the initial configuration — regular, clustered, or random — the stand evolved

toward an overdispersed distribution.

Pacala and Silander [PS85] described an individual-based model for the analysis of

plant monocultures. The model represents plants as circles in a two-dimensional space —
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the plants interact when their respective circles intersect. There are three submodels —

one for propagation (which includes fecundity and seed dispersal), one for survival (which

depends on ground conditions, neighbouring plants, and the amount of sunlight the plant

can absorb), and one for growth (which involves different parameters for germination,

growth as a seedling, and mature growth).

Pacala and Silander’s model is more complex than the models described above which

only seek to explain self-thinning. For one thing, it includes the propagation model,

which must take into account all of the neighbours of the plant. All of the models de-

scribed in this paper include only thenumberof neighbours, and not their spatial rela-

tion or relative size. However, in a further series of papers by Pacala and his collab-

orators [PCS93, PD95, DLDB97], the model and its submodels are developed into the

extremely successful SORTIE model of the forests of eastern North America, which ex-

plicitly takes into account the position, size, and species of neighbours, the underlying

terrain and soil content, and many other factors.

More recently, Enquist and Niklas [EN01] have examined plant community invariants

with an individual-based simulation model. Plants in this model have three “compart-

ments” for energy acquired from sunlight: some goes into leaves, which increases the

crown radius and allows the capture of more light; some goes into the stem, which allows

the plant’s height to increase; and some is kept in reserve for reproduction:

aMα
TOT = bMβ

REPR + cMγ
LEAF + dM δ

STEM

where species differ only in the parametersa, b, c, andd; α, β, γ, andδ are constant across

species. The plants are modeled as circles with areaq a function ofMLEAF , at heighth a
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function ofMSTEM . If a plant’s area is unobstructed (if it has no competitors, or it is taller

than its competitors) then it receives the full benefit from photosynthesis; plants which are

located below the canopy receive a fraction of this amount, determined by a predetermined

light attenuation factor, which also varies across species.

Running simulations of this model, Enquist and Niklas found allometric scaling re-

lationships which confirm empirical observations made across ecosystem types. For in-

stance, ifN is the total number of plants with some range of masses[mlow,mhigh] andM is

the total mass of those plants, then, once the distribution reaches equilibrium,N ∝M−3/4.

Progress on local-to-global individual-based models of plant communities in ecol-

ogy led to similar models within the field of computer graphics, along with realistic

visualizations of the communities. The SIGGRAPH 1998 paper on ecosystem simula-

tion [DHL+98] includes two individual-based local-to-global models of plant distribu-

tions. The first, a simplified version of the model of Firbank and Watkinson [FW85], was

designed to exhibit the self-thinning property. Plants are represented by circles with radius

r. The operation of the model can be reduced to three rules (Figure 3.1). The first rule

states that whenever the circles representing two plants intersect, the smaller is considered

dominatedand is removed from the population. The second rule states that once a plant

reaches its maximum size, it is consideredmatureand ceases to grow. The third rule states

that a plant which is neither dominated nor mature will grow. The growth rule is

ri+1 = ri(1 + random(∆r)).

Under this growth rule, plants in the absence of competitors will grow exponentially up to

the size of maturity. Simulation with this model produced a good fit to the self-thinning

curve.
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Figure 3.1: Diagrammatic representation of the model of self-thinning described
in [DHL+98]. Green circles represent growing plants, the red circle represents a domi-
nated plant, and the yellow circle represents a mature plant that no longer grows.

The second model was slightly more complicated and involved several species of

plants with different preferences for moisture level. Competing in a heterogeneous en-

vironment, a segregation of plants emerged between wet and dry areas. A log-normal size

hierarchy was observed in the mature populations.

3.2 Global-to-local models

Within ecology, the explanation and exploration of observed phenomena is of greater im-

portance than what particular microscopic state is obtained. Thus, the statistics of plant

distributions is more important than where, specifically, the plants are. Global-to-local

models are, then, of limited use within ecology.

In the field of computer graphics, however, the particular microscopic state is impor-
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tant, as that is what is rendered. Several methods for generating forest scenes have been

proposed. All of these use a global-to-local method for generating the spatial distribution

of trees.

Chiba et al. [CMDH97] place the trees randomly, using Poisson disc sampling [WW92].

This technique places points one at a time and at random, throwing out all points which

are closer than a given distance to a previously generated point. Neyret [Ney96] places

plants on every vertex of a rectangular grid, then jitters the positions. In both cases, the

desired global state is a constant tree density in the forest, with regular spacing between

trees.

Reeves and Blau [RB85] place the trees on the vertices on a rectangular grid, with the

added condition of a minimum distance between trees. The tree’s species can be chosen

interactively or procedurally. In one illustrated method, the species is determined by an

underlying heightfield, which otherwise has no effect. Higher trees are more likely to be

evergreens, lower trees more likely to be deciduous. Again, the desired global state is a

constant tree density with regular spacing, along with a greater concentration of conifers

in the heights and deciduous trees in the valleys.

Deussen [DHL+98] describes a global-to-local model which takes in a user-specified

density map. This density map is a greyscale image specifying how densely packed the

plants are in each area. The density map is run through a Floyd-Steinberg error diffusion

process [FS75] which creates individual points situated on grid vertices. After jittering

these points, plants are placed at each one.

All of these methods create plant distributions that are overdispersed; indeed, in most

they are overdispersed by design, explicitly enforcing minimum distances between the

plants.
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3.3 Multilevel modeling

The closest parallel to multilevel models in ecology is the technique ofaggregation mod-

els[ACVP00], which allow the modeling of higher ecological levels by grouping individ-

uals or species together into aggregates that are treated as units.

In computer graphics, however, all of the models described above are multilevel mod-

els, in the sense that they determine a plant distribution, then place individual plant models

at those positions. The models of Neyret [Ney96] and Chiba et al. [CMDH97], as well as

the global-to-local model described in Deussen et al. [DHL+98] have the barest possible

connection between the ecological levels; the actual plant models which are placed at each

position are randomly determined, independent of the spatial distribution.

The spatial distribution model of Reeves and Blau [RB85] can also calculate the species

of each tree procedurally; for instance, dependent on altitude. The tree models placed at

each position are of the computed species.

The local-to-global spatial distribution models of the SIGGRAPH 1998 paper [DHL+98]

describe both the species and the size of each plant. The plant models are procedurally

determined; a pre-generated model of the plant’s species is executed a number of develop-

ment steps proportional to the size determined in the spatial distribution model. Smaller

plants are thus instantiated with models of younger plants; larger plants with models of

older plants.



CHAPTER 4

L OCAL -TO-GLOBAL MODELS OF PLANT COMMUNITIES

Local-to-global models derive global patterns — the spatial distribution of plants — from

local interactions between individuals. All of the local-to-global models of plant commu-

nities described in this chapter are implemented in L-systems [PL90], which were orig-

inally designed to represent individual branching plant structures. Section 4.1 describes

L-systems, and Section 4.2 describes multilevel L-systems [LP02], an extension which al-

lows their use in the modeling of populations of individuals. Three L-system based models

of plant communities follow, capturing the phenomena of self-thinning (Section 4.3), suc-

cession (Section 4.4), and clustering (Section 4.5).

4.1 L-systems

L-systems were introduced in [Lin68], and were designed to model individual branching

plant structures, which they represent by strings of symbols. Formally, an L-system con-

sists of three components〈V,Ω, P 〉: V is thealphabet, which is a set of all of the symbols

which the system will use;Ω ⊂ V ? is theaxiom, which represents the initial state of the

system; andP ⊂ V × V ? is a set ofproductions, which define how the system develops

over steps of time [PL90]. In each iteration, the productions are applied exactly once to

each symbol in the string, in parallel, yielding a new string. By convention, if more than

one production applies, the production which appears first in the production list is used.

Both the topology and the geometry of the plant can be included in the model. To model

topology,bracketed string notation[Lin68] is used; with this notation, anything inside a

24
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pair of brackets [] is a branch. To model geometry, we can useturtle notation[PL90], in

which symbols are interpreted as commands to a ‘turtle’ that moves in a two- or three-

dimensional space.

The following L-system illustrates the essential features of the language:

L-system 4.1:
Alphabet: { I , B , [ , ] }
Axiom: IB
Production: B→ [IB]IB

The alphabet consists of the symbols I, and B. In a botanical context, these can be

interpreted asInternodes andBuds. The axiom is IB, an internode topped with a bud. The

production grows the plant from the bud — a bud yields a branch, another internode, and

another bud. The string [IB] represents a branch in thebracketed string notation[Lin68];

using this notation, everything inside a pair of brackets [] is a branch.

Figure 4.1 illustrates the execution of this L-system, visualizing internodes as lines and

buds as circles.

(a) Axiom (b) First derivation
step

(c) Second deriva-
tion step

Figure 4.1: The execution of L-system 4.1.

This thesis uses several extensions to the L-system formalism described above. First,

symbols such as I and B can be extended byparameters[PL90, PH90, Han92], which can

be acted upon as variables. This is illustrated in L-system 4.2:
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L-system 4.2:

Axiom: IB(1)
1. B(t) : t≥ 2→ L
2. B(t) → IB(t+1)

This L-system is similar to the one above; however, in this case, the symbol B takes a

single parameter, which may be interpreted as ’age’. The first production turns a bud with

parameter 2 or greater into aLeaf. The second production is only used if the first fails;

that is, if B’s parameter is less than 2. In that case, it produces an internode topped by a

bud which is one unit older. This L-system is illustrated in Figure 4.2.

1

(a) Axiom

2

(b) First derivation
step

(c) Second deriva-
tion step

Figure 4.2: The execution of L-system 4.2.

Another extension of L-systems used in this thesis ispseudo-L-systems[Pru86], which

makes it possible to rewrite two or more symbols using a single production. Finally, the

extension ofopen L-systems[MP96] makes it possible to capture the interactions between

the modeled plants and their environment.

In open L-systems, the environment is conceived as an external system which is linked

to the L-system through theenvironmental communication symbol?E. The communica-

tion symbol is treated like any other within the L-system during the derivation step. After

derivation, the environmental communication symbol, the symbol immediately preceding
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it, and whatever parameters they hold are sent to the environmental program. The en-

vironment performs whatever processing is required, then changes the parameters of the

communication symbol and sends it back to the L-system. The altered parameters can

then be tested by the L-system and different actions taken depending on their value.

4.2 Multiset L-systems

L-systems are largely used to model the development of a single organism. This thesis

uses L-systems to model interaction between many plants at the ecosystem level as well.

To this end, it uses the formalism ofmultiset L-systems, which were introduced in [LP02].

That paper described them as follows.

Multiset L-systems unify and extend to branching structures two previously defined

notions of the L-system theory: developmental systems with finite axiom sets [RL74] and

L-systems with fragmentation [RRS76]. In multiset L-systems, the set of productions

operates on a multiset of strings that represent many plants, rather than a single string that

represents an individual plant. New strings can be dynamically added to or removed from

this multiset, representing organisms that are added to or removed from the population.

All interaction between strings is handled through the environment.

Formally, a context-free non-parametric multiset L-system is a four-tupleG = 〈V,%,Ω, P 〉

whereV is thealphabet(a finite set of symbols),% 6∈ V is a reservedfragmentation sym-

bol, Ω ⊂ V ? is a finite set of words overV called theaxiom, andP ⊂ V × (V ∪ {%})? is

a finite set ofproductions. The alphabetV may contain, in particular, a pair of brackets,

[ and], which are used to delimit branches as described above and in [PL90].

A derivation step in a multiset L-system consists of two sub-steps. First, all words
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xi in the predecessor multiset are replaced by the intermediate successor wordsyi using

productions inP . The individual derivationsxi → yi are performed as in an ordinary

L-system. Second, the wordsyi that contain one or more fragmentation symbols % are

subdivided. In this process, the symbol % acts as the marker of positions at which branches

yik are cut off the treeyi. The remaining part of the treeyi and the cut off branchesyik

become the members of the successor multiset.

For example, let us consider the multiset L-system 4.3:

L-system 4.3:

Alphabet: {A, B, I , [ , ] }
Axiom: { A, B }
Productions: 1. A→ I[B]A

2. B→ B%A

Starting with the axiom, the first two derivation steps yield the multisets listed in Table 4.1.

step intermediate multiset final multiset
0 {A, B} { A, B }
1 { I[B]A, B%A } {I[B]A, B, A }
2 {I[B%A]I[B]A, { I[B]I[B]A, A,

B%A, I[B]A } B, A, I[B]A }

Table 4.1: Operation of a sample multiset L-system

Extensions of L-systems, such as pseudo-L-systems and open L-systems, also apply

to multiset L-systems. In particular, in the simulation of ecosystems we rely extensively

on the environmental query symbol ?E to simulate interaction of plants with their en-

vironment. The models of the plants themselves are extremely simplified, in order to

accommodate a large number of plants. The L-system-based plant modeling software
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L-studio/cpfg [PKMH00] was used to both generate the plant distributions and to

model the individual plants.

4.3 The self-thinning model

As an illustration of the use of multiset L-systems, consider the implementation of the

individual-based model of self-thinning outlined in [DHL+98]. We construct an L-system

from the three rules of plant development (Figure 3.1). In the L-system, each plant is

parameterized only by position and size; in module form, T(~x,r)1.

L-system 4.4:

Axiom: { T(~x1,r1)?E(1) ,
T(~x2,r2)?E(1) ,
... ,
T(~xn,rn)?E(1)}

1. T(~x,r)?E(c) : c == 0→ ε
2. T(~x,r) : r ≥ R→ T(~x,R)
3. T(~x,r) → T(~x,r + grow(r,∆t))

Each plant is represented by the module T(~x,r) followed by the communication symbol

?E(c). The parameterc is used for communication with the environmental process, which

sets it to 0 if the plant is dominated and 1 if the plant is not dominated. The environmental

program treats all of the trees as circles of radiusr and determines which circles are

intersecting; the smaller of any pair of intersecting circles is considered dominated.

The axiom introducesn plants with random positions and sizes; the initial distribution

of plants could also be generated algorithmically. Under production 1 any dominated plant

(that is, a plant withc == 0) will be removed from the population in the next iteration,

1In L-studio/cpfg , vectors cannot be parameters of modules. However, for the sake of simplicity,
the vector~x will stand in here for the double(x, y).
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Figure 4.3: Three stages of simulation of the self-thinning process. Green circles are
growing plants, red circles are dominated plants, and yellow circles are mature plants, as
in Figure 3.1.

along with its associated communication module. Production 2 stops the growth of a plant

which has reached the maximum sizeR. Finally, production 3 increases the size of a plant

which is neither dominated nor mature. The user-defined function grow(r,∆t) captures

the growth of a plant of radiusr over time interval∆t.

Figure 4.3 shows three stages of a self-thinning process simulated using this L-system.

As the plant community develops over time, dominated plants gradually disappear and thin

out the distribution. Figure 4.4 shows a graph obtained by sampling the state of the system

at each time step of a single simulation — compare it with the theoretical self-thinning

graph in Figure 2.1.

4.4 Plant succession

An extension to L-system 4.4 transforms it into a model of interaction between two plant

species.
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Figure 4.4: A self-thinning curve which tracks the progress of the simulation shown in
Figure 4.3. The dotted line has a slope of−3/2 and the thick line is made up of samples
taken from the simulation at each time step. The circles represent the three steps shown in
Figure 4.3.
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L-system 4.5:

Axiom: { X }

1. X→ T(~x1,r1,1)?E(1) %
· · ·
T(~xn,rn,1)?E(1) %
T(~xn+1,rn+1,2)?E(1) %
· · ·
T(~xn+m,rn+m,2)?E(1) % X

2. T(~x,r,sp) ?E(c) : c == 0 && random(1)< shaded[sp] → T(~x,r,sp) ?E(1)
3. T(~x,r,sp) ?E(c) : c == 0→ ε

4. T(~x,r,sp) : r ≥ R && random(1)< oldage[sp] → T(~x,R,sp)
5. T(~x,r,sp) : r ≥ R→ ε

6. T(~x,r,sp)→ T(~x,r + grow(r,sp, ∆t),sp)

In this model a plant is represented by the module T(~x,r,sp). Parameters~x and r

represent the plant’s position and size, as in the previous model; the parametersp is the

plant’s species identifier, either 1 or 2. Production 1 addsn new plants of species 1 and

m new plants of species 2 to the population. The production predecessor X reappears in

the successor multiset; thus, new plants are added in every simulation step. Productions 2

and 3 removes a dominated plant with probability1− shaded[sp]. The value shaded[sp],

called theshade toleranceof the plant, is a measure of how well it can handle being in

shadow. Regardless of shade tolerance, a plant that is dominated will not grow.

Productions 4 and 5 model the senescence of plants. Once a plant has reached the

radiusR, it survives with the probability oldage[sp]; a plant that does not survive dies and

is removed from the community. Production 6 uses the growth function grow(r,sp,∆t) to

simulate the growth of plants that are neither dominated nor old, according to their size

and species.
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With the right parameterization, this model captures the phenomenon of succession

(Section 2.1). If species 1 has a higher growth rate but lower shade tolerance and old-

age survivorship than species 2 (grow(r,1,∆t) > grow(r,2,∆t), shaded[1]< shaded[2],

oldage[1]< oldage[2]), then an initially empty field will be populated in stages. First,

the field will be dominated by species 1. Then, as the largest members of species 1 die,

smaller members of species 2, which have survived due to their greater shade tolerance and

now have a size advantage over young seedlings of species 1, fill in the gaps. Eventually,

the field will be dominated by members of species 2. A straightforward extension of this

model to three plant species is illustrated in Figure 4.5, with realistic plant models created

by the methods discussed in Chapter 6.

Models of plant succession are important in practice, specifically in the simulation of

tree regrowth after cutting. Our simple model is just the first step toward addressing the

problem of visualizing plant succession with enough accuracy for predictive purposes.

4.5 Clustering through plant propagation

The evaluation of the Hopkins index for the distributions shown in Figure 4.3 yield values

of H equal to 0.8, 0.4, and 0.4, respectively. Similarly, calculating the Hopkins index for

the distributions in Figure 4.5 results in H values of 0.6, 0.7, 0.7, and 0.6, respectively.

This shows that the competition for space in a thinning process leads to overdispersed

plant distributions.

We can see why this is the case. If any two plants so much as touch each other, one of

them will become dominated. In the self-thinning model, the dominated plant immediately

dies; in the succession model, it dies with some probability per derivation step. In either
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(a) After 20 iterations

(b) After 150 iterations

(c) After 300 iterations

(d) After 1000 iterations

Figure 4.5: Four stages of ecosystem simulation using the plant succession model
of L-system 4.5. Left: results of coarse-level simulation, using pink circles to in-
dicate position of herbaceous plants (fireweed), orange circles to indicate positions
of the early-succession deciduous trees, and green circles to indicate positions of the
late-succession coniferous trees. Right: synthetic images obtained by placing tree models
at the locations generated by the coarse-level simulation.
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case, the competition for space drives the plants apart, and there is no opposite mechanism

encouraging plants to cluster.

One clustering mechanism observed in nature is local propagation. We can capture

it, for instance, by ‘sowing’ new plants near parent plants of the same species, instead

of making them appear at random throughout the field. The resulting alteration of the

succession model is given in L-system 4.6.

L-system 4.6:

Axiom: { T(~x1,r1,1)?E(1) ,
... ,
T(~xn,rn,1)?E(1) ,
T(~xn+1,rn+1,2)?E(1) ,
... ,
T(~xn+m,rn+m,2)?E(1)}

1. T(~x,r,sp) ?E(c) : c == 0 && random(1)< shaded[sp] → T(~x,r,sp)
2. T(~x,r,sp) ?E(c) : c == 0→ ε

3. T(~x,r,sp) : r ≥ R && random(1)> oldage[sp] → T(~x,R,sp)
4. T(~x,r,sp) : r ≥ R→ ε

5. T(~x,r,sp) ?E(c)→ T(~x,r + grow(sp,r,∆t),sp) ?E(1) % T(~x+ ∆~x,r0,sp) ?E(1)

The axiom defines the initial state of the model by placingn plants of species 1 and

m plants of species 2 at random in the field. The subsequent productions are the same as

in the succession model, except for production 5. According to it, a plant that is not dom-

inated creates a new plant at position~x + ∆~x, where∆~x is a small random vector. Since

the new plant is in close proximity to its parent, this propagation mechanism encourages

clustering in the distribution.

Figure 4.6 illustrates the operation of this model. At the beginning, plants are randomly

distributed. As the ecosystem develops, the two species become spatially segregated, cre-
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ating large clusters of plants of each species. For example, the Hopkins indices of species

1 at the three stages shown are equal to 1.1, 4.2, and 11, respectively.

4.6 Conclusion

The three models described in this chapter capture many of the ecological phenomena dis-

cussed in Chapter 2. The thinning model of Section 4.3, originally described in [DHL+98],

exhibits a very good fit to the theoretical self-thinning curve. The succession model

(Section 4.4) produces the expected waves of dominance by different species, from fast-

growing to shade-tolerant. Finally, a high Hopkins index indicates that the model of clus-

tering by propagation (Section 4.5) does indeed create spatial distributions that exhibit

clustering.
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(a) After 20 iterations

(b) After 500 iterations

(c) After 1000 iterations

Figure 4.6: Three stages of ecosystem development simulated using the plant propagation
model of L-system 4.6. Left: results of coarse-level simulation, using orange circles to
indicate positions of poplar trees and green circles to indicate positions of spruce trees.
Right: synthetic images obtained by placing tree models at the locations generated by the
coarse-level simulation.



CHAPTER 5

GLOBAL -TO-LOCAL MODELS OF PLANT COMMUNITIES

Global-to-local models derive local instantiations — the locations and other properties of

individual plants — from specified global properties. The global-to-local methods de-

scribed in this chapter use adeformation kernelto decompose a global probability dis-

tribution into individual plants. The deformation kernel describes how the presence of a

reference plant alters the probability that a second plant will be found at a given distance

from it. The global-to-local model using deformation kernels is described in Section 5.1.

Implementation is discussed in Section 5.2, and results are shown in Sections 5.3 and 5.4.

5.1 The deformation kernel method

The effect one plant in the self-thinning model of L-system 4.4 has on the probability of

finding another plant nearby is shown diagrammatically in Figure 5.1. Within the reference

plant radiusrt, the probability of finding another plant is very small; outside that radius,

the probability of finding another plant is not affected by the reference plant.

The functionK shown in Figure 5.1 is an example of adeformation kernel. If we

suppose there is a probability fieldP which gives the probability of finding a plant at each

point, the deformation kernel captures the impact of an existing plant on this field. Various

interactions between plants can be described using deformation kernels of different shapes,

as suggested in Figure 5.2.

A simple global-to-local placement algorithm can now be developed using this de-

formation kernel idea. We maintain ajoint probability density function[Ros97]f(x, y),

38
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x

K

rtxt+xt
Figure 5.1: The effect a plant has on the probability of finding neighbouring plants.

(a) Kernel that has
no effect on neigh-
bouring plants

(b) Kernel that has
a promotional ef-
fect

(c) Kernel that has
an inhibitory effect

(d) Kernel that has
an inhibitory short-
range effect and a
promotional effect
at longer range

Figure 5.2: Examples of deformation kernels.
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which characterizes the probabilityf(x, y)dxdy of placing a new plant in the areadxdy

centered atf(x, y). The plants are placed one at a time; as each is placed, its deformation

kernel is applied to the probability functionf that will be used to determine the posi-

tion of the next plant. In this way, a distribution of plants will eventually be formed by

decomposingf .

Formally, the joint density functionf defines a probability field, where the probabil-

ity of a new plant growing in the rectangle[0, xs] × [0, ys], with 0 ≤ xs ≤ xmax and

0 ≤ ys ≤ ymax, is given by the cumulative probability distribution function

F (xs, ys) = P{xt ≤ xs, yt ≤ ys}

=

∫ xs

0

∫ ys

0

f(x, y) dx dy.

The plant must be somewhere in the field, so the probability that the plant will be found

in the rectangle[0, xmax] × [0, ymax] is one, and the density function must satisfy the

normalizing equation

∫ xmax

0

∫ ymax

0

f(x, y) dx dy = 1. (5.1)

We find the position(xt, yt) of the plant to be added by calculating first itsy, then itsx

coordinate. To this end, given the two-dimensional density functionf(x, y), we create the

marginal distribution functionFY (ys). That distribution function describes the probability
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thatyt ≤ ys independently of the choice ofxt 1 :

FY (ys) = P{xt ≤ xmax, yt ≤ ys} = F (xmax, ys).

We choose they coordinate for the plant using theinverse transformation method[Ros97].

To this end, we generate a random numberu from the uniform distribution on[0, 1]. We

then searchFY (y) to find the valueyt such thatFY (yt) = u. As FY is monotone and

continuous,yt exists and is unique. This is our plant’sy coordinate.

Once we have chosenyt, we use theconditional distributionFX|Y (xs | yt), which

describes the probability thatxt ≤ xs, given ay valueyt:

FX|Y (xs | yt) = P{xt ≤ xs | yt} =

∫ xs
0
f(x, yt) dx∫ xmax

0
f(x, yt) dx

.

We then apply the inverse transformation method to find the coordinatext, givenFX|Y (xs | yt).

Having placed a plant of sizert at position(xt, yt), we now deform the probability

density functionf(x, y) in order to simulate the effects of that plant on the placement of

nearby plants. To this end, we first multiply the probability density functionf(x, y) by the

plant’s deformation kernelK(x, y),

ftemp(x, y) = f(x, y)K(x, y),

then renormalize the functionftemp(x, y) to satisfy Equation 5.1. The deformation kernel

typically is a function of the form

1There is a corresponding marginal distribution functionFX(xs), which describes the probability that
xt ≤ xs, independent of what is chosen foryt.
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K(x, y) = κ

(√
(x− xt)2 + (y − yt)2

rt

)
,

where the functionκ(r) measures the effect a unit-sized plant has on the formation of

plants at a distancer from it.

The operation of the kernel method is illustrated in Figure 5.3. The deformation kernel

is Figure 5.2(d). The initial distribution is uniform;f(x, y) = c. In the middle, a single

plant has been added to the field; the density function has been altered in the plant’s neigh-

bourhood. On the bottom, four more plants have been added, and the density function has

been modified near each of them.

5.2 Implementation of the deformation kernel method

An obvious way to implement the above concepts is to represent values of the probability

density functionf(x, y) using ann by n array of samplesfij. To calculate position of a

new plant, we create a vectorR of partial sums of the rows, where

Rk =
k∑
i=0

n−1∑
j=0

fij, k = 0, 1, . . . , n− 1.

We determine the coordinateyt of the newly placed plant using the inverse transformation

method. To this end, we pick a random numberu from the uniform distribution on the

interval [0,Rn−1], then perform a binary search to locateRi such thatRi ≤ u < Ri+1.

We then linearly interpolate between(i,Ri) and(i+ 1,Ri+1) to find (yt, u).

Now a vectorC of values representing the conditional distributionFX|Y (xs | yt) is

computed by interpolating rowsi andi+ 1 of the arrayfij.
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(a) A uniform initial probability density

(b) After placing a single plant and deforming

(c) After placing several plants

Figure 5.3: An example of the deformation kernel algorithm, using the kernel of Fig-
ure 5.2(d). Left: the plant distribution. Right: the functionf .
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Ck = (yt − i)
k∑
j=0

f(i+1)j + ((i+ 1)− yt)
k∑
j=0

fij,

Given the valuesCk, k = 0, 1, . . . , n − 1, we choose a value from the uniform random

distribution on the interval[0,Cn−1], and use the inverse transformation method to findxt.

The kernel is applied by simply calculating the distanced of every sampling point(i, j)

from (xt, yt), then multiplying the valuefij of the distribution functionf at that point by

κ( d
rt

). The entire process is captured by Algorithm 5.1.

Algorithm 5.1:

for each plantt do
R0 ← 0
for i from 0 ton− 1 do

for j from 0 ton− 1 do
Ri ← Ri + fij

Ri+1 ← Ri

u← rand(Rn−1)
findk such thatRk ≤ u < Rk+1

yt ← k + (u−Rk)/(Rk+1 −Rk)

C0 ← 0
for j from 0 ton− 1 do

Cj ← Cj + ((yt − k)× f(k+1)j + ((k + 1)− y1)× fkj)
Cj+1 ← Cj

v← rand(Cn−1)
find ` such thatC` ≤ v < C`+1

xt ← `+ (v −C`)/(C`+1 −C`)

for i from (byt − rtc) to (dyt + rte) do
for j from (bxt − rtc) to (dxt + rte) do

d←
√

(xt − j)2 + (yt − i)2

fij ← fij × κ(d/rt)
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If there arem plants to be placed and the functionf is represented usingn2 valuesfij,

the above algorithm will takeO(mn2) time to run, since the sumsRk must be recalculated

each time a new plant is placed.

We improve on this result by updating the arrayR incrementally. When a kernel is

applied to the distribution, the differences betweenfij andκ( d
rt

)fij are summed for each

(i, j) within the range of the plant, and the differences are applied to the arrayR. Assuming

that the kernel is only applied to a small fraction of the cells in the grid, this operation can

be performed inO(n) time per plant. The modified algorithm is shown as Algorithm 5.2.

Algorithm 5.2:

R0 ← 0
for i from 0 ton− 1 do

for j from 0 ton− 1 do
Ri ← Ri + fij

Ri+1 ← Ri

for each plantt do
u← rand(Rn−1)
findk such thatRk ≤ u < Rk+1

yt ← k + (u−Rk)/(Rk+1 −Rk)

C0 ← 0
for j from 0 ton− 1 do

Cj ← Cj + ((yt − k)× f(k+1)j + ((k + 1)− y1)× fkj)
Cj+1 ← Cj

v← rand(Cn−1)
find ` such thatC` ≤ v < C`+1

xt ← `+ (v −C`)/(C`+1 −C`)

∆R← 0
for i from (byt − rtc) to (dyt + rte) do

for j from (bxt − rtc) to (dxt + rte) do
d←

√
(xt − j)2 + (yt − i)2

∆R← ∆R + (fij − fij × κ(d/rt))
fij ← fij × κ(d/rt)

Ri ← Ri + ∆R
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(a) H = 0.4 (b) H = 1.0 (c) H = 1.2 (d) H = 2.4

Figure 5.4: Some kernels and the point patterns they generate. The kernels are drawn at a
larger scale than the point patterns.

for i from (dyt + rte + 1) ton do
Ri ← Ri + ∆R

5.3 Results

Figure 5.4 shows point patterns generated using the above algorithm with different defor-

mation kernels. We can check that they vary between uniformly distributed and clustered

by calculating their Hopkins indices. The Hopkins indices of the figures shown are 0.4,

1.0, 1.2, and 2.4, confirming the visual observation that the kernel method is capable of

creating a range of distributions, from regular to random and clustered.

In Figure 5.5 points have been replaced by simple models of daisies, created using an

L-system. The very different visual impact of the three images demonstrates the impor-

tance of clustering to synthetic images of plant communities.
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(a) H = 0.4

(b) H = 1.2

(c) H = 2.4

Figure 5.5: Point patterns corresponding to Figures 5.4(a), 5.4(c), and 5.4(d), rendered as
fields of daisies.
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(a) The density map

(b) Low clustering (H≈ 1.2). (c) Higher clustering (H≈ 1.9).

Figure 5.6: Plant distributions created from a user-defined density map.

The distributions shown in Figure 5.5 are created by initializing the probability density

functionf to a constant value. If, instead, we initializef to a user-defined field (with a

paint program, for example), we can generate spatial distributions of plants that conform

to this field, as shown in Figure 5.6. This result improves on the methodology created

in [DHL+98], which allowed for the application of a user-specified density map, but did

not make it possible to control the degree of plant clustering.
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distribution affected

species
placed

1 2

1

2

Figure 5.7: The concept of the kernel matrix M for two species.

5.4 Extensions

The deformation kernel method can be extended to include information about the plants’

sizes, as well as to model the interaction of several species.

The sizes of the plants can be drawn from a distribution which fits the size hierarchy

observed in nature (Section 2.3). This information is taken into account while generating

the distribution by placing plants in order of size, largest first. Larger, older plants then

affect the positioning of smaller, younger plants, as is to be expected.

To incorporate multispecies information, it is noted that plants of species 1 may have

a different effect on other plants of species 1 than they do on plants of species 2. Different

kernels are thus required to capture these different effects. In fact, for two species, a total

of four kernels are required: one for the effects species 1 has on itself, one for the effects

species 1 has on species 2, one for the effects species 2 has on species 1, and one for

the effects species 2 has on itself. This leads, in the general case, to akernel matrixM

(Figure 5.7), which defines the effects that each species has on itself and on each other

species.

In an extension of the deformation kernel method ton species, we keep track ofn
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different probability density functionsfi. As plants are placed, each probability density

function is deformed by the relevant kernel; thus, if a plant of speciesj is placed, each

functionfi is deformed by kernelMi,j, wherei = 1, 2, . . . , n. This process is illustrated

in Figure 5.8.

A full-scale instance of these techniques is the forest community model shown in Fig-

ure 5.9, with tree models generated using the method of Chapter 6.
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(a) After placing the first plant of species 1

(b) After placing the first plant of species 2

(c) After placing several plants of each species

Figure 5.8: An example of the deformation kernel algorithm with two species. On the left,
the probability density function of species 1; on the right, that of species 2.
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(a)

(b)

Figure 5.9: A forest community distribution created by the multispecies kernel method.
Top: the distribution created, using dots to represent trees. Bottom: synthetic images
obtained by placing tree models at the locations generated by the coarse-level simulation.
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M ULTILEVEL MODELING OF PLANT COMMUNITIES

The methods described in Chapters 4 and 5 create spatial distributions of plants within

plant communities. These spatial distributions are ideally used in conjunction with some

individual plant models to create a multilevel model of plant communities [DHL+98].

This multilevel model allows us to depict plant scenes in greater detail than the higher-

level spatial distribution models alone, and to efficiently model scenes of much greater

complexity than lower-level individual models alone.

Like the community models, individual plant models can be categorized into local-to-

global and global-to-local models. Local-to-global approaches, in which a plant devel-

ops according to a series of rules and an initial state, were used in the multilevel models

of [DHL+98]. Unfortunately, local-to-global plant models suffer from the same problem

of lack of controlas their counterpart community models. This is problematic in the case

of multilevel models, because it is the plant’s global characteristics that are specified by

the elements of the higher-level model. Thus, it seems that global-to-local plant models

are far more useful in the business of multilevel modeling.

Global-to-local plant models are discussed in depth in [PMKL01]. That paper includes

a model of a plant based on itssilhouette curve(Figure 6.1).

L-system 6.1:
Axiom: A(0,0)

1. A(o,s) : o < MAX ORDER && s < max len[o]
{ rel = s/max len[o]; } 

#(int width(o,rel)) F(int len(o,rel))
[+(branchang(o,rel)) A(o+ 1,max len[o+ 1] - branchlen(o,rel)) ]
/(phyllo ang[o]) A(o,s+int len(o, rel))

2. A(o,s) : s ≥ max len[o] ˜ K
53
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(a) A desired tree
silhouette

(b) Fitting a tree
to the silhouette

(c) The resulting
tree model

(d) Other trees with their silhouette curves

Figure 6.1: Trees generated by L-system 6.1 and their defining silhouette curves.
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L-system 6.1 is based on the concept ofbranch mapping. Under this assumption,

short branches are identical to the top parts of longer branches of the same order. A series

of functions define the shape of the tree: maxlen[o] is the length of the longest branch

of ordero; int len(o, rel) and intwidth(o, rel) define the length and width of internodes

of ordero at relative positionrel along the parent branch; branchang(o, rel) defines the

branching angle of a new branch; and branchlen(o, rel) defines its length. The constant

phyllo ang[o] is the phyllotactic angle, which defines the rotation about the branch be-

tween successive internodes of ordero.

L-system 6.1 can then be understood as follows: The module A(o,s) represents a

branch of ordero and length maxlen[o]−s. Thus, the axiom represents a ‘branch’ of

order 0 (that is, a trunk) of length maxlen[0], which is the height of the tree. Production

1 is activated only if the branch is of order less than the maximum and has not yet reached

its maximum length. The local variablerel is set to the relative position ofs from 0 to

max len[o]. The production then creates an internode of width intwidth(o,rel) and length

int len(o,rel); a branch of ordero+ 1 and length branchlen(o,rel); and, finally, a rotation

by the phyllotactic angle phylloang[o] and a continuation of itself, of the same order but

int len(o, rel) shorter. The second production turns the tip of every branch into a leaf K.

If the branches are relatively straight, the silhouette of the tree is provided by the func-

tion branchlen(0,rel), and the height and width of the tree can be said to be maxlen[0]

and maxlen[1], respectively. This provides a useful set of global parameters to match to

the parameters provided by the higher-level model.

In the case of the models described in Chapters 4 and 5, the only parameters provided

to a plant are its position, size, and species. The actual height and width of the tree object

which is generated are related to the sizer through a power function [Nik94]:
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H = AHr
cH ,

W = AW r
cW

whereAH , AW , cH , andcW are dependent on the species.

The plant models created in Chapters 4 and 5 are quite simply created using L-system 6.1.

A “species” is created manually as a given silhouette specification and set of parameters.

For instance, the “poplar” model of Figure 4.6 has an ellipsoid silhouette; the “conifer”

model of the same image has a conical silhouette, and, in addition, has the phyllotactic

angle of first-order branches set to180◦, creating the horizontal branch tiers characteristic

of such trees.

In theory, every plant could be created individually; however, given the size of the

geometric description of even a single tree model (up to sixty megabytes), some form of

approximate instancing[DHL+98] is required. At most, a few dozen plant objects are used

in the images shown in this thesis (See Table 7.1). A k-means clustering algorithm [LL83]

is used to find a small number of exemplar sizes which are representative of each species.

As an illustration of the entire process, we consider the steps taken to produce Fig-

ure 5.9(b) from Figure 5.9(a). A silhouette and set of parameters are modeled by hand for

each species. Ten exemplar sizes are chosen for each species and each plant in the scene

is replaced by one of the exemplar sized plants. Figure 6.2(a) shows the scene from Fig-

ure 5.9 rendered using the silhouette shapes instead of realistic tree models. Finally, ten

plant objects of each species are created, filling the silhouettes, and placed at the required

positions (Figure 6.2(b)).
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(a) With silhouette shapes

(b) With realistic tree models

Figure 6.2: A comparison between silhouette shapes and realistic tree models in the ren-
dering of the distribution of Figure 5.9.
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CONCLUSIONS

Statistics pertinent to the scenes shown in this thesis are given in Table 7.1. The times

taken to generate the spatial distribution vary greatly, from under a second (for the defor-

mation kernel models) to nearly an hour (for one of the local-to-global models). It must

be remembered, however, that the local-to-global models create an entire history of the

spatial distribution, while the global-to-local models create the spatial distribution of one

moment in time. Each timestep of the local-to-global models takes, on average, under

three seconds.

None of the images took, from the start of the spatial distribution generation to the

end of rendering, more than an hour to create. Once the form of the individual plant

models for each species are created, the entire task, except for lighting and other aesthetic

considerations in rendering, is automated. This makes the process suitable for the practical

application to realistic image synthesis.

Possible further directions for this research include various practical applications, such

as scene dressing for computer animation purposes and visual impact analysis of tree cut-

ting and regrowth. The realism of the resulting scenes can be further improved using more

accurate models of the underlying biological processes and more sophisticated rendering

methods. Finally, the idea of the deformation kernel is not inherently a global-to-local

one; it should be possible to create a local-to-global model of the spatial distribution of

plants using deformation kernels.

58
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Number of Time takena

Fig.
plants

different
plants

primitives
(millions)

distribution
generationb

plant
generation renderingc

4.5a 2688 20 34 9 sec 30 sec 8 min
b 1593 20 18 72 sec 27 sec 8 min
c 1409 20 30 2 min 30 sec 9 min
d 834 20 78 3 min 40 sec 11 min

4.6a 5584 24 141 2 min 30 sec 15 min
b 5526 24 147 22 min 30 sec 14 min
c 3427 24 100 44 min 30 sec 12 min

5.5 100 8 1.5 0.05 sec *d 2 min
6.2 1599 36 147 0.5 sec 65 sec 11 min

aTimes recorded on a 733 MHz Pentium III processor.
bFor Figures 4.5 and 4.6, the times given show how long the simulation took to reach the given frame.
cRaytraced withrayshade , 9 samples per pixel. For Figures 4.5, 4.6, and 6.2, the image was1024×512

pixels; for Figure 5.5, the image was640× 480 pixels.
dThe plant models for Figure 5.5 were manually generated and randomly assigned.

Table 7.1: Statistics pertinent to Figures 4.3, 4.5, 4.6, 5.5, and 6.2.

Final words

This thesis addresses several open problems in the modeling of plant communities for

image synthesis. First, the distinction between local-to-global and global-to-local models

originally made in [PMKL01] is extended to models of plant communities, and new mod-

eling methodologies are applied to each. The formalism of multiset L-systems provides a

framework for individual-based local-to-global models of plant communities; the global-

to-local deformation kernel method allows greater control over the decomposition of an

initial density function.

Second, the global-to-local plant modeling techniques described in [PMKL01] are

combined with the spatial distribution models to create multilevel models of plant com-

munities. The global-to-local nature of the individual plant model allows tighter coupling

between the two levels of the model. The size, shape, and species of each plant in the
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higher-level model can be reflected in the individual plant model.

Third, these methods have been illustrated using examples with ecological relevance.

Local-to-global models expressed in multiset L-systems captured the phenomena of self-

thinning, succession, and clustering. The deformation kernel method is used to create

models with variable clustering and multiple interacting species. Finally, the methodolo-

gies have been applied to image synthesis with the creation of realistic visualizations of

these models.
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