Outline

Computer Science 331

Algorithms for Searching @ Searching in an Unsorted Array

@ The Searching Problem
@ Linear Search

Mike Jacobson

Department of Computer Science 9 Searchlng in a Sorted Array
University of Calgary @ The Searching Problem
@ Linear Search
Lecture 721 @ Binary Search
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 1/20 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 2 /20

Searching in an Unsorted Array ~ The Searching Problem Searching in an Unsorted Array ~ The Searching Problem

The “Searching” Problem The “Searching” Problem, continued

Precondition 1: Precondition 2:

a) Ais an array with length A.length = n > 1 storing values of some a) Ais an array with length A.length = n > 1 storing values of some
type T type T

b) key is a value of type T that is stored in A b) key is a value of type T that is not stored in A

Postcondition 1: Postcondition 2:

a) The value returned is an integer i such that A[i] = key a) A notFoundException is thrown

b) A and key are not changed b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 / Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 4 /20

Searching in an Unsorted Array Linear Search Searching in an Unsorted Array Linear Search

Linear Search Correctness and Efficiency

Idea: Compare A[0], A[1], A[2],... to key until either
@ key is found, or

@ we run out of entries to check
Correctness: covered in Tutorial 2

int LinearSearch(T key)

0 Efficiency:
| =
.)) @ worst-case number of iterations is n
while (i < n) and (A[i] # key) do
i—i+1 @ loop body runs in constant time
end while @ so worst-case runtime of LinearSearch is in ©(n)
if i < n then
return
else
throw KeyNotFoundException
end if
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 5 /20 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 6 /20

Searching in a Sorted Array = The Searching Problem Searching in a Sorted Array = The Searching Problem

The “Searching” Problem in a Sorted Array The “Searching” Problem in a Sorted Array

Precondition 1: Precondition 2:

a) Ais an array with length A.length = n > 1 storing values of some a) Ais an array with length A.length = n > 1 storing values of some
ordered type T ordered type T

b) A[i] < A[i + 1] for every integer i such that 0 </ < n—1 b) A[i] < A[i + 1] for every integer i such that 0 </ < n—1

c) key is a value of type T that is stored in A c) key is a value of type T that is not stored in A

Postcondition 1: Postcondition 2:

a) The value returned is an integer i such that A[i] = key a) A notFoundException is thrown

b) A and key are not changed b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 7 /20 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 8 /20

Searching in a Sorted Array Linear Search Searching in a Sorted Array Linear Search

Linear Search Correctness and Efficiency

Idea: compare A[0], A[1], A[2],... to k until either k is found or

@ we see a value larger than k — all future values will be larger than k Correctness: similar to unsorted case. Loop Invariant:
| — . . .
as well or @ Jjis an integer such that 0 </ < n
@ we run out of entries to check o A[h] < key for 0 < h < i
int LinearSearch(T key) @ A and key have not been changed
i=0
while (i < n) and (A[i] < k) do Efficiency: also ©(n) in the worst case
i=i+1
end while Note: although the worst-case involves examining all elements of the

if (i < n) and (A[i] = k) then array, fewer will be examined on average

return | @ improves on unsorted case (all array elements must be examined to
else determine that k is not in the array)
throw KeyNotFoundException
end if
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 9/20 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 10 / 20

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Binary Search Specification of Requirements for Subroutine

) Calling Sequence: int bsearch(int low, int high, int key)
Idea: suppose we compare key to A[i]

o if key > A[i] then key > A[h] for all h <. Preconditions 1 and 2: add the following to the corresponding
o if key < Ali] then key < A[h] for all h > i. precondition in the “Searching in a Sorted Array” problem:
d) low and high are integers such that

0<low <n
—1<high<n-1

low < high+1

Alh] < key for 0 < h < low
Alh] > key for high< h<n-—1

Thus, comparing key to the middle of the array tells us a lot:

@ can eliminate half of the array after the comparison

int binarySearch(T key)
return bsearch(0, n — 1, key)
The corresponding postcondition can be used without change.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 11 /20 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 12 /20

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Pseudocode: The Binary Search Subroutine Example

int bsearch(int low, int high, T key)
if low > high then

. 0 12 3 4 5 6 7 8 9 10
IthrOW KeyNotFoundException A: ’ 3 ‘ 2 ‘ 6 ‘ 18 ‘ 21 ‘ 23 ‘ 29 ‘ 30 ‘ 35 ‘ 43 ‘ 49 ‘
else
mid = |(low + high)/2|
if (A[mid] > key) then Search for 18 in the array A :
return bsearch(low, mid — 1, key) e bsearch(0,10,18): mid = (0+ 10)/2 =5, A[5] =23 > 18
else if (A[mid] < key) then o bsearch(0,4,18): mid = (0+4)/2 =2, A[2] =6 < 18
e|sr(;aturn bsearch(mid + 1, high, key) @ bsearch(3,4,18): mid = (3+4)/2 =3, A[3] =18
return mid Return 3
end if
end if
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 13 /20 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 14 /20

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Partial Correctness Efficiency and Termination

Induction on the length n = high — low + 1 of the subarray
Allow], ..., Alhigh]

Inductive Hypothesis: Calls to bsearch within the code (subarray length

< n) behave as expected To search in array of size n:
Base Case: low > high (n = 0) @ if nis odd: recursively search subarrays of size =
@ no elements — throw KeyNotFoundException (correct) @ if nis even: recursively search subarrays of sizes 7 — 1 and 7

Inductive Step: low < high (n > 0) Summary: largest subarray is of size | 7|

e return mid if Almid] = key (correct)
e recursive call (correct by assumption). Should verify that:

e preconditions of bsearch are satisfied for the recursive call
e size of subarray in recursive call is < n

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 15 /20 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 16 / 20

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Efficiency and Termination, Cont. Efficiency and Termination, Cont.

T(n): number of steps to search in array of size n

T(n) < {Cl ifn=20 T(n): number of steps to search in array of size n

o+ T(l3]) ifnz1 o Recursion until [5;| =0 = k = [logy n+ 1]

for some constants ¢, > ¢; > 0. o Therefore, T(n) < cz|logyn+ 1] + c1

Expand the recurrence relation:
Can be shown that T(n) > clog, n

T(n <o+ (c+ T(LQ%J)) @ searching for an element greater (smaller) than the largest (smallest)
n element in the array
=26+ T(|3))
< ... Conclusion: T(n) € ©(log, n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 17 /20

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 18 / 20

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

A Note on the Analysis References

When analyzing algorithms, sometimes we encounter the operators || and

M Java.utils.Arrays package contains several implementations of binary
@ In general, these operators do not change the asymptotic running search
time of algorithms @ arrays with Object or generic entries, or entries of any basic type
e We usually ignore them, e.g., as if n was a complete power of 2 (will @ slightly different pre and postconditions than presented here

be more formally justified in CPSC 413)

Further Reading and Java Code:
Binary Search Algorithm:

n Data Structures & Algorithms in Java, Chapter 6
o T(n) < ke + T(2—k)

@ Therefore, k =logobn+1 = T(n) < c(logon+1)+c

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 19 /20 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 20 / 20

	Searching in an Unsorted Array
	The Searching Problem
	Linear Search

	Searching in a Sorted Array
	The Searching Problem
	Linear Search
	Binary Search

