Chapter � AUTONUMLGL \e �1���Some Visual Languages Implemented in Constraint Graphs

The previous chapter describes the Constraint Graphs program from a design point of view.  In contrast, this chapter is far more pragmatic and describes how to use Constraint Graphs to implement several formal and semi-formal visual languages.

The chapter starts with a very simple, semi-formal language, gIBIS (Graphical Issue Based Information System) (Conklin & Begeman 1987).  The description of gIBIS serves to introduce the reader to the basic functions of Constraint Graphs.  But the gIBIS description does not exercise the system's full capabilities.  The more advanced features of Constraint Graphs are illustrated in Section � REF Section_VL_CGs \* MERGEFORMAT �7.2�, which presents an implementation of an extension to Conceptual Graphs (Sowa 1984). Conceptual Graphs has many uses in knowledge representation and natural language representation and has a reasonably large and active user community.  Finally, Section � REF Section_VL_KRS \* MERGEFORMAT �7.3� presents KDraw (Gaines 1991b), which is a visual form of the CLASSIC (Borgida et al. 1989) knowledge representation language.  This language presents a real challenge for Constraint Graphs, serving to exercise most of its power and showing some very interesting problems in visual language representation.

� AUTONUMLGL \e �1.1� gIBIS

gIBIS (Conklin & Begeman 1987) is an acronym for "Graphical Issue-Based Information System".  It is a simple visual language used in business decision making.  There are several versions, and all are very simple.  The language consists of typed nodes and typed arcs only (there are no contexts).  The version used in this example has only three node types:

Issue: usually a decision to be made

Position: a statement of a possible resolution of a particular Issue

Argument: a statement supporting or objecting to a particular Position

There are also seven arc types.  All of them are binary, directed arcs and are limited to connecting only certain node types to certain node types.  � REF _Ref376751633 \* MERGEFORMAT �Table 3� lists the arc types and includes the arc terminal restrictions.

Table � SEQ Table \* ARABIC �3�: gIBIS arc types, showing the restrictions on the node types at the terminals.
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� REF _Ref376752043 \* MERGEFORMAT �Figure 31� shows a simple gIBIS map, which may be created as part of making a decision about which type of computer an organization is going to buy.  In this map, Issue nodes are shown as ellipses, Position nodes are shown as rounded rectangles and Argument nodes are shown as rectangles.

�

Figure � SEQ Figure \* ARABIC �31�: A simple gIBIS discussion about buying a computer

In order to create a Constraint Graph system to support the construction of gIBIS maps, one needs only:

Limit the types of nodes to Issue, Position, and Argument.

Limit the types of arcs to questions, is-suggested-by, specializes, generalizes, responds-to, supports, and objects-to.

For each arc type, restrict the end points to terminate on only the legal node types as per � REF _Ref376751633 \* MERGEFORMAT �Table 3�.

All of this is easily done using Constraint Graphs.  The following discussion will follow the reasoning that a visual language designer might go through when constructing a Constraint Graphs gIBIS implementation.

� AUTONUMLGL \e �1.1.1� The Top-Level gIBIS Node and Arc

Since � REF _Ref376751633 \* MERGEFORMAT �Table 3� shows that the questions and is-suggested-by arcs may terminate on any of the three node types, it makes sense to capture the notion of a general gIBIS node (the union of Issue, Position, and Argument).  In addition, one might want to capture the notion of a general gIBIS arc, and specify that it must connect a gIBIS node to another gIBIS node. (While the need for a "gIBIS arc" might seem speculative at this point, good reasons for choosing to implement it will become apparent near the end of this discussion.)  The gIBIS node is created by left-clicking on the background and choosing New Node|NODE from the popup menu:
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After naming the node gIBIS node, the gIBIS arc may be created in a similar way and both arc terminals may be attached to the gIBIS node.  This yields the following map:
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Both terminals of the gIBIS arc terminating on the gIBIS node serve to restrict the terminals of any gIBIS arc subtype to terminate on components that are subtypes of gIBIS node (see Section � REF Section_design_constraining_arcs \* MERGEFORMAT �6.4.2�).  

The visual attributes of the gIBIS node and the gIBIS arc are specified using the attributes dialog box.  The attributes dialog box for the gIBIS node is shown in � REF _Ref376754545 \* MERGEFORMAT �Figure 32�.  The Name box lets the user type in the name of the node.  The Level box lets the user specify the level of the component (see Section � REF Section_design_using_levels \* MERGEFORMAT �6.4.4�).  Here, level 2 is chosen because "gIBIS node" is not a legal gIBIS node type – it is just a necessary part of the ontology, and must be hidden from the end user.  At this early point, the designer realizes certain components must be hidden from the end user, so it is appropriate to choose the leveling structure.  A typical breakdown is as follows:

�

Figure � SEQ Figure \* ARABIC �32�: The attributes dialog box for "gIBIS node"

Level 1 is the Constraint Graphs system level.  Components belonging to this level are not normally edited by either the visual language designer or the end user.

Level 2 is the hidden part of the visual language design.  Components belonging to this level are created and edited by the visual language designer, but the end user is not normally aware of their presence because they don't show up anywhere in the user interface.

Level 3 is the "public" part of the visual language design.  Components belonging to this level are created and edited by the visual language designer and are visible to the end user, but they are typically locked from editing by the end user (since editing these component may disrupt the integrity of the visual language).

Higher numbered levels are usually the domain of the end user.  Components belonging to these levels are created and edited by the end user.  The components in these levels are almost always subtypes of components in level 3.  The default component level for the end user is usually set at level 5.

This level assignment suffices for the current purposes.  Both the general gIBIS node and the general gIBIS arc are assigned to level 2.  The other, concrete, gIBIS types can be assigned to level 3.

The attribute box of � REF _Ref376754545 \* MERGEFORMAT �Figure 32� is where the user can specify attribute/value pairs.  While the user may specify arbitrary attribute names, the following attributes are used by the system for nodes:

borderColor: type COLOR (24 bit hexidecimal value in RRGGBB format).

borderStyle: type UNSIGNED LONG INTEGER (maps to dotted, dashed, etc.)

borderWidth: type INTEGER (pixels)

constraints: type CONSTRAINT (an editable list of constraints)

fillColor: type COLOR

shape: type SHAPE (ellipse, frame, none, rectangle, roundedRect…)

textColor: type COLOR

All these attributes are set for gIBIS node except for constraints, which is left empty.

The attributes for arcs include all of those for nodes, plus

lineColor: type COLOR

lineStyle: type UNSIGNED LONG INTEGER (maps to dotted, dashed, etc.)

lineWidth: type INTEGER (pixels)

connector: type CONNECTOR (describes the type of connector: bidirected, bidirected labeled, directed, directed labeled, plain, plain labeled…)

The attributes are all specified for the general gIBIS arc.  

� AUTONUMLGL \e �1.1.2� Defining the Rest of the gIBIS Nodes and Arcs

Finally, the actual gIBIS nodes and arcs can be defined.  The three gIBIS nodes, Issue, Position, and Argument, are first defined as top-level Constraint Graph nodes, then an isa arc is drawn from each to the general gIBIS node.  Immediately after the isa arcs are drawn, the visual attributes (colors, shape) of the nodes changes to match those of the general gIBIS node.  But Position and Argument are meant to have different shapes, so the attributes dialog for these two nodes is invoked to change the shape attribute appropriately.  These operations yield the nodes in � REF _Ref377279016 \* MERGEFORMAT �Figure 33�.
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Figure � SEQ Figure \* ARABIC �33�: The Constraint Graphs definition of the gIBIS model

The arcs in � REF _Ref377279016 \* MERGEFORMAT �Figure 33� are created in a similar way, but to actually show the isa arcs in the figure would clutter up the diagram unreasonably, so a slightly different technique is used.  Instead of creating the arcs as generic Constraint Graph arcs, they are created directly as subtypes of the general gIBIS arc.  This is done via the background popup menu
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by selecting "gIBIS arc" from the "New Arc" sub-menu.  This has the effect of creating the appropriate isa arc in the Constraint Graph, but not drawing the isa arc in the interface.  After each arc is created in this way, the end-points are merely dragged and dropped on the relevant nodes, and then the attributes are appropriately modified to complete the definition shown in � REF _Ref377279016 \* MERGEFORMAT �Figure 33�.

An alternative approach to creating a gIBIS arc subtype without a visible isa arc is to select "Arc From/To…" from the node popup menu, which starts an elastic line selection anchored on the node.  For example, to create the responds-to arc of � REF _Ref377279016 \* MERGEFORMAT �Figure 33�, the user selects "Arc From/To…" from Position's popup menu.  This creates an elastic line anchored on the Position node. The user then drops the elastic line over the Issue node.  The system will automatically infer all legal arc types between the nodes and display the possibilities as a menu:

�EMBED PBrush���

Since a gIBIS arc subtype is desired, it is selected; and the system will automatically draw a gIBIS arc subtype between the two nodes:
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The name of the arc is copied from gIBIS arc, but the arc can be edited to change its name and any other desired attributes.  In this case the arc will be renamed responds-to.  



All of the gIBIS components, except for "gIBIS node" and "gIBIS arc" (which are level 2) should be placed in level 3, since level 3 components will be made visible to the end user. The level 2 components will be hidden.

� AUTONUMLGL \e �1.1.3� Preventing Further Subtyping

The gIBIS visual language does not include any notion of subtyping and inheritance.  Therefore, end users should be prevented from subtyping any of the nodes or arcs they create.  (They must subtype, or instantiate, the basic gIBIS types, but they must not create any subtypes of the instantiated components.) Constraint Graphs provides the functionality to do this through the "ParentOfIndividual" constraint, which is added to each of the level 3 gIBIS components.  

Constraints are just attributes in this Constraint Graphs implementation, so the attribute dialog is invoked for each component and the constraint attribute is selected.  The "value:" portion of the attributes dialog is an edit button.  Pushing the edit button brings up a special constraint editor shown in � REF _Ref377281221 \* MERGEFORMAT �Figure 34�.  

The left-hand pane in � REF _Ref377281221 \* MERGEFORMAT �Figure 34� contains constraints that are currently applied to the component, and the right-hand pane contains all the applicable constraints from the current constraint library.  (Nodes, arcs, isa arcs, and contexts all may have different sets of possible constraints.)  The "Explain Constraint" buttons are used to get explanations, in both English and in Z, of the meaning of the constraint highlighted in the panes.  The "Edit Constraint" button is used to change the parameters of a constraint via yet another dialog.  

�

Figure � SEQ Figure \* ARABIC �34�: The constraint editor, specialized for nodes (arc editors have a longer list of "possible constraints").

In the gIBIS definition, tagging each level 3 gIBIS component with the ParentOfIndividual constraint will prevent the end user from being able to subclass or instantiate from any sub-gIBIS component.

� AUTONUMLGL \e �1.1.4� Hiding the Details from the End User

All that remains to do to create the Constraint Graphs gIBIS model is to hide the unnecessary details from the end user.  This is done by using the levels options from the Constraint Graphs options dialog as shown in � REF _Ref377283351 \* MERGEFORMAT �Figure 35�.  The "New Menu from Levels" fields select the levels from which the system will infer types.  The types in these levels will be the only ones used in the background's (and components') popup menus' "new" sub-menus.  They will also be the only types considered when the system must infer the types of arcs (see Section � REF Section_VL_gIBIS_defining_nodes \* MERGEFORMAT �7.1.2� for an example).  Setting the minimum level to 3 prevents the end user from seeing the Constraint Graph base types (level 1) and the gIBIS base types (level 2).  Setting the maximum level to 3 prevents the end-user created components (which can only be levels 4 and above, see below) from being displayed in menus or used in type inferences.
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Figure � SEQ Figure \* ARABIC �35�: The Constraint Graphs levels options

The "Default Level" field in � REF _Ref377283351 \* MERGEFORMAT �Figure 35� is used to supply a default for the level field of the attributes dialog (� REF _Ref376754545 \* MERGEFORMAT �Figure 32�).

The "Lock this level and those below" field in � REF _Ref377283351 \* MERGEFORMAT �Figure 35� is used to prevent the end user from editing, deleting, or creating new components in the specified levels.  This prevents the user from tampering with the visual language definition, and perhaps inadvertently corrupting the integrity of the language.  Components within the locked levels automatically have truncated popup menus: the editing and deletion operations are dropped.

� AUTONUMLGL \e �1.1.5� The Interface for the End User

The end user's environment, after all the above is complete, is specialized to the gIBIS semi-formalism.  The background menu's "New Node" and "New Arc" submenus are limited to just the gIBIS node types:
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Since there are no contexts in gIBIS, the "New Contexts" submenu is empty.  Constraint Graphs allows the creation of new arcs in isolation (unanchored to any nodes at all).  These are displayed in the obvious manner:
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Any component may be selected by clicking on it, which displays its handles:
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The handles at the terminals may be dragged and dropped on another component to anchor it on that component.  But if the terminal is not legal according to its constraints, an error message is displayed and the operation is undone.  For example, if the "to" (arrowhead) side is dragged over a Position-type arc (which is not legal, according to the definition), the connection is refused, and an error message is displayed (see � REF _Ref377299917 \* MERGEFORMAT �Figure 36�).
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Figure � SEQ Figure \* ARABIC �36�: A refused arc connection.

There are also two other ways to create arcs.  Both are via the node popup menu:
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The "Arc From" submenu creates a specific-typed menu rooted at the current node (with the other terminal(s) free.  This sub-menu contains only the arc types that may legally be rooted at the target node.  In this case, there are only four possibilities.

An arc may also be created by clicking on the "Arc From/To…" menu item, then dragging an elastic line from the current node to another node.  The system will infer any legal arc types between the two nodes according to the definition.  If there is a unique arc type, an arc of that type will be drawn between the two nodes.  If there is more than one possibility, the system will use a menu to query the user for the chosen type, and the arc will be drawn.  If there are no legal arc types between the two nodes, an error message will be displayed.

Using these techniques, a gIBIS concept map may easily be created.  � REF _Ref377301413 \* MERGEFORMAT �Figure 37� is an example.  Other than dangling arcs, it is not possible to create a syntactically incorrect gIBIS map.  If the visual language designer wanted to avoid dangling arcs, then the ad-hoc constraint "noDanglingTerminals" (which is resident in the constraint library) could have been added to the constraints for the "gIBIS arc" arc.
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Figure � SEQ Figure \* ARABIC �37�: An example concept map created with the Constraint Graphs definition of gIBIS

It is now possible to explain more of the rationale behind creating the hidden "gIBIS arc" arc in the first place.  Arc-global constraints, such as the "noDanglingTerminals" constraint from the previous paragraph, may be easily added using the "gIBIS arc" arc.  Furthermore, other arc-global attributes may be added at "gIBIS arc".  For example, if users become very familiar with the arc types, they may be fluent in recognizing the arc types by their color: the arc labels would become quite redundant.  Since all the arcs used in the concept map inherit their "connector=directed labeled" attribute from "gIBIS arc", one only need change the connector attribute to "connector=directed" to erase all labels in the concept map.  This makes for a far less cluttered concept map (compare � REF _Ref377302465 \* MERGEFORMAT �Figure 38� to � REF _Ref377301413 \* MERGEFORMAT �Figure 37�).  The labels may all be restored by merely changing the one attribute back to its original value.
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Figure � SEQ Figure \* ARABIC �38�: The same concept map as � REF _Ref377301413 \* MERGEFORMAT �Figure 37� using unlabeled connectors.



Section � REF Section_VL_gIBIS \* MERGEFORMAT �7.1� has described the implementation of the gIBIS concept mapping language in detail.  The gIBIS language acts as test of Constraint Graphs theory and framework in that gIBIS was not originally considered during the development of the theory and design of the framework.  gIBIS is a fairly simple and straight-forward concept mapping language; it, therefore, makes a good first example.  But its implementation presents no challenge to the framework.  Unlike some of the other languages described in this chapter, it caused no iterations back to the early design phases of the project.  The other language implementations are presented in much less detail, but serve to illustrate some of the more obscure features of the framework.

� AUTONUMLGL \e �1.2� Conceptual Graphs

The syntax for Sowa's Conceptual Graphs is implemented in a straightforward manner in Constraint Graphs.  However, there are two major interpretations that can be applied.  Both are logically equivalent, but the less traditional interpretation allows Constraint Graphs to more conveniently capture some of the semantics of the Conceptual Graphs language.  

The traditional interpretation is that Conceptual Graphs are bipartite graphs consisting of concept nodes and relation nodes that may be interconnected by directed arcs.  Thus, there are only two binary, directed, non-subtype-able arc types: relation-to-concept and concept-to-relation; these support the bipartite nature of the system.  In addition there exists a third, binary, undirected arc type, called coreference, which may only occur between two concept nodes.  This interpretation is easily modeled in Constraint Graphs (context nodes are omitted here): 
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However, an alternate interpretation is that relations are arcs (labeled arcs with an elliptical surround).  This interpretation dispenses with relation nodes and the relation-to-concept and concept-to-relation arcs and replaces these with a richly-typed set of n-ary arcs, all of which are a subtypes of the prototypical relation shown in � REF _Ref377343382 \* MERGEFORMAT �Figure 39�.  The advantage of this interpretation is that Constraint Graphs can use the intrinsic constraints on arcs to model semantic typing of concepts and relations, restricting the arguments of relations (arcs) to conform to the type hierarchy (as defined by the is-a arcs).  Although this semantic extension could be achieved using the first (traditional) interpretation, it would have to be done with parameterized ad-hoc constraints which would be arguably "unnatural" to Constraint Graphs' normal paradigm.  It would also be comparatively complex for the end user to specify.  Therefore, the alternate, relations-as-arcs interpretation is judged preferable for Constraint Graphs and this is the one that is discussed throughout the remainder of this section.

In the relations-as-arcs model, there are only four primary types of components in Conceptual Graphs: concepts, relations, coreference arcs, and contexts.  The syntax for Sowa's Conceptual Graphs is implemented in a straightforward manner in Constraint Graphs.  There are only four types of components in Conceptual Graphs: concepts, relations, coreference arcs, and contexts.  � REF _Ref377343382 \* MERGEFORMAT �Figure 39� is a Constraint Graphs definition for these four component types.  The unusual features (as compared to the gIBIS example) are:

The relation component of � REF _Ref377343382 \* MERGEFORMAT �Figure 39� is an arc, not a node.  Relation is just a labeled arc where the label has a surround shape.  The relation arc starts at concept and ends at concept.
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Figure � SEQ Figure \* ARABIC �39�: The Constraint Graphs top-level ontology for Conceptual Graphs

The coreference arc is the unlabeled dotted line that appears on the right-hand side of the concept node.  As with relation, it both starts and ends on the concept node.

Context is a Constraint Graphs context that inherits from the concept node.  This is perfectly acceptable since concept<node, context<node, Context<context, and Context<concept forms a consistent type lattice:
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The important attributes of the Conceptual Graphs definition are given in � REF _Ref377346827 \* MERGEFORMAT �Table 4�.  Since the definition of Conceptual Graphs dictates that all concepts have rectangular surrounds, the shape attribute is set as constant for concept.  This prevents sub-type concepts from overriding the attribute and changing the shape: to do so would interfere with the readability of the map.  Likewise, other shape and connector attributes are also tagged as constant.

� REF _Ref377346827 \* MERGEFORMAT �Table 4� also mentions one constraint.  ParentOfIndividual is applied to the coreference arc because the coreference arc cannot be specialized in the Conceptual Graphs framework.

Table � SEQ Table \* ARABIC �4�: The attributes of the Constraint Graphs top-level ontology for Conceptual Graphs

Name�
Type�
Level�
Attributes�
Value�
Flags�
�
concept�
node�
3�
shape�
rectangle�
const�
�
relation�
arc�
3�
shape�
ellipse�
const�
�
�
�
�
connector�
directed labeled�
const�
�
coreference�
arc�
3�
connector�
plain�
const�
�
�
�
�
constraints�
ParentOfIndividual�
�
�
context�
context�
3�
shape�
frame�
const�
�
In Sowa's Conceptual Graphs, the ontology (or type lattice) is not included.  Instead, the Conceptual Graphs are assumed to be accompanied by a separate semantic net that specifies the type lattice.  In contrast, the Constraint Graphs version smoothly integrates these two separate graph structures into a single graphing space.  This is very natural for the Constraint Graphs structure.  So, a Constraint Graphs implementation of Conceptual Graphs might be considered an extension of Conceptual Graph's graphical notation (but not an extension to Conceptual Graph theory, since Constraint Graphs does not implement the whole theory – just the syntax and some of the semantics). 

In modeling Conceptual Graphs, the "standard" level designations need to be extended.  In the "standard" designations, there are two human roles: visual language designer and end user.  In Conceptual Graphs, it makes sense to divide the end user role further into a user responsible for the semantic net, and a more tradition Conceptual Graphs user who is only responsible for the domain.  Thus, there are three roles:
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Figure � SEQ Figure \* ARABIC �40�: A Constraint Graphs schema for Sowa's Conceptual Graphs and some of top-level type hierarchy from Sowa (1984)

visual language designer (responsible for the Conceptual Graphs definition, � REF _Ref377343382 \* MERGEFORMAT �Figure 39�)�


ontology designer (responsible for the domain ontology or semantic net, � REF _Ref368633915 \* MERGEFORMAT �Figure 40�)
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Figure � SEQ Figure \* ARABIC �41�: An example of a Conceptual Graph using Constraint Graphs

end user (responsible for using the ontology to construct meaning full expressions, � REF _Ref368631604 \* MERGEFORMAT �Figure 41�)

� REF _Ref377703820 \* MERGEFORMAT �Table 5� gives the suggested level settings for each of the roles.

Table � SEQ Table \* ARABIC �5�: Suggested level settings for Conceptual Graphs

�
    new menu�
�
�
�
�
user type�
min�
max�
default level�
locked�
�
visual language designer�
1�
3�
3�
1�
�
ontology designer�
3�
4�
4�
3�
�
end user�
4�
4�
6�
4�
�
� REF _Ref368631604 \* MERGEFORMAT �Figure 41� shows an example of a Conceptual Graph as represented by the Constraint Graphs program.  The graph expresses the sentence "No student read the book the teacher wrote."  The Constraint Graphs ontology used is shown in � REF _Ref368633915 \* MERGEFORMAT �Figure 40�.  This ontology is taken from Appendix B of Sowa's 1984 book (Sowa 1984).  The user who constructed � REF _Ref368631604 \* MERGEFORMAT �Figure 41� had to add the new types WRITE<ACT, READ<ACT, and BOOK<ENTITY.  The ontology of � REF _Ref368633915 \* MERGEFORMAT �Figure 40� is very straightforward.  To avoid clutter, the type hierarchy omits the isa arc between concept and relation and their immediate subtypes (all of the rectangles and ellipses that aren't at the "from" end of an isa arc).  

The Constraint Graphs program is capable of informing the user of all legal links between arbitrary nodes.  A little experimentation with this feature quickly points out a few problems with the ontology which appears in the appendix of Sowa's 1984 book.  For example, Sowa defines the LOC (location) relation as [T]->(LOC)->[PLACE]as it is in � REF _Ref368633915 \* MERGEFORMAT �Figure 40� (T is concept in the figure).  Constraint Graphs can infer all the possible arcs that a particular component may participate in.  If the user requests this information for TIME_PERIOD, Constraint Graphs will infer TIME_PERIOD may be at the "from" side of either coreferent or LOC:
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Clearly, LOC is not appropriate since a TIME_PERIOD should not have a location. This same problem applies to ATTRIBUTE, MEASURE, STATE, and all of their subtypes.  It would make good sense to introduce a common supertype for ENTITY and EVENT to anchor the LOC relationship to, instead of anchoring it to T (concept). For example CYC (Cycorp 1996) defines "SpatialThing" as the supertype of "PhysicalEvent" and "PartiallyTangible" (which roughly correspond to Sowa's EVENT and ENTITY, respectively). 



The implementation of Conceptual Graphs covers only the fundamental syntax and some of the semantics (type lattice constraints) of the Conceptual Graphs formalism.  This level of support presented no particular difficulty to the Constraint Graphs framework, once it as initially recognized that relations could be modeled as arcs instead of nodes (as described at the beginning of this section).  However, since much of the syntax of Conceptual Graphs is captured in node labels, a deeper modeling of Conceptual Graphs would involve several ad-hoc constraints to constrain the syntax of node labels (which has turns out to be not particularly difficult either – see Section � REF Section_VL_KRS_label_syntax \* MERGEFORMAT �7.3.4�).  Furthermore, label syntax can interact with graphical syntax in the Conceptual Graph implementation: an individual marker in a concept node label should preclude that node being used as a type (as the destination end of an isa arc).  Even this can be handled using ad-hoc constraints, although not particularly elegantly.  A more elegant method of constraining label syntax, and allowing label syntax to interact with graphical syntax would be desirable, but it is not clear that such a method exists.

It may be feasible to model the full semantics of Conceptual Graphs using only minimal extensions to Constraint Graphs.  This is described in the "future work" section (Section � REF Section_conc_future_CG_semantics \* MERGEFORMAT �9.3.3�).

� AUTONUMLGL \e �1.3� KDraw

KDraw (Gaines 1991b) is an interactive, visual, term subsumption language.  It is based on the (textual) CLASSIC language (Borgida et al. 1989).  KDraw has 6 main types of nodes, and eleven relationship types as depicted in � REF _Ref378324416 \* MERGEFORMAT �Figure 42�. All of the KDraw types (below the heavy line in � REF _Ref378324416 \* MERGEFORMAT �Figure 42�) belong to level 3.  The fundamental KDraw node types are concept, primitive, individual, constraint, role, and rule.  KDraw has eleven relations.  The termination rules for these are shown in � REF _Ref378415096 \* MERGEFORMAT �Table 6�.  
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Figure � SEQ Figure \* ARABIC �42�: A Constraint Graphs model of KDraw.  The vertical and horizontal arcs represent the subtype relation.  Objects above the heavy line are the types of the Contraint Graphs domain; objects below the heavy line are system types in the KDraw domain.

Two of the relations are particularly interesting: this is the first example of subtypes of the isa arc being used in language definition.  The considerable semantics (rules) associated with the isa arc (isa arcs cannot form cycles, isa arcs are binary, etc.) are automatically inherited by the subtype isa and instance-of arcs.

� REF _Ref378325322 \* MERGEFORMAT �Figure 43� shows an actual Constraint Graphs schema for the component types in KDraw. Node labels all begin with upper-case letters; arcs (relationships) are pictured as all lower-case letters.  The surrounds (shapes) of nodes are similar in shape and style to those used in KDraw.  Note that although role has no surround, it is a node and should not be confused with an arc.  Constraint Graphs allows nodes with no surrounds (as in the present case) and arcs with surrounds (as in the Conceptual Graphs example) – it's up to the visual language designer to avoid the potential confusion that might arise.

Table � SEQ Table \* ARABIC �6�: Legal terminators for the KDraw arcs

Arc Type�
From Node Type�
To Node Type�
�
isa�
Concept�
Concept�
�
instance-of�
Individual�
Concept�
�
has-role�
Concept, Individual, Rule�
Role�
�
has-filler�
Role�
Individual�
�
has-domain�
Role�
Concept�
�
has-constraint�
Role�
Constraint�
�
if-then�
Concept�
Rule�
�
exception�
Rule�
Rule�
�
set-contains�
Set-Constraint�
Individual�
�
coreference�
Concept�
Concept�
�
disjoint�
Concept�
Concept�
�
Arcs in KDraw are all unlabeled (they are only labeled here for clarity), and for most part, are binary directed arcs (arrows) unambiguously distinguished by the (visual) type of their terminal objects.  The cases where arcs types are not unambiguous are those in which the arc types have both terminals at concepts: isa, disjoint, and coreferent.  These are visually disambiguated by isa being a directed arc, disjoint being an undirected arc, and coreferent being a bidirected arc.

Of course, each of the objects shown in � REF _Ref378324416 \* MERGEFORMAT �Figure 42� must be constrained to conform to the graphical syntax of KDraw.  This is done in the Constraint Graph schema of � REF _Ref378325322 \* MERGEFORMAT �Figure 43�.  For nodes, this is trivial, for the arcs alone suffice to control the syntax.  (Any nodes could stand alone and unattached without violating any KDraw rules, though they wouldn’t be very meaningful.)  The only predicates applied to nodes are regular expression constraints, which apply to the labels the end user puts on the various Constraint nodes.  For the most part, arcs can be constrained by merely connecting their terminals to the appropriate type object.  These terminals are (almost) precisely those shown in � REF _Ref378415096 \* MERGEFORMAT �Table 6�.  Complications in the actual definition (� REF _Ref378325322 \* MERGEFORMAT �Figure 43�) arise due to the need to introduce additional types:
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Figure � SEQ Figure \* ARABIC �43�: A Constraint Graphs schema for KDraw

to encapsulate the "polymorphic" has-role relationship, 

to handle the natural inheritance of visual attributes from Concepts to Individuals through instance-of arcs without giving Individuals all the semantics of Concepts (to be detailed below),

to avoid cycles in the isa hierarchy when defining the isa KDraw relation, and

to limit the syntax of labels on KDraw constraint nodes.

The next four sub-sections describe these issues in more detail.

� AUTONUMLGL \e �1.3.1� "Polymorphic" Relations

Several different, otherwise unrelated, node types may appear on the "from" side of an arc connecting to a Role node type.  A Rule, Concept, Primitive, and Individual may all connect to a Role.  (But we can ignore Primitive because it is just a subtype of Concept.)  There is no way to draw the prototype (defining) has-role arc with three tails and one head without distorting its meaning (its arity is meant to be two, not four).  One way to get around the problem is to define three different has-role arcs: has-role-rule, has-role-concept, and has-role-individual.  But this is not very elegant and seems to be contrary to the "natural" way of thinking about this relation.  

A more natural solution is to encapsulate the commonality between rules, concepts, and individuals: they are all "things with roles".  One can therefore define a supertype of all three called Objects-with-role.  This is exactly what's done in � REF _Ref378325322 \* MERGEFORMAT �Figure 43�.  The new type Object-with-role functions as the "from" terminal for the has-role arc, and Rule, Concept, Primitive, and Individual inherit the ability to have a role from Object-with-role.  

� AUTONUMLGL \e �1.3.2� Natural Attribute Inheritance

A second problem has to do with natural inheritance.  Note that, in � REF _Ref378325322 \* MERGEFORMAT �Figure 43�, Individual is not a subtype of Concept, but if the Individual George is an instance of Child, it might be reasonable for the user to expect George to inherit the attributes of Child.  In particular, one might expect that the visual attributes will be inherited: If one shades Person by giving it a fillColor attribute, then one expects the attribute to be inherited by Child through the isa arc and then to be inherited by George thought the instance-of arc, as it is in � REF _Ref378325322 \* MERGEFORMAT �Figure 43�.  
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Figure � SEQ Figure \* ARABIC �44�: An example of KDraw using Constraint Graphs

Naively, one may consider making instance-of a simple subtype of isa, but this will not work.  If instance-of were a simple subtype of isa, then George, in � REF _Ref378383692 \* MERGEFORMAT �Figure 44�, would inherit the ability, for instance, to be associated with a if-then arc, and this is not allowed (concepts have rules, individuals do not have rules).  Thus, when the user shows the "Arc from" menu, the choices would be disjoint, coreferent, has-role, if-then, isa, and instance-of.  But the only choices should be has-role and instance-of.

On the other hand, not making instance-of a subtype of isa means that individuals will not inherit visual attributes from the concepts that they are instances of.  It seems there is no solution to the dilemma.  

The problem lies in the modeling.  Logically, there are two type lattices involved, not just one.  One type lattice is used to determine arc termination eligibility, and is called the KR (Knowledge Representation) ontology.  The other is used in attribute inheritance, and is called the domain ontology.  The two ontologies are completely coincident except for the instance-of arc, which is in the domain ontology, but not the KR ontology.  In the software, this scheme is supported by ontology filters as described in Section � REF Section_spec_ontology_filters \* MERGEFORMAT �5.3�.

In practice, all that need be done is tag the prototype instance-of arc with the domain ontology filter as it is in � REF _Ref378399604 \* MERGEFORMAT �Figure 45� where only the domain ontology is highlighted in the filter box.  By default, all isa arcs are tagged with the universal ontology filter (where all ontologies are highlighted).  This effectively solves the problem: attribute inheritance will occur though instance-of arcs because they are in the domain ontology, but instance-of arcs will not be considered when the system is performing type inferences, such as in arc termination eligibility.  Using ontology filters neatly solves the problem without undue work on the user's part because different type lattices are normally highly coincident.

�

Figure � SEQ Figure \* ARABIC �45�: The attributes dialog for KDraw's instance-of arc

By the way, in � REF _Ref378325322 \* MERGEFORMAT �Figure 43�, the instance-of arc is drawn from Individual to Proto-Concept, and not to Concept, because Concept has its shape attribute tagged as constant.  If Individual were to inherit this shape attribute from Concept, it could not override the shape to be its distinct rectangular shape.  Therefore, the prototype instance-of arc must be drawn between Individual and some supertype of Concept that does not have a constant shape – Proto-Concept.

� AUTONUMLGL \e �1.3.3� Avoiding isa Cycles

A KDraw isa arc may be drawn between any two concepts.  Naively, one would just draw the prototype KDraw isa from the prototype Concept, back to the prototype Concept.  But this is a cycle, and cycles are not allowed in type lattices.  Fortunately, there's always a simple way out of the kind of dilemma: Just create a supertype of the target component, and connect the "circular" arc between the target and its supertype.  This strategy has been used in � REF _Ref378325322 \* MERGEFORMAT �Figure 43� to solve the problem of cycles.

� AUTONUMLGL \e �1.3.4� Limiting the Syntax of Labels

Unlike most node labels in KDraw, constraint labels must conform to a very specific syntax.  There are three types of constraints: cardinality constraints, subset ("in") constraints, and superset ("includes") constraints.  Each of these types requires a specific syntax of their node labels.  This is easily accommodated by the ad-hoc constraint "NameRegularExpression", which is a parameterized function object in the Constraint Graph's standard constraint library.  

To attach the ad-hoc constraint, "NameRegularExpression", to a component, the user brings up the component's attribute dialog box (� REF _Ref378399604 \* MERGEFORMAT �Figure 45�) and selects the attribute "constraints".  The "value" part of the dialog changes to an edit button, which the user can press to bring up a constraint editor.  � REF _Ref378906974 \* MERGEFORMAT �Figure 46� shows the constraint dialog for KDraw's Min/Max-Constraint (cardinality) node.  To edit parameters of the "NameRegularExpression" constraint, the user chooses "NameRegularExpression" from the left-hand panel and then presses the "Edit Constraint" button.  This brings up the NameRegularExpression parameter dialog box shown in � REF _Ref378907251 \* MERGEFORMAT �Figure 47�.

�

Figure � SEQ Figure \* ARABIC �46�: The constraint editor for the Min/Max-Constraint of the KDraw defintion

Ad-hoc constraint parameter dialog boxes are custom to each constraint. � REF _Ref378907251 \* MERGEFORMAT �Figure 47� shows the one for "NameRegularExpression".  It is just a multi-line edit box where the user may enter any number of regular expressions, one per line.  The constraint merely checks to see that the component's name conforms to at least one of these regular expressions. � REF _Ref378907251 \* MERGEFORMAT �Figure 47� shows the regular expressions needed to describe a KDraw Min/Max-Constraint.  The first two expressions are required to accommodate the default names that might be assigned to the node upon creation.  Including these two expressions allows the user to create the node without immediately specifying the actual constraint.  The remaining three lines allow the user to express "at most n", "at least n", and "exactly n" cardinalities, respectively.



KDraw presents by far the greatest challenge to Constraint Graphs of all of the three languages covered in this chapter.  Although KDraw was studied as a model for the initial theory and framework design, its actual implementation in the framework caused several iterations back to the theory and specification stages.  For example, the "multiple ontologies" problem (Section � REF Section_VL_KRS_attr_inh \* MERGEFORMAT �7.3.2�) was unanticipated in the initial design and was only recognized when testing of the KDraw implementation yielded unexpected results.

� AUTONUMLGL \e �1.4� Summary

This chapter has demonstrated the Constraint Graphs implementation of a variety of visual languages.  These languages range from the simple to the complex, progressing though greater and greater challenges for Constraint Graphs.  The example languages serve to demonstrate not only the features of the Constraint Graphs system, but also several strategies that can be used by visual language designers to implement languages in the Constraint Graphs system.
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Figure � SEQ Figure \* ARABIC �47�: The "NameRegularExpression" constraint parameter dialog box for KDraw's Min/Max-Constraint constraint

The first example, the gIBIS language for argument, is a very simple language.  Its Constraint Graphs definition is described in detail, starting with the hidden, top-level abstractions and how they are used as the core to describe the concrete elements of the gIBIS language.  The language syntax revolves around legal arc types, and these types are constructed to provide a usefully constrained user interface for the end user by specializing menus and specifying type inferences the system may make.  Ad-hoc constraints are used to prevent unwanted subtyping.  Constraint Graph's Levels are demonstrated by using them to hide details of the definition from the end user.  Finally, the outcome of the gIBIS definition is explained by stepping through some of the operations that an end-user might perform in creating an actual gIBIS argument.

The second example, Sowa's Conceptual Graphs, is somewhat more complex than gIBIS.  This example is used to describe Contexts, and to present a more complex example of the use of Levels.  The Conceptual Graphs definition also serves to demonstrate more of the power of the inheritance relationships: inheritance is used by the end user to create a domain ontology.  In contrast, the end-user in the gIBIS example merely unwittingly uses a discourse ontology created by the visual language designer.

The third example, KDraw, is a visual, executable, knowledge representation language, and is by far the most complex of the three languages.  The KDraw definition demonstrates the use of abstract types to implement "polymorphic" relations, the use of ontology filters to create multiple type lattices in the same graph, the use of abstract types to avoid cycles in type lattices, and the use of ad-hoc constraints to limit the syntax of component labels.

The implementation of the three concept mapping languages in the chapter serve to both test and demonstrate the applicability of Constraint Graphs to implementing concept mapping languages.  All of the current features of Constraint Graphs are exercised in the implementation of these languages.  The value of implementing these languages in Constraint Graphs lies not only in the implementation per se, but also in the understanding of the target language that comes with the exercise of implementation itself.  For example, testing with the implementation of Conceptual Graphs quickly pointed out some problems with Sowa's published ontology (Section � REF Section_VL_CGs \* MERGEFORMAT �7.2�) and the implementation of KDraw reviled an otherwise hidden structure of arc types.  While the arc-centric structure of Constraint Graphs can be seen as unnatural with respect to the original conceptualizations of KDraw and Conceptual Graphs (which are both node-centric – see Section � REF Section_conc_future_alt_theories \* MERGEFORMAT �9.3.2�), the implementation in arc-centric paradigm appears to be quite useful and insightful.  
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