
Computer Science 331
Queues1

As part of the SAGES Teaching Scholar Program

Parthasarathi Das

Department of Computer Science
University of Calgary

Lecture #14

1Adapted from Dr. Michael Jacobson’s lecture slides.
Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 1 / 32

Outline

1 Learning Outcomes

2 Definition

3 Applications

4 Implementations
Array-Based Implementation (Circular Queues)
List-Based Implementation

5 Generalizations
Double Ended Queues
Priority Queues

6 Queue ADT in Java

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 2 / 32

Learning Outcomes

Learning Outcomes

By the end of today’s session, you will be able to -

understand what queues are, their various types and some
applications of queues.

implement queues using arrays and linked lists

apply this ADT suitably to solve problems

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 3 / 32

Definition

Introduction to Queues

A queue is a collection of objects that can be accessed in “first-in,
first-out”(FIFO) order: The only element that is visible and that can be
removed is the oldest remaining element.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 4 / 32

Definition

A Queue ADT

Queue Interface:

public interface Queue<T> {

public boolean add(T x);

public T remove();

public T element();

public boolean isEmpty();

}

Queue Invariant:

The object that is visible (and that would be removed next) is the
oldest object that remains in the queue.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 5 / 32

Definition

A Queue ADT: Methods

1 boolean add (T e):

Precondition:

a) Class Invariant.

Postcondition:

a) The item e is added at the rear of the queue.
b) Value returned is true.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 6 / 32

Definition

A Queue ADT: Methods

2 T remove():

Precondition:

a) Class Invariant.
b) Queue is nonempty.

Postcondition:

a) Item at the front of the queue is removed.
b) The removed value is returned as output.

Exception: A NoSuchElementException is thrown if the queue is
empty when this method is called

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 7 / 32

Definition

A Queue ADT: Methods

3 T element():

Precondition:

a) Class Invariant
b) Queue is nonempty

Postcondition:

a) Queue is unchanged
b) The element at the front of the queue is returned as output

Exception: A NoSuchElementException is thrown if the queue is
empty when this method is called

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 8 / 32

Definition

Implementation Using an Array

Initial Queue

h t
↓ ↓

Q: a b c d

Effect of Q.element()

h t
↓ ↓

Q: a b c d

Output: a

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 9 / 32

Definition

Implementation Using an Array

Effect of Q.add(e)

h t
↓ ↓

Q: a b c d e

Output: no output

Effect of Q.remove()

h t
↓ ↓

Q: b c d e

Output: a

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 10 / 32

Definition

Implementation Using an Array

Effect of Q.remove()

h t
↓ ↓

Q: c d e

Output: b

Effect of Q.element()

h t
↓ ↓

Q: c d e

Output: c

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 11 / 32

Definition

Variation: Bounded Queues

These queues are created to have a maximum capacity (possibly
user-defined — in which case, two constructors are needed).

Like bounded stacks, bounded queues can be implemented more simply
(and efficiently) than their unbounded counterparts.

If a bounded queue is already full, and either add or offer is called, then
the queue is not changed. The failure to add another item is indicated
differently in each case:

The method “add” throws an IllegalStateException.

The method “offer” returns the value false instead of true.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 12 / 32

Definition

“Six” Operations, Reconsidered

In addition to the queue operations described above, there are three more
which perform the same functions but handle error reporting differently.

1 Throwing an exception

a) add: Insertion of new element at rear
b) remove: Removal of front element
c) element: Report front element without removal

2 Unusual output (false or null)

a) offer: Insertion of new element at rear
b) poll: Removal of front element
c) peek: Report front element without removal

At this point one can see that the six methods provide three different
operations, using two approaches to report error conditions:

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 13 / 32

Applications

Types of Applications

Scheduling:

Examples: Print Queues and File Servers — In each case requests are
served on a first-come first-served basis, so that a queue can be used
to store the requests

Simulation:

Modelling traffic in order to determine optimal traffic lighting (to
maximize car throughput). Queues are used to store information
about simulated cars waiting at an intersection. Driverless cars?

Palindrome checker: Word or phrase whose letters are the same
backwards as forwards.
Examples:

| A Santa dog lived as a devil God at NASA | Malayalam |
See http://www.palindromelist.com for lots of examples.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 14 / 32

Implementations Array-Based Implementation (Circular Queues)

Straightforward Array-Based Representation

Doesn’t work well! Problems:

If we try to keep the head element at position 0 then we must shift
the entire contents of the array over, every time there is a remove

operation

On the other hand, if we try to keep the rear element at position 0
then we must shift the entire contents of the array over, every time
there is an add operation

Operations are too expensive, either way!

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 15 / 32

Implementations Array-Based Implementation (Circular Queues)

A “Circular” Array

Solution: Allow both the position of the head and rear element to move
around, as needed.

head

tail

0

1

2

34

5

6

7

a

b

c
Q:

t h
↓ ↓

Q: d e ? ? ? a b c head=5, tail=1, size=5

0 1 2 3 4 5 6 7

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 16 / 32

http://www.palindromelist.com

Implementations Array-Based Implementation (Circular Queues)

Example with Queue Operations

Initial Queue

h t
↓ ↓

Q: a b c ?
0 1 2 3

head = 0

tail = 2

size = 3

Q.add(d)

h t
↓ ↓

Q: a b c d
0 1 2 3

head = 0
tail = 3
size = 4

Q.remove()

h t
↓ ↓

Q: ? b c d
0 1 2 3

head = 1
tail = 3
size = 3

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 17 / 32

Implementations Array-Based Implementation (Circular Queues)

Example with Queue Operations (cont.)

Q.add(e)

t h
↓ ↓

Q: e b c d
0 1 2 3

head = 1
tail = 0
size = 4

Q.remove()

t h
↓ ↓

Q: e ? c d
0 1 2 3

head = 2
tail = 0
size = 3

Q.remove()

t h
↓ ↓

Q: e ? ? d
0 1 2 3

head = 3
tail = 0
size = 2

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 18 / 32

Implementations Array-Based Implementation (Circular Queues)

Example with Queue Operations (cont.)

Q.remove()

h,t
↓

Q: e ? ? ?
0 1 2 3

head = 0
tail = 0
size = 1

Q.remove()

t h
↓ ↓

Q: ? ? ? ?
0 1 2 3

head = 1
tail = 0
size = 0

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 19 / 32

Implementations Array-Based Implementation (Circular Queues)

Implementation of Queue Operations

public class CircularArrayQueue<T> implements Queue<T> {

private T[] queue;

private int head;

private int tail;

private int size;

public CircularArrayQueue()

{ tail= -1; head = size = 0; queue = (T[]) new Object[8]; }

public boolean isEmpty()

{ return (size == 0); }

public T element() {

if (isEmpty()) throw new NoSuchElementException;

return queue[head];

}

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 20 / 32

Implementations Array-Based Implementation (Circular Queues)

Implementation of Queue Operations (cont.)

public T remove() {

if (isEmpty()) throw new NoSuchElementException;

T x = queue[head]; queue[head] = null;

head = (head+1) % queue.length; --size;

return x;

}

public add(T x) {

if (size == queue.length) {

T [] queueNew = (T[]) new Object[2*queue.length];

for (int i=0; i<queue.length-1; ++i)

queueNew[i] = queue[(head+i) % queue.length];

head = 0; tail = queue.length-1; queue = queueNew;

}

else

tail = (tail + 1) % queue.length;

queue[tail] = x; ++size;

}

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 21 / 32

Implementations List-Based Implementation

Implementation Using a Linked List

Singly-linked list representation:

head points to first element, tail points to last element

head tail

b c da

Operations:

remove: delete first element of list

add(x): insert at tail of list

Why not have the tail point to the first element and the head point to the
last?

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 22 / 32

Implementations List-Based Implementation

Implementation Using a Linked List, Example

Effect of remove()

tailhead

b c d

Pseudocode:

head = head.next;

Effect of add(x)

head

c

tail

b d e

Pseudocode:

create new list node

tail.next = new;

tail = new;

Cost: Θ(1) (independent of queue size)

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 23 / 32

Implementations List-Based Implementation

Implementation of Queue Operations

public class LinkedListQueue<T> implements Queue<T> {

private class QueueNode<T> { similar to StackNode }

private QueueNode<T> head, tail;

private int size;

public LinkedListQueue() {

{ size = 0; head = tail = (QueueNode<T>) null; }

public boolean isEmpty() { return (head == null); }

public T element() {

if (isEmpty()) throw new NoSuchElementException();

return head.value;

}

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 24 / 32

Implementations List-Based Implementation

Implementation of Queue Operations (cont.)

public void add(T x) {

QueueNode<T> newNode = new QueueNode<T>(x,null);

if (isEmpty())

head = newNode;

else

tail.next = newNode;

tail = newNode; ++size;

}

public T remove() {

if (isEmpty()) throw new NoSuchElementException();

T x = head.value; head = head.next;

if (head == null)

tail == null;

--size; return x;

}

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 25 / 32

Implementations List-Based Implementation

Comparison of Array and List-Based Implementations

Array-based:

all operations almost always Θ(1) (amortized cost)

add is Θ(n) in the worst case (resizing the array)

good for bounded queues (and stacks) where worst case doesn’t occur

List-based:

all operations Θ(1) in worst case

extra storage requirement (one reference per item)

good for large queues (and stacks) without a good upper bound on
size (resizing is expensive)

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 26 / 32

Generalizations Double Ended Queues

Double Ended Queue — “dequeue”

A “double ended queue (dequeue or deque, pronounced deck)” allows both
operations on both ends:

Operations:

addFirst(x): Insert item x onto front

addLast(x): Append item x onto back

isEmpty(): Return True if the deque is empty

removeFirst(): Remove and report value of front item

removeLast(): Remove and report value of rear item

getFirst(): Report value of front item

getLast(): Report value of rear item

Operations removeFirst and removeLast should throw exceptions and
getFirst() and getLast() should return Null if called when the
dequeue is empty.

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 27 / 32

Generalizations Double Ended Queues

Implementations

Circular array implementation — similar to that of a regular queue.

addFirst, addLast cost Θ(n) in worst-case (due to resizing the
array), Θ(1) otherwise

all other operations Θ(1)

A doubly-linked list can also be used:

head tail

b c da

All operations in time Θ(1) (exercise)

Without a previous pointer, removeLast is Θ(n)

Applications: ?

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 28 / 32

Generalizations Priority Queues

Priority Queues

A priority queue associates a priority as well as a value with each element
that is inserted.

The element with smallest priority is removed, instead of the oldest
element, when an element is to be deleted.

Priority Queues will be considered again when we discuss

algorithms for sorting

graph algorithms

Also applicable for data compression (eg. Huffman encoding).

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 29 / 32

Queue ADT in Java

A Complication

Complication: There are multiple data types that resemble the “simple
queue” that are described in these notes but that also differ from it in
significant ways.

The Java Collections Framework does include a Queue<E> interface —
but this is implemented (potentially, somewhat confusingly) by classes
providing several of the ADTs described here!

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 30 / 32

Queue ADT in Java

A Complication

Solution, for our Purposes: Java’s LinkedList<E> class implements
the Queue<E> interface and provides a “simple queue” when it does so.

The statement

Queue<String> names = new LinkedList<String>();

creates a new Queue reference, “names,” that stores information to
String objects. While the actual object referenced by names is of type
LinkedList<String>, only the Queue methods can be applied to it
(because, again, names is a Queue reference).

What This Provides: A way to use the Java Collections Framework to
obtain an efficient and reliable implementation of a “simple queue”

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 31 / 32

Queue ADT in Java

Queues in the Textbook

Introduction to Algorithms

by Cormen, Lieserson, Rivest, and Stein

Section 10.1

Data Structures: Abstraction and Design Using Java

by Elliot B. Koffman and Paul A. T. Wolfgang

Chapter 4

Parthasarathi Das (University of Calgary) Computer Science 331 Lecture #14 32 / 32

	Learning Outcomes
	Definition
	Applications
	Implementations
	Array-Based Implementation (Circular Queues)
	List-Based Implementation

	Generalizations
	Double Ended Queues
	Priority Queues

	Queue ADT in Java

