
Computer Science 331
Computation of Minimum-Cost Spanning Trees — Prim’s Algorithm

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #34

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 1 / 20

Outline

1 Introduction

2 Min-Cost Spanning Trees

3 Algorithm
General Construction
Problem and Algorithm

4 Example

5 Termination and Efficiency

6 Additional Comments and References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 2 / 20

Introduction

Computation of Min-Cost Spanning Trees

Motivation: Given a set of sites (represented by vertices of a graph),
connect these all as cheaply as possible (using connections represented by
the edges of a weighted graph).

Goals for Today:

presentation of the definitions needed to formally define a problem
motivated by the above

presentation of an algorithm (Prim’s Algorithm) for solving the
problem

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 3 / 20

Min-Cost Spanning Trees

Costs of Spanning Trees in Weighted Graphs

Recall that if G = (V ,E) is a connected, undirected graph, then a
spanning tree of G is a subgraph Ĝ = (V̂ , Ê) such that

V̂ = V (so Ĝ includes all the vertices in G)

Ĝ is a tree

Suppose now that G = (V ,E) is a connected weighted graph with weight
function w : E 7→ N, and that G1 = (V1,E1) is a spanning tree of G

The cost of G1, w(G1), is the sum of the weights of the edges in G1, that
is,

w(G1) =
∑
e∈E1

w(e).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 4 / 20

Min-Cost Spanning Trees

Example

Suppose G is a weighted graph with weights as shown below.

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 5 / 20

Min-Cost Spanning Trees

Example

The cost of the following spanning tree, G1 = (V1,E1), is 8.

a

c

b

d

e

f

g

1

1

1

2

2 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 6 / 20

Min-Cost Spanning Trees

Example

The cost of the following spanning tree, G2 = (V2,E2), is 16.

a

c

b

d

e

f

g

2

5

2

3

2

2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 7 / 20

Min-Cost Spanning Trees

Minimum-Cost Spanning Trees

Suppose (G ,w) is a weighted graph.

A subgraph G1 of G is a minimum-cost spanning tree of (G ,w) if the
following properties are satisfied.

1 G1 is a spanning tree of G .

2 w(G1) ≤ w(G2) for every spanning tree G2 of G .

Example: In the previous example, G2 is clearly not a minimum-cost
spanning tree, because G1 is a spanning tree of G such that
w(G2) > w(G1).

It can be shown that G1 is a minimum-cost spanning tree of (G ,w).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 8 / 20

Algorithm General Construction

Building a Minimum-Cost Spanning Tree

To construct a minimum-cost spanning tree of G = (V ,E):

1 Start with Ĝ = (V̂ , Ê), where V̂ ⊆ V and Ê = ∅.

Note: Ĝ is a subgraph of some minimum-cost spanning tree of
(G ,w).

2 Repeatedly add vertices (if necessary) and edges — ensuring that Ĝ is
still a subgraph of a minimum-cost spanning tree as you do so.

Continue doing this until V̂ = V and |Ê | = |V | − 1 (so that Ĝ is a
spanning tree of Ĝ).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 9 / 20

Algorithm General Construction

Building a Minimum-Cost Spanning Tree

Additional Notes:

This can be done in several different ways, and there are at least two
different algorithms that use this approach to solve this problem.

The algorithm to be presented here begins with V̂ = {s} for some
vertex s ∈ V , and makes sure that Ĝ is always a tree.

As a result, this algorithm is structurally very similar to Dijkstra’s
Algorithm to compute minimum-cost paths (which we have already
discussed in class).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 10 / 20

Algorithm Problem and Algorithm

Specification of Requirements

Pre-Condition

G = (V ,E) is a connected graph with weight function w

Post-Condition:

π is a function π : V → V ∪ {NIL}
If

Ê = {(π(v), v) | v ∈ V and π(v) 6= NIL}

then (V , Ê) is a minimum-cost spanning tree for G

The graph G = (V ,E) and its weight function have not been changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 11 / 20

Algorithm Problem and Algorithm

Data Structures

The algorithm (to be presented next) will use a priority queue to store
information about weights of edges that are being considered for inclusion

The priority queue will be a MinHeap: the entry with the smallest
priority will be at the top of the heap

Each node in the priority queue will store a vertex in G and the
weight of an edge incident to this vertex

The weight will be used as the vertex’s priority

An array-based representation of the priority queue will be used

A second array will be used to locate each entry of the priority queue for a
given node in constant time

Note: The data structures will, therefore, look very much like the data
structures used by Dijkstra’s algorithm.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 12 / 20

Algorithm Problem and Algorithm

Pseudocode

MST-Prim(G , w , s)

for v ∈ V do
colour [v] = white
d [v] = +∞
π[v] = NIL

end for
Initialize an empty priority queue Q
colour [s] = grey
d [s] = 0
add s with priority 0 to Q

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 13 / 20

Algorithm Problem and Algorithm

Pseudocode, Continued

while (Q is not empty) do
(u, c) = extract-min(Q) {Note: c = d [u]}
for each v ∈ Adj [u] do

if (colour [v] == white) then
d [v] = w((u, v))
colour [v] = grey; π[v] = u
add v with priority d [v] to Q

else if (colour [v] == grey) then
Update information about v (Shown on next slide)

end if
end for
colour [u] = black

end while
return π

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 14 / 20

Algorithm Problem and Algorithm

Pseudocode, Concluded

Updating Information About v

if (w((u, v)) < d [v]) then
old = d [v]
d [v] = w((u, v))
π[v] = u
Use Decrease-Priority to replace (v , old)
in Q with (v , d [v])

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 15 / 20

Example

Example

1

1

1

2

2 1

a

c

b

d

f

e

g

Step 7:

Extract-Min (returns (g , 1))

color g black — done!

a b c d e f g
d 0 1 1 2 2 1 1

π - c a c d d e

Q: (empty)

Eg. one MST (total cost is 8):

{(π(b), b), (π(c), c), (π(d), d), (π(e), e), (π(f), f), (π(g), g)}
= {(c , b), (a, c), (c , d), (d , e), (d , f), (e, g)}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 16 / 20

Termination and Efficiency

Termination and Efficiency

Claim:

If MST-Prim is executed on a weighted undirected graph G = (V ,E) then
the algorithm terminates after performing O((|V |+ |E |) log |V |) steps in
the worst case.

Proof.

This is virtually identical to the proof of the corresponding result for
Dijkstra’s algorithm (to compute minimum-cost paths).

The number of operations on the priority queue, and the number of
operations that do not involve this data structure, are each
in Θ(|V |+ |E |) in the worst case (by the argument that has been
applied to the last three algorithms considered).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 17 / 20

Termination and Efficiency

Termination and Efficiency (cont.)

Proof (continued).

Since the size of the priority queue never exceeds |V | and since the
only operations on the priority queue used are insertions, decreases of
key values, and extractions of the minimum (top priority) element,
the cost of each operation on the data structure is in O(log |V |).

It follows immediately that the total number of steps is in
O((|V |+ |E |) log |V |), as claimed.

O(|V | log |V |+ |E |) using a Fibonacci heap (amortized)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 18 / 20

Additional Comments and References

Additional Comments

On Greedy Algorithms

Prim’s algorithm is an example of a greedy algorithm: A “global”
optimization problem (finding a minimum-cost spanning tree) is
solved by making a sequence of “local” greedy choices (by extending
a tree with edges whose weights are as small as possible).

Proving correctness of greedy algorithms is often challenging. Indeed,
greedy heuristics are often incorrect.

On the other hand, when they are correct, greedy algorithms are
frequently simpler and more efficient than other algorithms for the
same computation.

See CPSC 413 for more about greedy algorithms!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 19 / 20

Additional Comments and References

References

Further Reading and Java Code:

Introduction to Algorithms, Chapter 23

Chapter 23 includes Prim’s algorithm along with another greedy
algorithm for this problem (Kruskal’s algorithm).

Data Structures & Algorithms in Java, Chapter 14

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 20 / 20

	Introduction
	Min-Cost Spanning Trees
	Algorithm
	General Construction
	Problem and Algorithm

	Example
	Termination and Efficiency
	Additional Comments and References

